Formal Verification of Word-Level Specifications

Stefan Hbreth Rolf Drechsler
Siemens Corporate R&D Institute of Computer Science
D-81730 Munich / Germany Albert-Ludwigs-University
and 79110 Freiburg i. B., Germany

Darmstadt University of Technology
Dept. of Electrical & Computer Engineering
http:/www.rs.e-technik.tu-darmstadt.de/ sth drechsle@informatik.uni-freiburg.de

Abstract and are also used for symbolic model checking [11, 7]. In

o _ [19] HDDs have been applied to verification of circuits at

Formal verification has become one of the most impor- the register transfer level. WLDDs are a tool for bridging
tant steps in circuit design. In this context the verification the gap between verification of high-levidardware De-
of high-leveHardware Description Languag@4DLs), like scription Language¢HDLs), like VHDL, and the netlists

VHDL, gets increasingly important. consisting of basic gates, like AND and OR. But so far for

In this paper we present a complete set of datapath op-many HDL commands no effective way of translation into
erations that can be formally verified based\&ord-Level a WLDD is known.

Decision DiagramgWLDDs). Our techniques allow a di- In thi rwe presen mol f h ra-
rect translation of HDL constructs to WLDDs. We present tionsihztréz%ebe feoEn:a;IIey \t/:rﬁ?ed%ggee?mr(i it;?;t[)g?e a
new algorithms for WLDDs for modulo operation and di- - ¢ision DiagramgWLDDSs). Our verification techniques al-
vision. These operations turn out to be the core of our ef- |,y 1 girectly translate a HDL constructs to WLDDs. The
ficient verification procedure. Furthermore, we prove up- ey i this transformation are two new algorithms for mod-
per bounds on the representation size of WLDDs guaran- ;4 oneration and division. Even though the operations have
teeing effectiveness of the algorithms. Our verification tool exponential worst case behavior we show by some experi-
is totally automatic_a_nd experimental results are given to ,ants that these algorithms can handle functions with up
demonstrate the efficiency of our approach. to several hundred variables, while previously known algo-
rithms fail for more than 16 bits. For some important func-
tions often occurring in high-level descriptions we prove

- . . lynomial r n n the representation size of th
Nowadays modern circuit design can contain severals\?l_%g al upper bounds on the representation size of the

million transistors. For this, also verification of such large
designs becomes more and more difficult, since pure simu-
lation can not guarantee the correct behavior and exhaustiv

simulation is too time consuming. ponents can be combined. We succeeded in automatically

But many designs have very regular structures, like \qrifving this circuit, while other approaches, e.g. based on
ALUs, that can be described easily on a higher level of ab- *BMf)[/)s%nly fail. PP » €0

straction. E.g. describing (and verifying) an integer mul-
tiplier on the bit-level is very difficult, while the verifi-
cation becomes easy, when the outputs are grouped to
build a bit-string. Recently, several approaches to forma
circuit verification have been proposed that make use o
these regularities [1, 12, 3]. All these approaches have in
common that they are based Word-Level Decision Dia-
grams(WLDDs), i.e. graph based representations of func- - iai i

tions (similar to BDDs [4]) that allow to represent functions 2 Wora-Level Decision Diagrams

with a Boolean range and an integer domain. Examples of In this section notations and definitions are given that
WLDDs are e.g. EVBDDs [20], MTBDDs [9, 2], *BMDs are important for understanding the paper. We give a brief
[6], HDDs [10], and K*BMDs [14]. In the meantime overview onDecision DiagramgDDs). (For more details
WLDDs have been integrated in verifications tools [1, 8] see [18, 13].)

1 Introduction

For each HDL operation we describe the main ideas and
report some experiments. Finally, a case study on verifying
& BCD-to-binary converter shows how the different com-

The paper is structured as follows: In Section 2 WLDDs
are introduced. In Section 3 arithmetic functions are de-
| scribed that often occur in high-level descriptions of circuits
fand their size is estimated. In Section 4 datapath operations
are discussed. An experimental study is given in Section 5.
Finally, the results are summarized.

