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Abstract
We propose a novel power macro-model which is based

on the Hamming-distance of two consecutive input vectors
and additional information on the module structure. The
model is parameterizable in terms of input bit-widths and
can be applied to a wide variety of datapath components.
The good trade-off between estimation accuracy, model
complexity and flexibility makes the model attractive for
power analysis and optimization tasks on a high level of
abstraction. Furthermore, a new approach is presented,
that allows to calculate the average Hamming-distance
distribution of an input data stream. It will be demon-
strated, that the application of Hamming-distance distri-
butions, instead of only average values, improves the
estimation accuracy for a number of typical DSP-modules
and data streams.

1. Introduction

The application of the Hamming-distance of two con-
secutive input-vectors (Hd) as a relative measure for
power is common in the area of high-level synthesis for
low power [5,6,7,8]. Usually, it is assumed that larger
Hamming-distances result in an increased power con-
sumption of the stimulated modules. As a consequence, a
number of optimization methodologies focus on mini-
mizing the average switching activity or Hamming-dis-
tance of data streams which are provided to design
components.

In this paper we present a new parameterizable power
macro-model that relates the Hamming-distance to quanti-
tative power figures and therefore allows more detailed
power evaluation and optimization tasks1. The model is
applicable for a wide variety of typical datapath compo-
nents and fits very well to existing statistical data models
and simulation approaches [2,3,9,10]. Estimation results
for a number of different modules and input pattern
streams are presented; modeling properties and limitations
are pointed out.

 1 This work is partially founded by the BMBF project EURIPIDES
under grant number 01M3036G.

Furthermore, a new approach is presented that allows
to calculate the average Hamming-distance distribution of
an input data stream. It will be demonstrated that the
application of the Hamming-distance distribution, instead
of only an average value, will increase estimation accuracy
in cases were the distribution is not symmetric and power
has a non-linear dependency on the Hamming-distance.
These are typical conditions for a number of DSP-data-
streams and DSP-modules. Since the combination of the
proposed power model and approach for calculating the
data dependent model parameters enables fast and flexible
power analysis tasks, it is well suited for optimizations of
realistic designs on an early stage of the design process.

The remainder of this paper is organized as follows.
Section 2 describes previous attempts at power macro-
modeling. In section 3 our new power model is presented.
Section 4 explains the characterization process and pre-
sents evaluation results. In Section 5 we focus on the han-
dling of modules which are parameterizable in terms of
the input bit-width. Section 6 describes our approach for
determining the model parameters based on statistical data
models. The paper concludes with a brief summary.

2. Previous work

Already, a number of macro-models exists which are
applicable for power modeling of combinational modules.
A good overview of existing approaches for power macro-
modeling is given in [1]. In most approaches the assump-
tion is made, that input patterns are ’ideal’ or may be
regarded as ’ideal’, which means that:
• possible transitions per bit are 0-0, 0-1, 1-0, 1-1;
• only one transition per cycle and per bit is possible;
• transition characteristics (slopes, starting time, etc.) are

equal for transitions of the same type.
Under these assumptions, the number of possible

input transitions N is 4m, for a module with m input-bits.
Therefore the power consumption of a module can be
exactly modeled by 4m corresponding power coefficients.
Estimation and storing of all necessary coefficients is only
possible for small modules. Due to complexity reasons,



the aim is therefore to develop more abstract and simpler
models while sacrificing some accuracy.

Unfortunately, most of the existing power models are
not parameterizable in terms of the bit width which is a
major requirement on a modeling approach for datapath
components. Only the DBT-model [2,3] fulfils this require-
ment, while assuming some word-level statistics that can
not always be assured in digital circuits [11].

A number of publications also exists which focus on
the problem of estimating and propagating bit-level statis-
tics in terms of word-level statistics [2,3,9,10]. These
approaches are based on data-models that (for a class of
data streams) can be applied to calculate the average Ham-
ming-distance or Hamming-distance distribution, as will be
shown in chapter 6.

