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Abstract A method for the fully automatic equivalence
verification of a design before and after the scheduling step
of high-level synthesis is presented. The technique is ap-
plicable to the results of advanced scheduling methods like
AFAP and DLS, which work on cyclic control flows, as well
as to pipelined designs.

1 Introduction

Successful applications of automatic formal verification
techniques are based on efficient decision procedures,
e.g., OBDD’s, fixed-point iteration techniques like model-
checking, or provers for ground equational logic with un-
interpreted functions. In the case of equivalence verifica-
tion, the application of these decision procedures to realis-
tic examples is even much more successful if the procedures
are combined with domain-specific strategies which exploit
similaritiesof the designs to be compared. Examples are the
structural similarities of logic circuits after buffer insertion
[11], and of finite-state machines after re-timing [17]. In the
case of the verification of pipelined processors, the similar-
ity of the pipelined version and the un-pipelined design is
due to the fact that specific properties of functions like bit-
vector addition are not exploited for pipeline-scheduling;
thus, proof techniques for uninterpreted functions are ap-
plicable [4].

In the following, we argue that the equivalence verifi-
cation of a design before and after the scheduling-step of
high-level synthesis (HLS) is an instance of this type of
comparison of “similar” designs, too. The decisions of
HLS scheduling-techniques are based on abstract informa-
tion concerning, e.g., data-dependencies or availability of
functional units. The overall algorithm remains unchanged:
HLS-scheduling isnotable to transform a bubble-sort algo-
rithm into a quick-sort algorithm. In many cases, the sets of
transfer-operations and basic predicates are identical before
and after scheduling.

While simple scheduling techniques like ASAP, ALAP,

list-scheduling and forced-directed scheduling work on
acyclicflow graphs and are, therefore, easily cross-checked
by means of provers for ground-equational logic with un-
interpreted functions, we present a method which is ap-
plicable to acyclic as well as tocyclic control-flows in
the following. This is important since advanced schedul-
ing techniques like path-based scheduling (AFAP [5]), dy-
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Fig. 1: Basic procedure of equivalence verification

namic loop scheduling (DLS [16]) or pipeline path-based
scheduling (PPS [16]) modify cyclic control structures. In
our method, the process of equivalence verification consists
of a number of transformation steps which assimilate the
original design to the scheduled design (Fig. 1). The given
scheduled description defines the goal of transformation; it
is, thus, not necessary to implement knowledge about the
various scheduling algorithms in the proof procedure. The
method is restricted to the proof of the computational equiv-
alence: it is not checked if the scheduling goals (minimal
number of steps or resources) are reached.

Related work: According to [12], synthesis-verification
maybe divided intopre-synthesisverification of synthesis-
algorithms (e.g., [14]),formal synthesiswhere the construc-
tive steps are embedded into a theorem prover (e.g., [3]),
andpost-synthesisverification where the synthesized results
are verified afterwards (e.g., [13]). While most methods of
post-synthesis verification use theorem proving techniques,
a graph-based method was proposed in [8]. A technique
for the verification of the register-allocation step by means



L0 : (S<-0, I<-0); L1;

L1 : if I ≤15 then
        if ODD(B) then 
                  (S<-S+A); L2;
        else STALL; L3; endif;
     else (SOUT<-S); Le; endif;
L2 : if S>N then (S<-S-N); L3;
     else STALL;  L3; endif;
L3 : (I<-I+1, B<-B/2, 
      A<-A*2); L4;
L4 : if A>N then (A<-A-N); L1;
     else STALL; L1; endif;
Le:

L0

-/(S<-0, I<-0);

L1

L2

L3

L4
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¬ (I ≤15)/
(SOUT<-S);

Fig. 2: Extended fsm and corresponding LLS-
description

of model-checking is given in [1]. An automatic decision
procedure for the verification of the scheduling step will be
presented in the following.

In Sect. 2, our method of design representation is briefly
surveyed. Sect. 3 presents the repertoire of basic transfor-
mations. The assimilation strategy is introduced in Sect. 4.
Experimental results are given in Sect. 5.

2 Representation of designs

HLS-scheduling typically transforms an original VHDL or
Verilog description into a data-flow or control-flow graph
representation [16] in a first step. The scheduling result
is often given as an extended fsm. We represent the orig-
inal description as well as the scheduled result textually
in our internal language LLS (Language of Labelled Seg-
ments). The rationale behind the introduction of another
type of representation is that a number of rewrite-rules for
the textual manipulation and transformation(Sect. 3) of
LLS-descriptions exist. Fig. 2 shows an example adapted
from [16] (the description calculatesa � b mod n) which
illustrates the analogy between the extended fsm notation
and our textual representation.Labelslike L0 correspond
to control states, and are used to guide the flow of con-
trol. An initial label (L0 in Fig. 2) has to be identified for
each description. A LLS-description consists of a number
of segmentsof the formL:B whereB is called thesegment-
bodyassociated with labelL. The labels occurring in the
segment-body are calledexit labels, and are used to specify
the flow of control, e.g.,L2 , L3 andLe are the exit labels
of segmentL1 (Fig. 2). The data-operations are specified in
the segment body. Assignments to a variable likex<-y are