All DDs are graph-based representations, where at each

(non-terminal) node labeled with a variabl@ decomposi- Table 1. Functions represented by edges
tion of the function represented by this node into two sub- .
functions (thelow-function and thehigh-function) is per- graph type | edge function
formed. In the following, we assume that the underlying MTBDD, BMD, HDD | f. = f

graph isorderedand reduced i.e. variables occur in the EVBDD fe=a+f
same order on all paths in the DD and functions represented *BMD fe=m-f

by nodes of the graph are unique. K*BMD fe=a+m-f

For bit-level DDs the following three decompositions
have been considered:

[=T fiow ® T fhighs Shannor(S) Edge-values are obtained from the node representation
= fiow®T frign, positive Davio(pD) during the graph reduction phase. Note that all remain-
[= fiow ®T frign- negative DaviqnD) ing DDs from Table 1 are obtained by further restricting the

))) K*BMD reduction rules and DTL.
Functionf is represented at node while fio. (frign) de-

notes the function represented by tbe-edge high-edge) 3 Representation Size of Arithmetic Func-

of v. @ is the Boolean Exclusive OR operation. The re- tions
cursion stops at terminal nodes labeled with O or 1. If at a
node a decomposition of ty@e(D) is carried out this node High-level circuit descriptions allow the use of buses. By

is called aS-node (aD-node). If only decompositions of this, Boolean variables are grouped, if they belong together.
type S are applied the resulting DD is a BDD [4], while in The big advantage of WLDDs is that they allow to directly
OKFDDs [15] all three are allowed. make use of this grouping, while the direct correlation gets
In this paper, we consider the same three decomposidost in bit-level DDs, like BDDs. Obviously, the smaller
tions for word-level functions, i.e. functions of the form the representation is, the faster are the algorithms. This be-

f:B" > Z: comes even more important, if algorithms with exponential
worst case behavior are used.
f=0-2) fiowt - fhigh, For this, we first consider arithmetic operations of func-
[= Jiow + - fhigh- tions that are defined over Boolean variables. Vet =
f= Jrow + (1 =) - fhigh- {x1,...,2,} be a set of Boolean variables:

The notationS, pD andnD is used analogously to the bit- 1. X = Zn—l DY

level. z still denotes a Boolean variable, but the values of =0

the functions are integer numbers and they are combined 2. X +V

with the usual operations (addition, subtraction, and multi-

plication) in the ringZ of integers. Which decomposition 3. XY

is used, i.e. bit- or word-level, becomes clear from the con-

text. To simplify the notation in the following and to avoid ~ 4. X?, X?,..., X (c constant)
different cases for all decompositions, we use the notation

f = diow (SE) ’ flow + dhigh(w) ' fhigha

where- and + is the multiplication and addition, respec-
tively, over a domainD, djoy,dnign, : B — B, and
fiows frign : B®™' — D. Itis easy to see that all decompo-
sitions above can be formulated using this generalized form,
if diow, Ahigh, fiow, aNdfrign are chosen appropriately.
Decomposition types are associated to th®oolean
variablesz, xs, ..., z, with the help of aDecomposi-

5. ¢X (c constant)

While these functions are the basic operations for most oth-
ers, they are studied in more detail in the following.

Depending on the WLDD-type the representation size
largely varies (see below). The best results so far have been
obtained for *BMDs: ForX, X +Y, X .Y, ¢X *BMDs have
linear size [5]. These results directly transfer to K*BMDs.
The situation becomes more complex, when functions of
type X ¢ (c constant) are considered.

i i —) We first prove an upper bound for functiaki® for
tion Type List(DTL) d := (di,...,d,) Whered; € v ; "
{S,pD,nD}, i.e. d; provides Ehé decom)position type for Bl:/IDs. Obviously, the given bound holds for *\BMDs and
variablez; (i = 1,...,n). K*BMDs as well.

