
Approximate Equivalence Verification
of Sequential Circuits via Genetic Algorithms

F. Corno, M. Sonza Reorda, G. Squillero

Politecnico di Torino
Dipartimento di Automatica e Informatica

Torino, Italy

http://www.cad.polito.it/

1. Introduction

Industrial design flows for electronic circuits typi-
cally include at least one optimization step. During
this step, the circuit is analyzed and modified in order
to improve some specific characteristic, such as speed,
size, or power consumption, without modifying its
logic behavior. Woefully, exact-by-constructions op-
timization methods are not always applicable, and
designers frequently need to validate the correctness
of the optimization process by verifying the equiva-
lence between the optimized design and the original
one.

Today, state-of-the-art sequential optimization
techniques can handle designs with up to hundreds of
flip-flops. However, traditional [2] OBDD-based tech-
niques easily run into memory explosion when trying
to verify the equivalence of such designs and many
real cases are practically intractable. Thus, designers
are interested in new verification methodologies that
are not exact, but are always able to produce some
result, even though with different levels of confidence.

Recently, a new approximate verification method-
ology based on Genetic Algorithms (GAs) has been
presented [1]. This approach sacrifices verification
exactness in order to handle larger designs, and offers
designers the opportunity to trade off CPU time with
confidence on the result. The experimental results on a
prototypical tool called VEGA (Verification through
Genetic Algorithm) showed that the approximate ap-
proach is able to provide results that escaped the reach
of an exact verification tool, thus proving that ap-
proximate verification is useful when used in con-
junction with exact tools.

This paper presents a significant improvement over
the VEGA algorithm, allowing us to obtain better
results and to deal with larger circuits. In particular,
the new algorithm is able to verify circuits with arbi-
trary optimizations, and not only local modifications.
Although the proposed GA is totally different from
VEGA, we called it VEGA2 to stress that it shares the
same fundamental idea, i.e., approximate equivalence
verification through GAs.

2. The VEGA2 Algorithm

Given two circuits, a distinguishing sequence is an
input pattern able to produce an output behavior in one
system different from the one produced by the other. If
such a sequence exists, an equivalence verification
tool should be able to provide it as a counterexample;
otherwise, it should provide the proof of its non-
existence. The approximated approach presented in
this paper will never be able to provide non-existence
(i.e., circuit equivalence) proofs, but is meant to be
much more effective in finding the counterexample,
when existing. Experimental results will prove that,
even with this limitation, the degree of confidence that
the approximated result can provide is quite high.

The need for verification can arise during the opti-
mization process, or between two different imple-
mentations of the same design. In any case, the cir-
cuits have corresponding inputs and outputs, but often
the correspondence of many internal points in the
circuits is also known, and can be exploited during
verification.

In the VEGA [1] algorithm, each gate was assumed
to have a corresponding one in the companion circuit,
thereby limiting verification to circuits that differ at
most in one gate. The improved VEGA2 algorithm
presented in this paper, instead, only matches a small
set of signal couples that are given by the designer,
called checkpoints in the following, besides primary
inputs and outputs. Depending on the optimization
process, it is usually straightforward to identify such
corresponding points, where the two circuits are ex-
pected to behave equivalently. In the worst case, a
black-box verification is performed. Checkpoints are
only used as hints to the algorithm, and their func-
tional equivalence is not assumed, thereby allowing
the user to take benefit even from partial or hypotheti-
cal correspondences.

During verification, the circuit is considered as a
black-box, where only primary inputs, primary outputs
and checkpoints are observable.

The GA, evolving a population of sequences, de-
rives a sequence that causes a difference on the pri-
mary outputs, guiding the search by analyzing the
differences that may appear on the checkpoints.

Each sequence is characterized by its fitness, i.e.,
its closeness to the goal. The goal is to excite some

differences and to propagate them to a primary output
of the circuit. Since circuits are regarded as black-
boxes and the location of the differences is unknown,
the goal can be rephrased as follows: excite all possi-
ble behaviors in the circuit while trying to retain any
difference found in some checkpoints. The following
fitness function F(s) for a sequence s is thus used in
VEGA2:

()∑
∈

++=
svectors

retain ACCsF 321)(ααα

where, for each vector in s, A estimates the circuit
activity, i.e. the number of non-repeated gate and flip-
flop value inversions, C counts the number of check-
points with different values in the two circuits, and
Cretain the number of such checkpoints whose differ-
ence does not disappear in the following clock cycle.
The coefficients α1 > α2 > α3 set the relative impor-
tance of the sub-goals, in increasing order: letting the
circuit explore new configurations, retaining a differ-
ence on a checkpoint, forcing a new difference on a
checkpoint.

