
Computing Timed Transition Relations

for sequential cycle{based simulation

Gianpiero Cabodiy Paolo Camuratiy Claudio Passeronez Stefano Query

y Politecnico di Torino

Dip. di Automatica e Informatica

Turin, ITALY

z Politecnico di Torino

Dip. di Elettronica

Turin, ITALY

Abstract
In this paper we address the problem of computing silent paths in

an Finite State Machine (FSM). These paths are characterized

by no observable activity under constant inputs, and can be used

for a variety of applications, from veri�cation, to synthesis, to

simulation.

First, we describe a new approach to compute the Timed

Transition Relation of an FSM. Then, we concentrate on apply-

ing the methodology to simulation of reactive behaviors. In this

�eld, we automatically extract a BDD{based behavioral model

from the RT or Gate Level description. The behavioral model is

able to \jump" in time and to avoid the simulation of internal

events. Finally, we discuss a set of promising experimental re-

sults in a simulation environment under the Ptolemy simulator.

1 Introduction

Finite State Machines (FSMs) are a convenient formal model

for speci�cation, analysis and synthesis of electronic sys-

tems. State traversal techniques have been used to charac-

terize the sequential behavior of an FSM, for the purpose

of proving equivalence between FSMs, proving properties

about an FSM, determining don't cares to be used in syn-

thesis, and so on.

In this paper, we deal speci�cally with one class of

FSMs, in which long sequences of states have no observ-

able external e�ect, or no external e�ect relevant to the

property being checked. In particular, we are interested in

sequences traversed when the primary inputs of the FSM

do not change, causing the FSM to \sleep" for a while.

We call such state sequences silent paths, by analogy with

� , the silent event of process algebras. However, in this

case we are concerned with the actual length of such silent

sequences, as a rudimentary mechanism to measure time.

This sort of behavior can be used to model a variety

of real-life situations, from timing analysis of embedded

hardware and software, to veri�cation and synthesis of

counter{based circuits (e.g., micro-controller timing units),

to cycled{based simulation. For example, a counter cou-

pled with an FSM network can be used to check that a bus

protocol modeled by the FSM will serve every request that

is being held for a speci�ed amount of time (clock cycles).

Similarly, an FSM including a counter, modeling a micro-

controller timing unit such as Intel 8251, can be veri�ed to

be equivalent (under a given initial programming mode) to

a delay for a speci�ed number of clock cycles.

Within the �eld of formal veri�cation of FSMs, based

on state space exploration and the concept of product ma-

chine, no optimization dealing with time has been pro-

posed. Within the �eld of model checking, delay issues in

real-time problems have been dealt with by resorting to

various kinds of timed temporal logics. Recent works con-

centrate on discrete time expressed by natural numbers and

adopt Quantitative Computational Tree Logic (QCTL) for

timed formulas [1, 2, 3]. In [1] authors extend standard

CTL operators with quantitative constraints, i.e., placing

bounds on response time. Extended operators are imple-

mented resorting to standard ones. Authors also introduce

the Timed Transition Relations (TTR) in which state tran-

sitions of the original Transition Relation are labeled with

time. In [2] the authors use vectors of transition relations,

where each function deals with a single time value. In [3]

time is represented by terminal nodes of Multi Terminal

BDDs. There are advantages and disadvantages in all so-

lutions, a common drawback being represented by compo-

sitional problems, where temporal structures require ex-

pansion to unit delay structures [3].

The main idea of this paper is the following. Let us

suppose to deal with an FSM that \sleeps" for a prede-

�ned number of cycles given a set of \constant" values on

its primary inputs. Starting from the original Transition

Relation of the FSM we compose it with a free{running

counter, that measures time. The new object is a Timed

Transition Relation TTR, i.e., a TR augmented with a time

input � . A sequence of �̂ equal input symbols x̂ (x̂; x̂; : : : ; x̂,

�̂ times) for the original FSM is represented as the input

pair (�̂ ; x̂) for the Timed Transition Relation. This TTR

allows us to \jump" in time in di�erent situation, e.g.,

simulation, veri�cation and synthesis, where time plays an

important role.