3. The Hd power-model

The basic idea of our model is to describe the power
consumption of a module as a function of the Hamming-
distance Hd of two consecutive input bit vectors u and v of
length m. The Hamming-distance Hd is defined as:

for (1)

and delivers the number of different bits of u and v.
If transitions at the primary inputs are assumed as

’ideal’ transitions, as defined in the previous section, m dif-
ferent classes of switching events Ei  can be
distinguished for a module with m input bits, according to
the Hamming-distance of the corresponding consecutive
input vectors. To every switching event class Ei a power
coefficient pi which is determined from lower level charac-
terization runs and an activator  is assigned.  takes the
value ’1’, if an event of the corresponding class occurred in
a cycle, otherwise it takes the value ’0’. The cycle charge
consumption1  is then estimated as follows:

(2)

with:
: vector of model coefficients pi that represent the

average charge consumption of type Ei transitions,
: vector of ’activators’  with

The model can be enhanced by increasing the number
of switching event classes, if it is necessary to improve
accuracy and/or robustness against data statistic changes.
Enhancement is possible by considering word level statis-
tics or additional bit level information. As an example, in
this paper we present an enhanced model that considers the

 1 Power and charge consumption only differ by a constant factor for a
given time period and are applied synonymously in this paper.

number of stable zero bits, as a further criterion to distin-
guish types of switching events.

As a consequence of applying this additional criterion,
the switching event class E1 that is related to consecutive
input vectors with a Hamming-distance of one, is divided
into m subgroups

{ E1,m-1 E1,m-2  ... E1,0 }

while the first index gives the Hamming-distance, and the
second the number of stable zeros. Event class E2 is split in
m-1 subgroups

{ E2,m-2 E2,m-3  ... E2,0 }

and so on. Equation 2 accordingly changes to

(3)

and the number of coefficients M is increased to

Since for modules with a high input bit-width the
number of coefficients may be too large, it is also possible
to cluster event classes within a certain range of the number
of zeros.

4. Model evaluation

We split our model evaluation into two parts. In the
first part we describe the characterization process and give
some further information concerning the model coeffi-
cients. In the second part we focus on accuracy and robust-
ness of the Hd-model. In addition, modeling properties and
limitations are pointed out.

4.1. Model characterization and model coefficients

The model coefficients have to be determined once
within a characterization step in which module prototypes
are stimulated by characterization patterns. Gate- or tran-
sistor-level power simulations can be used to ascertain the
charge consumption per transition. Based on this simula-
tion results the model coefficients pi are determined by
simply calculating the average charge consumption for
transitions that have a Hamming-distance of i:

(4)

An average absolute deviation or error  can be calculated
by:

(5)

with:
n: number of transitions in the event class Ei ,
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: charge consumption of the j-th transition
(element) in event class Ei ,

pi: coefficient, that represents the average charge
consumption for type Ei transitions.

The characterization can be finished after the coefficient
values have converged.

Figure 1 presents the model coefficients  and the
corresponding average deviations  as errorbars for the 16
input-bit prototypes of some analyzed modules from the
SYNOPSYS DesignWare library. The pi‘s were deter-
mined within a characterization task, in which the modules
were stimulated by an input sequence of random patterns
and the power consumption for each transition was com-
puted with PowerMill.

It is obviously that the Hamming-distance is a good
criterion to separate the different types of transitions in
terms of power. For most cases we have found total average
coefficient deviation  of less than 15%
which  is a good  result for the  small number of model
parameters and acceptable compared to other inaccuracies
that have to be considered on higher-levels of abstraction.
In addition, it has to be noted that the relative coefficient
deviations are decreasing for larger values of the Ham-
ming-distance.

One possibility to enhance the model is to consider
the number of stable zero (and/or one) bits as a further sep-
aration criterion, as described in section 3. Figure 2 shows
the effects of such an enhancement step, for an 8x8 bit csa-
multiplier. The dotted lines are the coefficients for the basic
Hd-model. The solid lines present coefficients of the
enhanced model for the cases where none or all not-switch-
ing bits are zero.