3. Experimental Evaluation

A prototypical implementation of VEGA2 has been
developed using the ANSI-C language and tested on
most ISCAS89 benchmark circuits. VEGA2 includes
an in-house developed, 3-valued, event-driven, gate-
level simulator that is used to compute the fitness
function values. All experiments were performed on a
Sun SPARCstation 5/110. All programs were limited
to use no more than one hour CPU time per circuit and
70 Mbytes of memory.

The experiments mimic the subtle errors that can
occur in an optimization process, that the verifier is
aimed at discovering. The supposed error model is that
of a slight modification in the combinational part of
the circuit (modification of sequential elements would
be easier to detect, since they have wider effects).
Please note that different combinational parts do not
imply sequential non-equivalence, since reachable
states must be taken into account, and a real sequential
equivalence algorithm must be used.

Two error injection models have been considered
here: the first one, called Single Gate Model (SGM) is
the same adopted in [1]. The optimization process is
simulated by modifying the type of a single combina-
tional gate, for instance, transforming a NOR gate in
an AND gate. In this model, the circuits are very likely
to be different, and unrealistic conclusions might be
drawn.

The second error injection model is more accurate
and it is called Fanout-Free Region Model (FFRM): a
fanout-free region (FFR) is randomly selected, a single
bit in its truth table is flipped and the updated FFR is
synthesized. Since no checks are performed to deter-
mine if the input configuration for the flipped bit is
sequentially reachable or to determine if the flipped bit
is sequentially observable, circuits are often sequen-
tially equivalent.

Using the SGM all experiments reported in [1]
have been redone. In the 27.06% of the experiments
VEGA2 found a distinguishing sequence while
AQUILA did not provide any answer. On the contrary,
the OBDD-based tool disproved equivalency in the
0.59% of the cases where VEGA2 did not find any
distinguishing sequence. But, these results are not
surprising and they confirm the superiority of the GA
reported in [1]. Moreover, VEGA2 is on the average
10 times faster (64,038 seconds per run against 6,478
seconds) and require less memory.

480 different tests were run on the ISCAS89
benchmarks adopting the FFRM. Results show that for
the 27.08% of the circuits, VEGA2 is able to disprove
an equivalency while the OBDD-based tools cannot
provide any results. On the other hand, in only the
0.42% of the cases AQUILA disproved equivalency
while VEGA2 failed to find a valid distinguishing
sequence. Moreover, also in this test VEGA2 is on the
average 10 times faster than AQUILA (17,642 sec-
onds against 1,762).

4. Conclusions

We presented VEGA2: a Genetic Algorithm-based
approach to the problem of equivalence verification.
Although sacrificing the exactness of the verification,
the advantages of such an approach lie in the ability to
handle large designs and in the possibility to easily
trade off CPU time with confidence on the result (by
tuning the maximum number of generations).

VEGA2 is not a replacement for exact verification
tools, but a complement: when the complexity of the
circuits prevents the use of a BDD-based algorithm, it
is still able to provide meaningful results.

We also presented a prototypical tool and experi-
mental analysis that shows that VEGA2 is able to
provide a larger number of correct results than both an
exact method and the previous GA-based approach.
Thus it is able increase confidence on the validity of
an optimization process.

Moreover, compared with VEGA, it has an higher
degree of confidence (experimental results show that
in 9.06% of the tests VEGA2 disprove the equivalency
while VEGA did not, and the contrary happened in the
0.29% of the tests) with significantly less restrictive
hypothesis on the circuits and with less information on
the internal behaviors of the systems under exam.

5. References

[1] F. Corno, M. Sonza Reorda, G. Squillero,
“VEGA: A Verification Tool Based on Genetic
Algorithms,” International Conference on Cir-
cuit Design, 1998

[2] A. Ghosh, S. Devadas and A. R. Newton, Se-
quential Logic Testing and Verification, Kluwer
Academic Publishers, 1992

[3] S.-Y. Huang, K.-T. Cheng and K.-C. Chen,
“AQUILA: An Equivalence Verifier for Large
Sequential Circuits,” ASP-DAC, 1997

	Main page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