Similar problems are quite often solved with hand{

written behavioral models whereas the techniques presented

in this paper allow us to derive automatically the TTR from

a given synchronous Register Transfer or Gate Level spec-

i�cation. If the TTR can be constructed, it can dramati-

cally speed up simulation, because it transforms a sequence

of internal events into a single application of a Boolean

map, which contains pre-computed sleep times of some

components, that interact with the rest of the speci�ca-

tion only sporadically. Decoupling component simulation

can be an e�ective mechanism, both for multi-processor

and for single-processor cycled{based simulation environ-

ments. Timed Transition Relations are a means to perform

symbolic manipulations once and for all , before address-

ing several simulation tasks. We particularly target circuits

containing embedded counters, the knowledge of whom as

sub{components may be either given or not. In the former

case we simply derive the TTR of the counter, in the latter

we don't extract the counter, but we use TTRs to model

counting sub{behaviors of the whole circuit.

As far as we know this is the �rst time such an approach

has been proposed. It di�ers from previous ones, in [1, 2, 3],

both in terms of construction technique and of application

domain.

The remainder of the paper is organized as follows. Sec-

tion 2 summarizes some useful concepts on the FSMmodel,

the transition relation and iterative squaring. The Timed

Transition Relations model is introduced in Section 3. Sec-

tion 4 describes how to eÆciently compute Timed Transi-

tion Relations and Section 5 how to use them in simulation.

Section 6 shows some experimental results and Section 7

closes the paper with conclusions and some indications on

possible future work.

2 Background

We assume that the reader is familiar with the concept of

BDDs and basic operations using BDDs.

A Finite State Machine (FSM) M is de�ned as

M = (I; O; S; Æ; �; S0)

where I is the input alphabet, O is the output alphabet,

S is the state space, Æ is the next state function, � is the

output function and S0 � S is the initial state set. We de-

note with s current state variables, with x primary inputs,

and with y next state variables.

The behavior of a FSM is described using its Transition

Relation. We indicate a transition relation with TR(s; x; y).

Abstracting primary inputs from TR, we obtain T(s; y) =

9xTR(s; x; y), usually called non{deterministic transition

relation.

Given a transition relation, the image (pre-image) of a

set of states described by its characteristic function C(s)

(C(y)) according to TR is de�ned as:

Img(TR(x; s; y);C(s)) = 9x;s (TR(x; s; y) � C(s))

PreImg(TR(x; s; y);C(y)) = 9x;y (TR(x; s; y) � C(y))

For very high sequential depth iterative squaring re-

sults in an exponential reduction of the number of itera-

tions necessary to reach �xed points. This method relies

on computing the transitive closure bT of T, i.e., the least

�xed{point of the following recurrence equation:

T
n+1

(s; y) = T(s; y) + 9z(T
n
(s; z) � T

n
(z; y)) (1)

setting T1(s; y) to T(s; y).

3 Timed Transition Relations

ATimed Transition Relation TTR(x; s; y; �) can be thought

of as a TR(x; s; y) in which the additional input � denotes

time. In our usage, primary inputs x are supposed to be

held constant (they may or may not have been abstracted

away) and under that hypothesis, the time input � deter-

mines the state y (or set of states) reached from state s

in � clock cycles. This object is a compact representation

of the temporal behavior of the FSM, and can be used to

perform repeated \timing analysis" operations without the

need to perform state traversal every time. In this way,

the e�ort required to compute the TTR from the TR is

amortized over a set of operations using it.

Starting from TR(x; s; y), we represent time by adding

to it a special transition relation representing the behavior

of an n{bit free{running counter. The behavior of this

device can be functionally represented as yc = sc + 11.

Keeping in mind that the least signi�cant bit toggles at

each clock cycle, whereas the other bits toggle only with

the falling transitions of the previous bits, its Transition

Relation has the following form:

TRc(sc; yc) = (sc0 6= yc0) �
Q

n�1

i=1
(sc

i�1
� yc

i�1
� (sc

i
6= yc

i
)

+(sc
i�1

+ yc
i�1

) � (sc
i
= yc

i
))

(2)
The free{running counter is used to measure cycles along

state paths. The resulting circuit can be represented by a

transition relation TRg
2 expressed as follows:

TRg(x; s; sc; y; yc) = TR(x; s; y) � TRc(sc; yc) (3)

in which every state transition has the property of incre-

menting the free{running counter.