The figure illustrates that the resolution of the power
model is enhanced, especially for small numbers of i. The
average coefficient deviations are decreased and the robust-
ness is increased, due to the enhanced resolution of the
model. From the figure it is also obviously that using the
basic model parameters for an input stream which has a
large number of bits that are constant 1 or 0, would lead to
a systematic under- or over-estimation.

4.2. Model accuracy and robustness

The model presented so far can be applied to estimate
the power consumption of modules with a fixed input bit-
width. To assess the estimation accuracy of our approach
comparisons to PowerMill simulations were done for a
number of module types and input patterns. Several differ-
ent sets of data streams, each consisting of 5000 to 10000
input patterns, were generated and applied as input stimuli
to analyze the robustness of the model against changes of
input pattern statistics. The pattern-sets can be classified
into:
I) random patterns (statistics as characterization stream),
II) linear quantized music signals (weak correlation),
III) linear quantized speech signals (strong correlation),
IV) video signals (strong correlation),
V) outputs of a binary counter.

Table 1 presents the estimation errors of our basic
model in comparison to PowerMill simulations for a num-
ber of different module types and input patterns. For the
cycle charge consumption the average absolute estimation
error  is given, which can be calculated from:

For comparisons of the average charge consumption
we use the average error, which is defined as:

with:
n: number of input patterns of the test run,

: charge consumption in cycle j estimated by
Hd power model,

: charge consumption in cycle j
estimated by PowerMill simulation.

From table 1 it becomes clear that significant estima-
tion errors must be expected if the model is used for cycle
power estimations. On the other hand, adequate estimation
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results are delivered for average power analyses, consider-
ing the relatively small number of model parameters.
Trends in the power consumption, e.g. a decrease or
increase in power caused by changes of the input statistics,
are followed very well by a model, too. This makes the
model attractive for power analyses and optimization tasks
on a high level of abstraction.

For most cases where the modules have been stimu-
lated with real application data we have found average esti-
mation errors below 15% to 20%. Nevertheless, for input
patterns which strongly differ from the characterization
patterns errors might be larger (i.e. data type V). In these
cases, coefficient adaptation techniques [4] or the applica-
tion of the enhanced Hd-model is proposed. Table 2 shows
the improvement in accuracy by using the enhanced Hd-
model for a csa-multiplier (cf. figure 3). Especially for the
data type V (binary counter) a large accuracy improvement
can be achieved, as in this data stream only positive values
(sign-bits are zero) are used for stimulation. This leads to
the significant estimation errors for the basic model (c.f.
section 4.1).

5. Parameterizable modules

Our approach of describing the influence of input bit-
width changes on the model coefficients  is comparable
to the approach of describing the module capacitance
dependency on the bit-width as suggested in [2,3]. The idea
is to consider the dependency of the module complexity on
the input bit-width.

We will exemplify the principles and properties of the
approach for two module types: (1) ripple adder and (2)
carry-save-array multiplier. From the structure of a ripple
adder it is clear, that the complexity scales linearly with the
input bit-width m. Therefore a linear regression function of
the following form is used for coefficient calculation:

(6)

Figure 3 shows the structure of a csa-multiplier. If the
input bit-widths are equal (m1 = m2 = m), the complexity
of the multiplication array scales with m2, and the com-
plexity of the adder part scales with m. Therefore we apply
a regression function which contains corresponding terms:

(7)

If the input bit-widths m1 and m2 differ, the parameters can
be calculated from:

(8)

More generally, these relationships can be written as:

, (9)

with:
: vector of regression coefficients,
: vector of complexity parameters.

Least mean square regression is applied to determine
the vector elements ri,j of Ri, based on the coefficients

 that have been calculated for some module proto-
types (instances) with different input bit-widths minst. The
modules which are used for regression are named the pro-
totype set. The number of modules in the prototype set is
called the prototype set-size in the following.

module
type

input
bit/

width

cycle charge
consumption

avg. charge
consumption

data types data type
I II III IV V I II III IV V

ripple
adder

8 12 33 35 32 44 3 3 7 2 12

12 7 29 28 36 39 1 3 11 7 19

16 14 30 46 31 68 2 1 14 5 31

cla-adder

8 9 25 27 22 38 1 6 7 14 13

12 17 22 35 24 41 1 3 2 10 9

16 12 19 29 35 58 1 2 12 9 14

absval

8 10 33 21 24 41 2 5 4 6 13

12 24 27 24 31 40 1 3 9 6 12

16 23 22 28 33 44 1 7 13 10 15

csa-mul-
tiplier

8 28 27 25 29 43 1 3 10 8 23

12 18 32 23 22 52 1 5 8 8 23

16 14 30 34 38 62 2 6 14 6 34

booth-
cod. wal-
lace-tree

mult.