S0 : (S<-0,I<-0); S1;
S1 : if I ≤15 then
        if ODD(B) then (S<-S+A); S2;
        else (I<-I+1, B<-B/2, A<-A*2); S3;
        endif;
     else (SOUT<-S); Se; endif;
S2 : if S>N then
        (S<-S-N, I<-I+1, B<-B/2, A<-A*2); S3;
     else (I<-I+1, B<-B/2, A<-A*2); S3; endif;
S3 : if A>N then
        if I ≤15 then
            if ODD(B) then (A<-A-N); S4;
            else (A<-A-N, I<-I+1, B<-B/2); S5;
            endif;
        else (A<-A-N, SOUT<-S); Se; endif;
     elsif I ≤15 then
        if ODD(B) then (S<-S+A); S2;
        else (I<-I+1, B<-B/2, A<-A*2); S3;
        endif;
     else (SOUT<-S); Se; endif;
S4 : (S<-S+A); S2;
S5 : (A<-A*2); S3;
Se:

Fig. 3: Example of Fig. 2 after DLS scheduling

called transfers. Parenthesis enclose synchronous parallel
transfers. Hence,(x<-y, y<-x) exchanges the contents
of x andy in a single step. Fig. 3 (taken from [16], too)
shows the example of Fig. 2 after DLS-scheduling. The
problem discussed in this paper is the automatic proof that,
for example, the descriptions of Fig. 2 and Fig. 3 are compu-
tationally equivalent: if both are started with the same initial
values then the same final values result when the end-labels
Le andSe, respectively, are reached.

A more detailed introduction to LLS is given in [7]. For
the purpose of this paper, it is sufficient to consider one
more aspect of the language: while each control state and
thus each label consumes exactly one step of time in Figs.
2 and 3, the sequential composition operator; can be used
in LLS segments for consecutive transfers. Thus, if control
reachesM0in the following example, thenx is incremented
in the first step of time; in the second step,y is incremented
and control is transferred toM1:

M0: (x<-x+1);
(y<-y+1); M1

Since loop-constructs are not provided in LLS a segment-
body remainsacyclic. A segment in which the serial com-
position of transfers does not occur is called asingle-step
segment. Descriptions instate diagram form, e.g., the de-
scriptions of Figs. 2 and 3 consist only of single-step seg-
ments.

Two LLS segments arecomputationally equivalent' if
both produce the same final values at the exit labels on the



same initial values.
Two LLS descriptions aretrace-equivalent�= if all runs

coincide step-by-step.
Two LLS descriptions arecomputationally equivalent'

relative to pairs of initial/final labels if both produce the
same final values at the final labels on the same initial val-
ues.

The two descriptions of Figs. 2 and 3, for instance, are
computationally equivalent for the pair (L0 ,S0) of initial
labels and for the pair (Le ,Se) of final labels, but not trace-
equivalent.

3 Basic transformations

Two distinct classes of basic transformations of LLS-
descriptions are used in our technique:

1.: The well-known rules given by Bernstein [2] gov-
ern possible parallelizations of consecutive assignments.
Let D denote the set of all variables on the destination
side of an assignment and letS be the set of all source
variables found in right-hand side expressions, e.g., for
(x<-a+b, y<-x*a) we haveD = fx; yg; S =

fa; b; xg. The rules given by Bernstein permit the paral-
lelization ofD2<-S2 with D1<-S1 :
(D1<-S1);
(D2<-S2, D3<-S3);

)
(D1<-S1, D2<-S2);
(D3<-S3);

if the following conditions hold:

D1 \D2 = ;; D1 \ S2 = ;; D2 \ S3 = ;

These rules can be extended to cope withforwarding and
the introduction of pipeline registers: if the second condi-
tion is not satisfied then it is possible toforward the result
computed forD1. If the third condition does not hold then
pipeline registershave to be introduced in order to save pre-
viously computed values forS3. The following example
illustrates these techniques:

(x<-a+b);
(y<-x, z<-y);

)
(x<-a+b, y<-a+b, yp<-y);
(z<-yp);

2.: While the application of the first class of transforma-
tions preserves the computational equivalence' of a seg-
ment body, the second class is based on a number of rules
which govern trace-equivalent�= transformations of LLS-
descriptions. The equivalence-rules shown in Fig. 5 are in-
dependent of specific predicates and data-operations, and
maybe viewed as a theory of “uninterpreted” control struc-
tures (the rules can be traced back to early work on theories
of equivalent microprograms [9]). RuleR1 (Fig. 5) allows
for the substitution of segment-bodies for labels. For ex-
ample, we may replace the occurrence of labelL1 in seg-
mentL of Fig. 4(a) with the segment-body ofL1 yielding
the segment (b) (only the modified segmentL is shown).