Based on the notations and definitions above we now in- . c
troduce the functions represented by an edge in a DD. TheTheorem 1 The BMD for functiont'® has at most
edge functionf, is obtained from the function of the node c
through multiplication or addition of integer values. Z (”)
For MTBDD [9, 2], BMD [6], HDD [10], EVBDD [20], P
*BMD [6] and K*BMD [14], the corresponding functions
fe are given in Table 1«, m are integer numbers). nodes using the variable ordering, 1, ..., zg.

Proof:

Before we consider the BMD representation we

In the following two theorems we show that better upper

start with some general considerations that will be used inbounds can be given for K*BMDs.

the following:
4 rd
d _ d—ipi 1
(a+b) 2;() b (1)
It now easily follows from Equation (1):

(a+0)? - = (i (d) at=i) — b

7

= (?) =’y + b — b

d—1
— (d) ad—ibi (2)
i=0 !

Notice that the exponent of the polynomial decreases by

one,i.e. fronrdtod — 1.

Theorem 2 The K*BMD for functionX? has at mosO(n)
nodes using the variable ordering, 1, . . ., zg.

Proof: We show the decomposition on the top level of the
function. Then the generalization for all variablesbe-
comes obvious. We start with function

n—1
f= (Z 2;2')°.
=0
This function is decomposed to tlev-edge
n—2
flow = (Z xiZi)Q
i=0

and thehigh-edge

n—2

frigh = 22772 427 Z ;2"

We now make use of these equations, when we have a i=0

closer look at the influence of the BMD decomposition on

polynomials:
f = fiow + Zifrign

Here, fi,., represents the function, if variablg is set to

zero, i.€.fiow = fu;=0. frign 1S Qiven by fu.=1 — fa,=o.

If in the following we decompose the function starting from
the highest coefficient in the polynomial towards the lower
., the function represented
by thelow-edge of noder computes the same polynomial
asw, with the only difference that coefficiemt has been set

coefficients, i.ex,_1,z,_o,-.

to zero.

The case for thénigh-edge is more difficult: We have
to subtract the polynomials for the casexf = 1 and

As in the proof of the theorem above the exponent in the
sum is reduced by one by thegh-edge. Again, the case
for thelow-edge is trivial. If the function on theigh-edge

is decomposed again by a Davio decomposition, we obtain

n—3
22n—2 + 2n Z 1,121

i=0

But due to the additive and multiplicative edge values this
function becomes isomorphic to thgh-successor of the
low-edge, while thehigh-edge points to a constant value.
All'in all, the number of nodes per level is bounded by two.
(A more detailed analysis shows that the exact number is

z; = 0. But these polynomials differ only in a constant given by2 - n — 2). O

factor. Thus, Equation (2) can be applied and it directly fol-
lows that by each use of thegh-edge the exponent of the
polynomial represented by the corresponding node is de-
creased by one. Afterhigh-edges the polynomial assumes

This result shows that K*BMDs are the only DD-type
presented so far for hardware verification, that can repre-
sent all functions considered in [5] in linear size (see Ta-

a constant value, but this is represented as a terminal nod8!€ 2)- The representation size becomes extremely impor-

in a BMD. Thus, forX¢ we only have to count the num-
ber of paths from the root of the BMD that pass at mos
¢ high-edges. But as a straightforward computation shows

this number is given by:

> ()

O

tant for WLDDs, since most operations have exponential

t worst case behavior. Thus, keeping the (final) representa-

tion small enables us to define more efficient algorithms.
Finally, we show that the result of Theorem 1 can also be
improved for K*BMDs forc = 3.

Theorem 3 The K*BMD for function X3 has at most
O(n?) nodes using the variable ordering,_1, ..., zo.