8 18 21 45 37 34 4 1 6 12 19

12 12 25 23 41 37 1 3 11 10 21

16 34 16 29 44 58 3 7 13 16 24

average / 17 26 30 32 47 2 4 9 9 18

data types

cycle charge  average charge
avg. abs. error [%]  error [%]
basic

Hd-model
enhanced
Hd-model

basic
Hd-model

enhanced
Hd-model

I 28 14 1 0.11

III 25 18 10 7

V 43 42 23 7

pi

pi m[ ] ri 1, m ri 0,+ ri 1, ri 0,
m

1
= =

pi m[ ] ri 2, m
2

ri 1, m ri 0,++=

pi m1 m0,[ ] ri 2, m1 m0( ) ri 1, m1( ) ri 0,++=

pi Ri
T

M=

Ri
M

0

0

0 0 0 0
a0

a1

a2

a3

b0b1b2b3

Add

X0X1X2X3X4X5
X6X7

0

0

0

0

0

0 0 b4b5

X8X9

bit-width of input b = m1 bit-w
idth

ofinputa
=

m
0

pi
inst



With this, the following matrix equation can be solved
for the vector R, that minimizes the modeling error :

(10)

where Pinst is the vector of instance coefficients, and Minst

the vector of the corresponding complexity parameters.
The influence of varying the prototype set-sizes on the

regression accuracy was analyzed by the following proce-
dure: A complete set of prototypes (ALL) with input bit-
widths m from 4 to 16 in steps of 2 was generated and
characterized. Afterwards, by reducing the number of pro-
totypes two sub-sets of prototypes were built:
SEC: only every second prototype was applied (e.g. coeffi-
cients for 4,8,12 and 16 bit module variants),
THI: only every third prototype was applied (e.g. coeffi-
cients for 4, 10,16 bit module variants).

For each set a regression task was carried out to deter-
mine the corresponding regression vector R{set}. Applying
these, the coefficients  were calculated from
equation 9 and compared to the corresponding coefficients

which were determined from instance characteriza-
tion.

The analyses have shown that the differences between
the instance coefficients  and the corresponding coef-
ficients which come out of the regression equation

 are small (less than 5% to 10% in most cases),
even if the number of prototypes is strongly reduced. This
is because the assumed functional dependency of the model
coefficients which considers the module complexity fits
very well to real dependency. Figure 4 exemplifies the
results for some ’s of the csa-multiplier and ripple-adder.

Since the differences between the coefficients from
the instance characterization and the regression formula are
small, the effects on the model accuracy are also small.
Table 3 shows the effects of coefficient errors on the esti-
mation accuracy for a 8x8-bit csa-multiplier and 8-bit rip-
ple-adder, for different input stimuli (see also table 1).
Columns 3 to 5 contain the relative difference of the
parameters p1, p5, p8 from regression and the ones from the
instance characterization. Column 6 contains the relative

difference averaged over all coefficients. Columns 7 to 9
contain the according estimation errors for the average
power.

In conclusion, it can be stated that the complexity
functions of modules are well suited for building regression
functions for the coefficients pi. Good regression results
and a high confidence in estimated coefficients can be
expected, even if the number of prototypes which are
applied in the regression process is small.