(a) L: (x<-x+1); L1 L1: (y<-z); L2
L2: (z<-b); L3

(b) L: (x<-x+1); (c) L: (x<-x+1);
(y<-z); L2 (y<-z);

(z<-b); L3

(d) L: (x<-x+1, y<-z, z<-b); L3

(e) L: (y<-z, z<-b); (f) L’: (y<-z, z<-b);
(x<-x+1); L3 La

La: (x<-x+1); L3
(g) S: (y<-z, z<-b); S1

Fig. 4: Substitution of segment-bodies for labels

Substituting the segment-body ofL2 in L results in (c).
The segment-body ofL consists now of a linear sequence
to which we may apply parallelization techniques governed
by Bernstein’s rules yielding, e.g., (d).
Vice versa, transfers maybe serialized (e) and labels likeLa
maybe introduced to cut off part of a segment-body (f).
Rules A1 to A5 govern straightforward relationships be-
tween nested if-clauses and boolean connectives. A1, for
instance, is a straightforward rule for the negation of an if-
condition.
Rules A6 and A7 refer to redundant conditions and opera-
tions, respectively.
Rules A8 and A9 allow for moving transfers into and out of
if-clauses. If a transferS in front of an if-clause is pushed
into the if-clause (Rule A9) then the if-conditionp has to
be transformed into the condition{S}p . This type of pred-
icate is called avirtual predicatesince it is equivalent to the
predicatep after a virtual execution ofS. For instance ifS
is x<-x+1 andp is x=0 then{S}p becomesx+1=0 . Of
course, if the support ofp and the set of destinations ofS
are disjunct then{S}p is equivalent top. Virtual predicates
have to be replaced by equivalent regular ones if the design
has to be implemented.

Theorem: The application of the two classes of transfor-
mations above preserves the computational equivalence of
LLS-descriptions.

The two classes form the basic repertoire of transforma-
tions employed by the assimilation algorithm given in the
next section. In order to obtain at leastexperimentalev-
idence of the completeness and power of the transforma-
tions, the extremely complex problem of the automated and
formally correct synthesis of pipelined processors has been
solved in [10]; a CPI of 1.1 has been obtained in the case of
the DLX architecture.



A1: D(if p then S 1 else S 2 endif; ) ≅
      D(if not p then S 2 else S 1 endif;  )
A2: D(if p and q then S 1

     else S 2 endif; ) ≅
      D(if p then if q then S 1

              else S 2 endif;
           else S 2 endif; ) 

A3: D(if p or q then S 1 else S 2 endif; ) ≅
      D(if p then S 1

     elsif q then S 1

     else S 2 endif; )
A4: D(if p then if q then S 1

               else S 2 endif;

           else S 3 endif; ) ≅
       D(if p and q then S 1

elsif p and not q
        then S 2 else S 3 endif; )
A5: D(if p then S 1 elsif q then S 2

               else S 3 endif; ) ≅
      D(if p or q then
        if p then S 1 else S 2 endif;
     else S 3 endif; )

A6: D(if p then S else S endif; )

       ≅
      D(S ) 
A7: D(if p then S 1 else S 2 endif; )

        ≅
       D(if p then if p then S 1

               else R  endif;
           else S 2 endif; )
A8: D(if p then S 1 else S 2 endif;
     S; )

       ≅
                D(if p then S 1;S;
     else S 2;S; endif; )
A9: D(S;
     if p then S 1 else S 2 endif; )

       ≅
      D(if {S}p then S;S 1;
     else S;S 2; endif;  )

R1:                         L: S

                     D(L ) ≅   D(S )

Fig. 5: Rules of trace-equivalent transformations of LLS-descriptions

4 The assimilation algorithm

Rather than to give a proof of the computational equiva-
lence of the original description and the scheduled result
which may involve induction-steps, etc., our proof-method
transforms the original description into a computationally
equivalent description which isbisimilar� to the scheduled
description (Fig. 1). Informally, two descriptionsD andD’
in state-diagram form are bisimilar,D � D’ , iff for each
segmentL of D there exists a bisimilar segmentS in D’ and
vice versa. Two single-step segmentsL andS are bisimilar,
(L,S) 2�, iff (i) the same data-operations are performed,
and (ii) control is transferred to bisimilar segments. If two
descriptions are bisimilar then they are trace-equivalent�=

(but there are trace-equivalent descriptions which are not
bisimilar).

