
Interval Diagram Techniques for Symbolic Model Checking of Petri Nets

Karsten Strehl and Lothar Thiele

Computer Engineering and Networks Lab (TIK)
Swiss Federal Institute of Technology (ETH)
Gloriastrasse 35, 8092 Zurich, Switzerland

eMail: fstrehl,thiele g@tik.ee.ethz.ch
WWW: http://www.tik.ee.ethz.ch

Abstract

Symbolic model checking tries to reduce the state explosion prob-
lem by implicit construction of the state space. The major limiting
factor is the size of the symbolic representation mostly stored in
huge binary decision diagrams. A new approach to symbolic model
checking of Petri nets and related models of computation is pre-
sented, outperforming the conventional one and avoiding some of
its drawbacks. Our approach is based on a novel, efficient form of
representation for multi-valued functions calledinterval decision
diagram (IDD) and the corresponding image computation tech-
nique usinginterval mapping diagrams(IMDs). IDDs and IMDs
are introduced, their properties are described, and the feasibility of
the new approach is shown with some experimental results.

1 Introduction

During the last years, a promising approach namedsymbolic model
checking[2] was applied to many areas of system verification, even
in industrial applications. This approach makes use ofbinary de-
cision diagrams(BDDs) [1] that are an efficient representation of
Boolean functions and allow for very fast manipulation.

Petri nets are commonly used to model and analyze the dy-
namic behavior especially of concurrent and asynchronous sys-
tems. They are related to other models such as many high-level
and data-flow oriented models or models consisting of finite-state
components communicating via FIFO channels. When applying
conventional symbolic model checking techniques to such models
of computation, several difficulties occur that question their useful-
ness in this area.

The traditional BDD-based method of automated verification
suffers from the drawback that a binary representation of the Petri
net and its state is required. Even the use ofmulti-valued deci-
sion diagrams(MDDs) [4] instead of BDDs cannot resolve the
problem. Interval diagram techniques—using interval decision
diagrams(IDDs) and interval mapping diagrams(IMDs)—have
shown to be convenient for formal verification of, e.g., process
networks [5]. They remedy some deficiencies of traditional ap-
proaches and often provide advantages regarding computation time
and memory resources. The major enhancements of symbolic
model checking with IDDs and IMDs are:

� No state variable bounds due to binary coding or com-
plementation are necessary as with conventional symbolic
model checking.

� The transition relation representation is quite compact as
only “state distances” are stored instead of combinations of
state and successor. Accordingly, an innovative technique for
image computation is used.

� Due to the enhanced merging capabilities of IDDs and the
abandonment of binary coding, state set descriptions are
more compact than using BDDs.

In this paper, interval diagram techniques are applied to sym-
bolic model checking of Petri nets. We briefly present the used in-
terval diagrams and verification techniques and compare their run-
time behavior with that of the conventional BDD approach.

2 Interval Diagram Techniques

For formal verification of, e.g., process networks [5], interval dia-
gram techniques—using interval decision diagrams (IDDs) and in-
terval mapping diagrams (IMDs)—have shown to be a favorable
alternative to BDD techniques. This results from the fact that for
this kind of models of computation, the transition relation has a
very regular structure that IMDs can conveniently represent. While
BDDs have to represent explicitly all possible state variable value
pairs before and after a certain transition, IMDs store only thestate
distance—the difference between the state variable values before
and after the transition. Especially for models with large numbers
of tokens, this approach is reasonable and useful. IDDs are used to
represent state sets during computations.

2.1 Interval Decision Diagrams

IDDs are a generalization of BDDs and MDDs—multi-valued de-
cision diagrams[4]—allowing diagram variables to be integers and
child nodes to be associated with intervals rather than single values.
In Figure 1a), an example IDD is shown. It represents the Boolean
functions(u; v; w) = (u � 3) ^ (v � 6) _ (u � 4) ^ (w � 7)
with u; v; w 2 [0;1).

Equivalent to BDDs, IDDs have a reduced and ordered
form, providing a canonical representation of a class of Boolean
functions—which is important with respect to efficient fixpoint
computations often necessary for formal verification. Methods as
the If-Then-ElseoperatorITE are defined similar to their BDD
equivalents and may be computed as usual for decision diagram
applications using a computed table to improve performance.

2.2 Interval Mapping Diagrams

IMDs are represented by graphs similar to IDDs. Their edges are
labeled with functions mapping intervals onto intervals. The graph
contains only one terminal node. Figure 1 b) shows an example
IMD.