6. Calculation of model parameters

In this section we focus on the problem of calculating
the data dependent model parameters. Until now, we have
assumed that the Hamming-distance information is avail-
able at all module inputs, e.g. from a bit-accurate, cycle-
wise functional simulation of the circuit. While the advan-
tage of such an approach is the high parameter accuracy,
one disadvantage is the low performance because of the
time-intensive simulation and information capturing.
Word-level functional simulation and especially probabilis-
tic simulation may help to overcome this problem
[2,3,9,10] for a class of typical DSP-designs, while sacri-
ficing accuracy for performance. To apply these simulation
techniques for power estimation and optimization, models
and methodologies are required which efficiently allow to
calculate the bit-level statistics from word-level statistics.

In the following we present a novel approach which
allows to calculate the average Hamming-distance distribu-
tion of an input data-stream. We will demonstrate that
using the Hamming-distance distribution for power estima-
tion instead of a simple average will increase the estimation
accuracy for a number of typical DSP-data-streams and
components. We will start with a brief description of the
data model on which our approach is based. This is fol-
lowed by the description of techniques to calculate the
average Hamming-distance. Finally our approach for cal-
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culating the average Hamming-distance distribution is pre-
sented and exemplified for some input-signals.

6.1. Data modeling

Landman first noted that for typical DSP data-streams,
bit-level statistics can be brought into relation with word-
level statistics [2,3]. He showed that a data word can be
separated into three regions (cf. figure 5), where data bits:
1) are uncorrelated in space and time,
2) are correlated,
3) can be interpreted as sign-bits.

The uncorrelated bits are within a region from the
LSB to a certain bit-position BP0 and have a signal proba-
bility  and transition probability  of 1/2, not depending
on the word-level data statistics. The sign-bits lie within a
region from the MSB down to another break point BP1 and
have signal and transition probabilities which are strongly
depending on the word-level data statistics. For the calcula-
tion of the transition probabilities of the bits between the
sign and the uncorrelated data bits he proposed a linear
approximation.

Assuming that input streams are closely approximated
by Gaussian processes, he presented some empirical equa-
tions for calculating BP0 and BP1 in terms of word-level
statistics such as mean ( ), variance ( ) and autocorrela-
tion ( ).

Having developed a model relating word-level to bit-
level characteristics, in [9] he presented a technique for
propagating the word-level parameters , ,  through a
design. He exemplified that for constant-multipliers and
adders the statistics of the output can be calculated from
the input statistics, efficiently.

In [10] the topic has been taken up again and
improved methodologies for break point calculation have
been presented which are more accurate and allow the han-
dling of different number representations. Furthermore, the
technique for propagation of word-level statistics was
improved to also handle multiplexer and delay.

6.2. Calculation of average Hamming-distance

The presented techniques for break point calculation
and transition activity estimation of bit groups can be used
to calculate the average Hamming-distance for a data-
stream:

(11)

In this formula the  give the average switching
activity of data bits in different regions, and the  the
number of bits within those regions which can all be calcu-
lated based on the formula set presented in [2,3] or [10].

The application of the average Hamming-distance is
well suited for cases where power is a linear function of the
Hamming-distance and the distribution of the Hamming-
distance is symmetric. Since the values of  are real
numbers, for calculating the power consumption of a mod-
ule based on the Hd-models it is necessary to interpolate
between the coefficient values . This can be done using
standard interpolation techniques.

Using only the average Hamming-distance
may result in significant errors if the power is a non-linear
function of the Hamming-distance and the distribution is
not symmetric which is a typical case for a number DSP-
modules and -data streams.

Figure 6 exemplifies the problem for a field multiplier
which is stimulated by an audio signal. Field I contains the
probabilities of the possible switching events (Hd-distribu-
tion), field II presents the model coefficients versus the
possible Hamming-distances and field III the product of the
probabilities and corresponding power model coefficients.
The average power comes from the summation of the par-
ticular power values in field III. Only applying the average
Hamming-distance for power calculation without assuming
a distribution (e.g. p(Hd=Hdavg) = 1) would result in an
additional error of about 30%, for the given example. As a
consequence, efficient approaches for calculating the Ham-
ming-distance distribution are demanded.