The proof is given in terms of a step-by-step breadth-
first unfolding of both descriptions starting with the initial
segments. Fig. 6 shows the incomplete tree of unfolding the
two descriptions of Figs. 2 and 3. The unfolding starts with
time-step 1, proceeds to time-step 2, etc. Proving the initial
segments to be bisimilar in time-step 1 (e.g.,L0 and S0
of Figs. 2 and 3, respectively), entails bisimulation proofs
of consecutive segments ((L1 ,S1) 2� in the example) in
subsequent time-steps, etc.

We consider the case where the original description and
the scheduled result have the same sets of transfers and basic
predicates.

At each time-step, an attempt is made to adapt the seg-
ment(s) of the original description to the segment(s) of the

scheduled result. LetL be a segment of the original descrip-
tion, and letS be a segment of the scheduled description.
The proof of (L,S) 2� proceeds as follows:
1.: L is manipulated in such a way that the data-operations
of the segmentS result. In detail, this requires the following
steps:

i. In theexpansion-phase, the setM of transfers lacking
in L is identified. In the example of Fig. 4 (a) and (g),
we haveM = f(y<-z) , (z<-b) g. L is extended in
order to move the missing transfers into segmentL by
means of the substitution of segment-bodies for labels.
In Fig. 4 (b), the missing transfer(y<-z) is part ofL
after substitution of the segment-body ofL1 .
Searching for transfers ofM , the process of substi-
tution stops if the same label was to be substituted a
second time because this would not make additional
transfers available. The procedure fails if transfers of
M can not be found.
Since the resulting segment-body is acyclic we can
apply the parallelization techniques of Sect. 3 after-
wards. The lacking transfers are moved into the first
step ofL observing Bernstein’s rules (Fig. 4 (d)). It is
important to parallelize the transfers with the smallest
time-distance first: if in the example above, the trans-
fer (z<-b) were parallelized before(y<-z) then
the introduction of a pipeline-register forz would have
been necessary.
The expansion-procedure is more complex if if-
clauses are involved requiring the application of rules
A8 and A9, in particular.
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Fig. 6: Bisimulation proof by unfolding and assimilation

ii. In the reduction-phase, the surplus transfers are seri-
alized, and new segments are introduced if necessary
(Fig. 4 (e) and (f)). Comparing Fig. 4 (f) and (g), two
bisimilar segmentsL’ andS result provided thatLa
andS1 are bisimilar, too, i.e., (La ,S1) 2�.

2.: If the first step was successful, then it is now proven
that L can be replaced by a segmentL’ which is bisimi-
lar to segmentS provided the newly created subgoals can
be satisfied. If the same problem (L,S) 2� occurs again in
the process of unfolding in a subsequent time-step then this
does not create a new subgoal since the same procedure as
before can be applied. In Fig. 6, for instance, the assimila-
tion of L1 andS1 in time-step 2 created the new segment
L1’ with the new subgoals (Le’ ,Se) 2�, (L2’ ,S2) 2�,
(L4’ ,S3) 2�. The solution of these problems reproduces
(L4’ ,S3) 2� three times in time-step 3, and once in time-
step 4 which do not need to be considered further.
3.: A successful process of unfolding, therefore, results in
a finite subtree where the leafs are subgoals which occurred
in previous time-steps. The assimilation process stops if
a fixed-point is reached and no new subgoals are created.
The process will always terminate since the number of sub-
goals, i.e., the number of pairs of single-step segments with
a finite repertoire of transfers and basic predicates is finite.
The complete process of assimilating the description of Fig.
2 to the scheduled result of Fig. 3 creates 7 subgoals, and is
shown in Fig. 6.

5 Experimental results

Our verification technique has been applied to several exam-
ples reported in the literature. The following table summa-
rizes the results on a SUN Ultra2 300 MHz. PREFETCH is
an example of AFAP scheduling taken from [5]. MODULO
is the example of Fig. 2 originally given by [16] with results

of cycle-modifying AFAP, DLS (Fig. 3) and PPS scheduling
techniques.

Design Scheduling Cpu-time
method (sec.)

PREFETCH AFAP 0.06
AFAP 0.10

MODULO DLS 0.19
PPS 0.10

feasible 1.35FIR FILTER
optimal 1.18

C1 3-stage pipe 0.08

Since forwarding and the introduction of pipeline reg-
isters is provided by the repertoire of basic transforma-
tions, the verification system is also able to verifypipelined
scheduling results. The problem is more complex since the
sets of transfers and predicates is distinct due to pipeline-
registers and forwarding techniques. Two pipelined sched-
ules of an FIR FILTER by the Sehwa system [15] were ver-
ified. C1 [6] is a three-stage pipeline originally verified by
means of PVS, and includes forwarding as well as pipelined
read/write-operations of a register-file.

The examples demonstrate that the fully automatic veri-
fication of HLS scheduling results is feasible with our tech-
nique within a few seconds.
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