Proof: A detailed analysis similar to the one of the proof
above shows that (starting from the third level) per level one

As mentioned before the bounds given in the theorem additional node is created. Thus, the total number of nodes

directly transfer to *BMDs and K*BMDs. For *BMDs the
bound forec = 2 can (asymptotically) not further be im-

proved [5]:

Remark 1 A *BMD for X2 has a quadratic number of

nodes.

becomes quadratic in the number of variables. (The exact
number is given byn? + n — 4)/2). O

All'in all, it turns out there exist WLDD-types that can
efficiently represent arithmetic operations in polynomial
size (by polynomials of low degree), while other types fail.

d ow ° ow

Table 2. Representation sizes of different DD- (diow () - (frowg)

types for arithmetic functions +dnigh () - (frign7g))%g
(f%ong)%og

DDtype | X X+V X-V X2 X = (diow(2) - (fiow%~9)

MTBDD exp exp exp exp exp +dnigh(2) - (Fhigh%x9)) %9
EVBDD lin lin exp exp exp Then again step 1. is applied to the WLDD ff#fo~.g
BMD, HDD | lin lin quad quad exp until some terminal cases are reached.

*BMD lin lin lin quad lin : . i
K*BMD lin lin lin lin lin If ¢ depends on:, both algorithms, i.e. exact compu

tation based on Shannon decomposition and estimate
are applied recursively.

L As an important special case this algorithm also includes
4 Word-Level Verification the modulo operation with a constant functignThen for
computingf %qg only the WLDD for f has to be traversed,
Gind the operation has to be applied to the terminal nodes.
Afterwards, range estimation on the simplified WLDD fre-
guently leads to an early termination.

In this section we define a set of datapath operations thal
allow to effectively verify high-level HDLs, like VHDL.
For this, first two operations are introduced, i.e. modulo
operation and division. Recently, it has been proved that
none of the “usual” WLDD-types can represent the division Remark 2 For WLDDs using additive and multiplicative
function efficiently [21]. Nevertheless, our algorithms for edge values for constant functiops> 0 we proceed as
these closely related operators work very well in practice. follows:

(All experiments in this section have been carried out on

a SUN UltraSPARC-170 workstation with 256 MByte of (a+m-fo)%g = (a%g+ (m%g) - fo)%g
main memory.) Then the modulo operation only has to be computed for the
4.1 Modulo Operation simplified functiom%g + (m%g) - f..

Modulo arithmetic based on powers of two is frequently Experiment We consider modulo addition based on
used in specifications of datapaths. But as described abovey pps:
division (and modulo) is a “hard” problem for WLDDs. A
straightforward approach to compute modulo would be to — i — i n
recursively apply Shannon decompositions. But a limitation (Z 2'zi + Z 2'y:) %2 (3)
of this approach when using WLDDs is that the range of =0 =0
functions often becomes prohibitively large. We represent the formula by a K*BMD with onjyD de-

In the sequel, we present an algorithm for modulo arith- composition using an interleaved variable ordering.
metic, that often avoids explicit enumeration of function The results of our approach in comparison to the con-
values. We make use of the two properties of modulo arith- ventional approach based on Shannon expansion for vary-

metic: ing bit-length are given in Table 3. Even though the size of
the output function grows only linear with the bit-length, the
(@a+b)%m = (a%n +b)%n straightforward approach fails for more than 16 bits, while
= (a%n + b%n)%n our algorithm can handle the function with 512 bits (and
(a-b)%n = (a%n-b)%n 1024 variables) in less than 300 CPU seconds.
= (a%n - b%n)%n. 4.2 Division
Here% denotes the modulo operatian € Z, andn € N. Based on the modulo operation described above, we now

The algorithm consists of two steps (only the main idea give an algorithm for computing the division on WLDDs.
is given in the following, due to page limitation; for more The basic idea of the algorithm is to first subtract the re-
details see [17]): mainder of the division from the dividend and then to com-

pute the result:
1. Terminal cases are checked based on a “conservative”

estimate for function ranges. We make use of the algo- flg = (f=f%9)/9g.
rithm for range estimation as described in [10]. If ¢ is independent of variable, it holds:
2. If step 1. fails, an estimat€% g is computed, by car- flg = (F=f%9)/a=1Ff"]g

rying out the modulo operation ofj,,, and fign.

o o = (diow(®) - flow + dnign() - frign)/g
If g : B™ — N is independent of variable, it holds:

(dlow (SU) ' (fllow/g)
f%g = (diow(®) - fiow + dnign () - frign)%g +dnign () - (fhign/9))- 4)

Table 3. Modulo operation

bit-length 4| 8 16| 32| 64| 128| 256| 512
time (Shannon) [s]| 0,1 | 0,2 | 18,5| >1h | >1h | >1h | >1h| >1h
time (mod) [s] 01({01| 01| 0,2 06| 2,7| 21,4| 275,9
size [nodes] 16| 36| 76| 156| 316 | 636 | 1276| 2556
max. size [nodes] || 20| 40| 80| 160| 320| 640 | 1280| 2560

Table 4. Division with non-constant divisor

bit-lengthn 4| 8] 16| 32| 64| 128
divisor [nodes] 6| 14| 30| 62| 126| 254
max. size [nodes]|| 17| 40| 88| 184 | 376| 760
time [s] 01/01|0,1| 0,4] 39| 1705

Otherwise the division is computed by carrying out a Shan-
non expansion for its argumentg — f%g) andg, respec- . .
tively. (Again, the algorithm can be simplified for constant catémc(slelljsl|ce(ac,(2),*n—11),rg)),
functionsg > 0 and for WLDDs making use of edge- a c(sesme(a_c,n, n-1),0,
values.) equ(inc(selslice(ac,0,n-1),n),0)),n))
In some cases division can also be computed efficiently
when the divisor is not constant. This is often the case, if
dividend and divisor are monotonous and if they are defined
over the same set of variables.

equ(inc(ac,2*n),

Figure 1. Example of datapath operation

Notice that the operations often combine Boolean and

Experiment Consider the division integer expressions. This is taken into account by using
) Boolean and integer graph types. In the implementation of
a+1 — . the hybrid DD package from [16], e.g. the parity function
@2 +2+1 = Z 2'a;. odd(a) uses a WLDD to represent the integer functign

while the result is represented by a Boolean graph type, i.e.

The expressions+ 1 anda® +2a+ 1 are given as K*BMDs an OKFDD or a BDDs.

consisting ofpD-nodes only. For = 0 the result becomes
1. In all other cases it becomé&s The K*BMD grows Experiment Consider the datapath operation in Figure 1.
linearly with the bit-length. It will be checked whether incrementing regiséer (of bit-
This is “obvious”, but hard to handle using DDs. length2n) can be done by splitting it into two words of
E.g. BDDs falil, since they can not represent multiplication |engthn and then performing the operation accordingly.
efficiently. Applying the standard methods (see e.g. [5]) all The implementation given in Figure 1faulty, since a
input combinations have to be considered resulting in ancarry might be generated during additiaic . In our exper-
exponential runtime. iment all word-level operations are carried out on K*BMDs
Using the algorithm described above also large bit-length and for all Boolean expressions BDDs are used. The BDD
can be handled efficiently (see Table 4). A prerequisite for for the first occurrence of functicequ represents the com-
this are the efficient representations of e as proven in plete set of possible values of regisa, for which the
Section 3. operation is implemented correctly. (It is easy to see that
: the BDD only need&n + 1 nodes.)
4.3 Datapath Operations In Table 6 again the runtimes and the maximum graph
Based on the algorithm described so far in combination sizes during the computation are given. The main problem
with the results presented in [16] we can now efficiently in this case is the computation of the division and modulo
describe a large set of datapath operations for HDLs, like operation in functionselslice andinc , respectively.
VHDL (see Table 5).a, a0, al denote bit-vectors of Notice that the additiomdc is again a hybrid operation,
lengthn, that are given by integer encodings:0,al. b is i.e. between K*BMDs and BDDs. Even though, most of
a single bit represented by the Boolean function, Kk, the word-level operations have exponential worst case be-
| (n,k,[)are natural numbers. havior it turns out that in most practically relevant cases