In the following we present such an approach which is
based on data models introduced in [2,3] or [10] and, in
combination with the proposed Hd-power model, can be
applied for fast power optimization tasks.
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6.3. Calculation of Hd-distribution

First, the number of regions of a data word is reduced
(cf. figure 5). Instead of applying a linear approximation
for the transition activity of bits in the intermediate region,
shifting together the break points by half of the number of
intermediate bits will result in the same average transition
activity. As a result, only a random part of nrand bits and a
sign part of nsign bits have to be distinguished, with:

From the data model it is clear, that the bits in the
uncorrelated region have a transition activity of 0.5. The
Hamming-distance distribution that results from the
switching in the uncorrelated region is binomial, so that the
probabilities for the occurrence of switching events with a
Hamming-distance of i can be calculated as:

(12)

The bits in the sign region have a transition activity
which strongly depends on the word-level statistics, while
the only types of transitions in this region are: 1) all bits
switch and 2) all bits are constant. Therefore the probabili-
ties of the different switching events in the sign-region can
be calculated from:

The possible switching events and their probabilities
are visualized in figure 7.

Having determined the switching probabilities in the
different regions, it is possible to calculate the probabilities
for switching events of the complete data word ,
which is:

(13)

Therefore, the Hamming-distance distribution can be
separated into different regions. In the following we will
demonstrate that the probability of switching events within
these regions can be calculated by conditional probabilities
of corresponding switching events in the sign and random
parts of the data word. Figure 8 exemplifies the conditions
for a 16-bit data-word, with:

(14)

A. Region I:

The switching events in region I can not stem from a
transition in the sign region of the data word. They can
only be due to transitions in the random part of the data-
word, under the condition that no switching event in the
sign region of the data word occurs. Therefore the proba-
bilities in region I of the Hd-distribution can be calculated
by:

(15)

B. Region II:

In region II a switching event can be forced by:
1) a transition in the random part of the data-word with

Hdrand = i under the condition that no switching event
occurs in the sign region,

2) a switching event in the sign region (Hdsign = nsign) and
a corresponding switching event in the random part
with Hdrand = i - nsign.

This leads to:

(16)

C. Region III:

The switching events in this region can only appear, if
in the random part of the data-word a transition happens
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switching event occurs in the sign part. As a consequence,
the probabilities in this region can be calculated from:

(17)

Equations (15) to (17) can be combined to an unified
formula, which also holds for cases where :

(18)
with:

and .
We have evaluated our approach for the audio signals

which have been introduced in section 4.2 and found a
good matching to the extracted distributions. As an exam-
ple, figure 9 shows the Hamming-distance distribution for a
typical speech signal which has been 1) extracted directly
from a data stream and 2) calculated from (18). It can be
seen, that the curves fit well.

The improvement in estimation accuracy by using the
Hamming-distance distribution instead of the average value
strongly depends on the distribution form and the non-lin-
earity of the model coefficients. For the example in figure
6, where the model coefficients increase nearly quadratical,
an improvement of about 30% is reached for typical audio
signals.

Finally it has to be noted, that, even if the approach for
calculating the Hamming-distance was described for a one-
input data stream, it is easily possible to enhance the
approach to handle two- or multiple-input streams. This
holds under the assumption that the different input streams
can be regarded as uncorrelated.

7. Summary

We have presented a novel power macro-model which
is based on the Hamming-distance of two consecutive input

vectors. The model is parameterizable in terms of input bit-
widths and can be applied to a wide variety of typical data-
path components. The good trade-off between estimation
accuracy, model complexity and flexibility makes the
model attractive for power analysis and optimization tasks
on a high level of abstraction. Model characterization is
simple and efficient, as a small set of module prototypes is
sufficient, because the dependency of the module structure
complexity on the input bit-widths is considered.

Furthermore, a new approach to calculate the average
Hamming-distance distribution of an input data stream was
presented. The application of the Hamming-distance distri-
bution, instead of a simple average, strongly increases the
estimation accuracy in cases where the distribution is not
symmetric and power has a non-linear dependency on the
Hamming-distance. Since the data dependent model
parameters can efficiently be calculated applying existing
data models and propagation methods, the proposed esti-
mation approach provides a possibility for fast power esti-
mation, which is necessary for optimization of realistic
designs at an early stage of the design process.
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