Once we have TRg we proceed taking into account the

following considerations:

� As we want to represent silent paths, i.e., path with

constant primary inputs, we augment TR with edges

representing those transitions. We call this augmented

transition relation TR+
g . It is a subset of the general

transitive closure of TRg, dTRg, derived by closing only

silent paths. Each new transition represents a path of

length � = yc � sc.

� We are not interested in the full TR+
g , but on a subset

characterized by a property (e.g., a counting sequence

with terminal count at 0 for all steps except the end{of{

count state). Given a Boolean property P (x; s), which

is required to hold only on the last state of the silent

paths we observe, we restrict our construction to paths

in TR and TRg where P (x; s) holds for all transitions

but the last one. We call that subset TR+
g jP .

� Since we are interested only in the di�erence between

the initial and �nal states of the free{running counter

along silent paths (the number of elapsed clock cycles

�), we may consider only TR+
g transitions leaving states

1From here on, subscript c indicates the variables and the Tran-
sition Relation of the free{running counter.

2From here on, subscript g indicates the global transition
relation.

with sc = 0. In this particular case � = yc represents

the length of a transition: A relevant simpli�cation of

TR+
g thus stems from removing all other transitions with

yc � sc = � .

The �nal result actually represents the target Timed Tran-

sition Relation (whose edges represent timed transitions),

i.e.:

TTRjP (x; s; y; �) = TR
+
g jP;yc!� (x; s; 0; y; yc)

Where, again, the P subscript represents the property hold-

ing only on the last step of the represented transitions, and

yc ! � denotes the substitution of variable yc with variable

� .

4 Computing Timed Transition Relations

A naive approach to compute TR+
g , or its overestimationdTRg, would be iteratively squaring TRg. Silent paths might

be produced by avoiding the existential abstraction of pri-

mary input variables in Equation 1 (this is equivalent to

composing only state transitions with equal inputs). More-

over, computing TR+
g would require constraining TRg with

P (x; s) before squaring, then selecting only in-going transi-

tions to states where P (x; y) holds. Again squaring would

su�er from overestimating the target, since it would con-

sider all paths in P , even those not leading to P .

The approach is logarithmic in the maximum state

path length, but squaring TRg (with the additional free{

running counter) is even more expensive than squaring TR

(yet a diÆcult problem in many cases).

Following [4] we prefer a linear iteration method to

compute the transitive closure to the square methodology .

In fact, forward or backward traversals are good ways to

�nd the right balance between step complexity (much lower

in linear traversals than in squaring) and number of steps

(linear against logarithmic). In our analysis backward traver-

sal has proved to be more eÆcient, because it may be better

focused on the property under observation, than forward

traversal (that blindly follows any path from sc = 0, char-

acterized by P , even if it never reaches P). We �nd mutual

reachability between sc = 0 (free{running counter at 0),

and P (property holding at the last step of silent paths)

using the following recurrence equation:

TRgj
1
P (x; s; sc; y; yc) = P (x; s) � TRg(x; s; sc; z; zc) � P (x; y)

TRgj
i+1
P

(x; s; sc; y; yc) = TRgj
i

P (x; s; sc; y; yc) + P (x; s)�

9z;zc(TRgj
i

P (x; s; sc; z; zc) � TRgjP (x; z; zc; y; yc))

where TRgj
1
P is the set of one step transitions from P to P ,

and all other TRgj
i

P (with i > 1) are computed as preim-

ages within the P state subspace.

Given the least �xed point TRgj
+
P
, we compute TTRjP

by restriction and variable relabeling:

TTRjP (x; s; y; �) = TR
+
g jP (x; s; 0; y; yc)yc!�

When memory or time eÆciency, to completely evalu-

ate a TTR, turn out to be still too high, we scale down the

problem to a tractable one by bounding the length of the

silent paths considered. We call BTTR (Bounded TTR) a

TTR restricted to silent paths shorter than a given length.