Table 5. HDL and their implementation by word-level operations

HDL word-level operation interpretation
a S 2 integer encoding
adc(a0, al, b) a0+al+b addition with carry
cat(a0, al, n) 2" . al + a0 concatenation
fae(b, n) S b2 fanout
selel(a, k) odd(a/2%) bit selection
selslice(a, k, 1) (a%2!*1) /2k bit-slice
inc(a, n) (@ +1)%2" increment modulo
dec(a, n) (a — 1)%2" decrement modulg
rsh(a, b, n) (a%2™)/2+ 2" b shift right
Ish(a, b, n) ((a-2)+b)%2" shift left
rol(a, n) (a-2)%2" + (a%2™)/2"~1 | rotate left
ror(a, n) (a%2™)/2 + 2"~ - odd(a) | rotate right
equ(a0,al) equ(a0,al) equivalence
gt(a0,al) gt(a0,al) greater than
IF b THEN ao0;
ELSE al; FI b-a0+ (1—0b)-al conditional
Table 6. Verification of datapath operation
bit-length2n 16| 32| 64| 128 | 256 512
time [s] 03| 0,6 13| 43| 21,4]| 161,2
max. size [nodes]| 54 | 155 | 315| 681 | 1387 | 2811
the runtimes are very small. (If a correct implementation . .
is considered the runtimes of our algorithm are in the same ID_(g) d[n]:=0;

range.)
5 A Case Study

b[i] := odd(d[0]);

FOR ;=0 TO n-1 DO

dj] := d[j}/2 + 2°3 * odd(d[j+1]);
Finally, we describe the complete automatic formal ver- FOR j;==0 TO n-1 DO

ification of a 10-decade BCD-to-binary converter. (Minor di] := d[j] - 3 * gt(d[j], 7);

details are left out due to page limitation.) Following the i =il

Texas Instrument TTL Data Book for Design Engindlees UNTIL (d[0]=0 & ... & d[n-1]=0);

specification is given by:

The BCD-to-binary function of the SN54184 and

SN74184 is analogous to the algorithm: Figure 2. Algorithmic specification

a. Shift BCD number right one bit and exam-
ine each decade. Subtractthree from each 4-
bit decade containing a binary value greater
than seven.

b. Shift right, examine, and correct each shift
until all converted decades contain zeros.

For all Boolean functions we used BDDs and all word-
level operations are carried out using K*BMDs. The de-
composition types and the variable ordering are not pre-
determined: they are dynamically found using DTL-sifting
[18].

On a SUN UltraSPARC-170 workstation 30 MByte of
One possible formulation of this algorithm in a more formal main memory were needed. For the transformation of
way is given in Figure 2. We compare the HDL descrip- the specification to WLDDs about 11 CPU minutes were
tion to an implementation composed of subcircuits of type needed. Then the BDD for the implementation is con-
SN74184. As can be seen the HDL description makes use obtructed. The circuit consists of 82 TTL elements (corre-
several operations introduced in the previous sections, likesponding to about 5000 two-input gates). The BDDs for
addition, multiplication, greater than. the outputs are constructed in less then 1 CPU minute. Fur-

thermore, als®on't Caresare considered, i.e. only “valid”
input combinations are used.

Allin all, the verification could be completed (including
computation of specification and implementation) in less
than 18 CPU minutes using 97 MByte of main memory.
60% of the runtime was used for dynamic minimization
based on DTL-sifting and the maximal number of nodes
during the run was 1.5 million.

Finally notice that in contrast the verification of the spec-
ification against the circuit using *BMDs only failed. This
further underlines the importance to hybrid structures in
verification.

6 Conclusions

In this paper we presented a complete set of datapath op-

erations that can be formally verified basedward-Level
Decision Diagrams Our techniques allow a direct transla-
tion of HDL constructs to WLDDs. The sizes of WLDDs
for important arithmetic functions have been estimated and
we have studied manipulation algorithms for WLDDs for

(8]

9]

[10]

[11]

[12]

modulo operation and division. Based on these core opera-

tions, we have shown by several experiments the feasibility[

of our approach.