With regard to transition relations, IMDs work as follows. Each
edge is labeled with a condition—thepredicate interval—on its
source node variable and the kind and amount of change—theac-
tion operatorand theaction interval—the variable is to undergo.

u

0

v

w

1

[4,∞)[0,3]

[0,5]
[6,∞)

S

[0,7]

[8,∞)

a)

u

v

1

–[2,2]

–[1,1] +[0,1]

T

ww

v

[2,∞)/

=[3,4]

–[1,2] +[1,4]

[4,∞)/ [0,∞)/

[0,∞)/ [2,∞)/

[0,6]/

=[0,0]
[0,5]/

b)

Figure 1: Interval decision diagram and interval mapping diagram.

Each path represents a possible state transition which is executable
if all edges along the path are enabled. The combination of pred-
icate and action interval parameterizes the mapping function and
completely defines its behavior.

2.3 Image Computation

In [5], an efficient algorithm is described to perform forward or
backward image computation using an IDDS for the state set and
a IMD T for the transition relation, resulting in an IDDS0 repre-
senting the image state set. This algorithm may be used to perform
reachability analysis or symbolic model checking by fixpoint com-
putation. IMDs are dedicated to image computation especially for
Petri nets as the state distance (action interval) combined with the
respective firing condition (predicate interval) may be stored more
efficiently than many state pairs.

3 Symbolic Model Checking

Symbolic model checking allows for the verification of certain tem-
poral properties of state transition systems, where the explicit con-
struction of an entire reachability graph is avoided by implicitly de-
picting it using symbolic representations. Often, the propositional
branching-time temporal logic CTL (Computation Tree Logic) is
used. Petri net properties to be checked may be specified as CTL
formulae and verified with well-known techniques. A few ques-
tions out of the wide variety of system properties to be checked
using CTL are, e.g., “may placesp1 andp2 simultaneously contain
no tokens?”, “can transitionst1 andt2 be fired concurrently?”, or
“must all firing sequences eventually result in markingM1?”. Ad-
ditionally, specialized algorithms exist for the verification of many
common Petri net properties [3] and are straightforward adaptable
to interval diagram techniques, e.g., for deadlock freeness and di-
verse levels of liveness, or boundedness, persistence, and home
state property.

3.1 Experimental Results

Several different system models based on Petri nets have been in-
vestigated which led to promising results. The set of reachable
states has been calculated by a series of image computations. Some
results for different initial configurations are presented, comparing
IDDs and IMDs to BDDs. Our investigations yielded promising

results concerning the number of nodes and edges as well as the
computation time.

Figure 2 shows the size of the diagram representing the set of
reachable states of a model of a flexible manufacturing system with
automated guided vehicle for increasing initial configurationsm.

1 2 3 4 5
m

1000

2000

3000

4000

5000

nodes IDD

nodes BDD

edges IDD

edges BDD

Figure 2: Size of state set diagram.

In Figure 3, the computation timeT to determine the set of
reachable states is shown depending on the initial configurationm.
For both criteria, IDDs and IMDs turn out to be superior to the
conventional approach using BDDs.

1 2 3 4 5
m

2

4

6

8

10

12

14

T

IDD,IMD

BDD

Figure 3: Computation time in103 seconds.

References

[1] R. E. Bryant. Graph-based algorithms for boolean function manipu-
lation. IEEE Transactions on Computers, C-35(8):667–691, August
1986.

[2] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang.
Symbolic model checking:1020 states and beyond.Information and
Computation, 98(2):142–170, June 1992.

[3] E. Pastor, O. Roig, J. Cortadella, and R. M. Badia. Petri net analy-
sis using boolean manipulation. In15th International Conference on
Application and Theory of Petri Nets, volume 815 ofLecture Notes in
Computer Science, pages 416–435. Springer-Verlag, 1994.

[4] A. Srinivasan, T. Kam, S. Malik, and R. K. Brayton. Algorithms for
discrete function manipulation. InProceedings of the IEEE Interna-
tional Conference on Computer-Aided Design, 1990.

[5] Karsten Strehl and Lothar Thiele. Symbolic model checking of pro-
cess networks using interval diagram techniques. InProceedings of
the IEEE/ACM International Conference on Computer-Aided Design
(ICCAD-98), pages 686–692, 1998.

	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