In a case study we showed how a specification and its im-
plementation could be automatically verified using formal
techniques. Alternative approaches based e.g. on *BMDs
could not complete the verification within several hours,
while the whole process took less than 18 CPU minutes us-
ing our techniques.

References

[1] L. Arditi. *BMDs can delay the use of theorem prov-
ing for verifying arithmetic assembly instructions. In
FMCAD, pages 34-48, 1996.

[2] R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel,
E. Macii, A. Pardo, and F. Somenzi. Algebraic deci-
sion diagrams and their application. Ilt'l Conf. on
CAD, pages 188-191, 1993.

[3] C.W. Barrett, D.L. Dill, and J.R. Levitt. A decision
procedure for bit-vector arithmetic. IBesign Au-
tomation Conf.June 1998.

[4] R.E. Bryant. Graph - based algorithms for Boolean
function manipulation. IEEE Trans. on Comp.
35(8):677—691, 1986.

[5] R.E. Bryantand Y.-A. Chen. Verification of arithmetic
functions with binary moment diagrams. Technical
report, CMU-CS-94-160, 1994.

[6] R.E. Bryantand Y.-A. Chen. Verification of arithmetic
functions with binary moment diagrams. Design
Automation Conf.pages 535-541, 1995.

[7]1 Y. Chen, E. Clarke, P. Ho, Y. Hoskote, T. Kam,
M. Khaira, J. O' Leary, and X. Zhao. Verification of all
circuits in a floating-point unit using word-level model
checking. INFMCAD, pages 389—-403, 1996.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Y.-A. Chen and R.E. Bryant. ACV: an arithmetic cir-
cuit verifier. InInt'l Conf. on CAD pages 361-365,
1996.

E. Clarke, M. Fujita, P. McGeer, K.L. McMillan,
J. Yang, and X. Zhao. Multi terminal binary decision
diagrams: An efficient data structure for matrix rep-
resentation. Inint'l Workshop on Logic Synthpages
P6a:1-15, 1993.

E.M. Clarke, M. Fujita, and X. Zhao. Hybrid decision
diagrams - overcoming the limitations of MTBDDs
and BMDs. Inint'l Conf. on CAD pages 159-163,
1995.

E.M. Clarke and X. Zhao. Word level symbolic model
checking - a new approach for verifying arithmetic cir-
cuits. Technical Report CMU-CS-95-161, 1995.

D. Cyrluk, O. Maller, and H. RueRAn Efficient Deci-
sion Procedure for the Theory of Fixed-Sized Bitvec-
tors, volume 1254 oLNCS Computer Aided Verifi-
cation, 1997.

13] R. Drechsler and B. BeckerBinary Decision Dia-

grams - Theory and ImplementatiorKluwer Aca-
demic Publishers, 1998.

R. Drechsler, B. Becker, and S. Ruppertz. The
K*BMD: A verification data structure IEEE Design
& Test of Comp pages 51-59, 1997.

R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and
M.A. Perkowski. Efficient representation and manip-
ulation of switching functions based on ordered Kro-
necker functional decision diagrams. Design Au-
tomation Conf.pages 415419, 1994.

S. Horeth. Implementation of a multiple-domain deci-
sion diagram package. B(HARME Chapman & Hall,
pages 185-202, 1997.

S. Horeth. Effiziente Konstruktion und Manipulation
von biraren EntscheidungsgrapherPh.D. thesis at
Technische Universit; Darmstadt, 1998.

S. Horeth and R. Drechsler. Dynamic minimization of
word-level decision diagrams. Design, Automation
and Test Europgrages 612-617, 1998.

G. Kamhi, O. Weissberg, and L. FiAutomatic Da-
tapath Extraction for Efficient Usage of HDBolume
1254 ofLNCS Computer Aided Verification, 1997.

Y.-T. Lai and S. Sastry. Edge-valued binary decision
diagrams for multi-level hierarchical verification. In
Design Automation Confpages 608—-613, 1992.

C. Scholl, B. Becker, and T.M. Weis. Word-level de-
cision diagrams, WLCDs and division. Int'| Conf.
on CAD 1998.

	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