The use of BTTR in simulation requires more than a sin-

gle Boolean operation to cope with the full range of time

durations (except for times within the bounded range).

Let us de�ne Timed Image (Imgt) an image computa-

tion considering only paths of length exactly equal to t3.

For any given t, we express and compute Imgt as a logarith-

mic number of image steps, where only transitions whose

length is a power of 2 are involved. A recursive de�nition

of Imgt is the followings:

Imgt(TTR;From) =

=

8>>><
>>>:

Img(TTR(x; s; y; t);From)

if t is a power of 2

Imgt�l(TTR; Img(TTR(x; s; y; l);From))

with (t=2 < l = 2k < t)

otherwise

Any path of length t is decomposed as a chain of sub-

paths whose length is a power of 2. This allows us to

pre-compute not the full TTR, but a much simpler rela-

tion, that we represent as a vector of n relations (one for

each 2k length, with 0 < k < n)

PTTR0(x; s; y) = TTR(x; s; y; 1) = TR(x; s; y)

PTTRk(x; s; y) = TTR(x; s; y; 2k) =

9z(TTR
k�1(x; s; z) � TTRk�1(x; z; y))

(4)
We call this PTTR (Power TTR)4, and we use it in combi-

nation with BTTRs to extend their temporal range. Since

the latter only include silent paths shorter than a given

bound, or the last part of longer silent paths, PTTRs for a

P property are restricted to paths in P .

The technique (vector of relations, one for each time

value) is similar to the one presented in [2], but here we use

only a logarithmic number of functions/times. A similar

approach is also used in [5] to compute a transitive closure

of given bounded length, but with the need to perform

iterative squaring for any new Imgt problem.

5 Using TTRs in Simulation

We now consider more in detail the application of TTRs

to common cases of silent paths occurring while simulat-

ing FSMs. A TTR is able to compute the next evalua-

tion time for a sequential module, within a cycled{based

simulator that incorporates some top{level event{driven

mechanism (e.g., to partially evaluate a sub-system, or to

distribute the simulation over a multi-processor network).

We want to compute the next time an output event will

occur. Hence the P property is a change of the outputs on

the transition between states s and y, being x a constant

value.

P (x; s) = 9y(TR(x; s; y) � (�(x; s) 6= �(x; y)))

Let us consider simulation time t. Given TTRjP (x; s; y; �),

the present state st and the module input value xt at t, we

3Notice that t iterations of a standard breadth{�rst traversal
consider all paths of length up to t.

4The additional free{running counter coding time is not required
by a PTTR.

are able to compute immediately the time t + � and the

corresponding state yt+� at which next output change has

to be scheduled, assuming no further input change (reactive

behavior).

Of course the scheduled event must be deleted and the

module state updated if a new input event occurs at t +

t1 with (t1 < �). The correct evaluation of the module

state at time t+ t1 is done resorting to the Timed Image

described in the previous section:

st+t1 = Imgt(TTR(x; s; y; t1); (xt; st))

A similar procedure is activated in the case of Bounded

TTR (BTTR). Whenever a new input event occurs at time

t, with input xt and present state st, two cases are possible:

(a) A � time interval for next output change is found in

BTTR, matching with the couple (xt; st), this is the general

case previously described. (b) No match exists in BTTR

for (xt; st), meaning that a silent path possibly starts, but

longer than the time bound; Power TTRs are now used to

�nd a next evaluation time t + t1 and the corresponding

state yt+t1 where t1 = 2k, and k is the largest index for a

PTTRk(xt; st; y) 6= 0, and yt+t1 is the corresponding next

state.

6 Experimental Results

We present in this section data concerning the construction

of TTRs (BTTRs) and its application in simulation.

We present experimental data on a few benchmarks

and a few counters based circuits. s838 1 is an ISCAS'89,

while s1512 is an ISCAS'89{addendum'93 circuit. oc * are

circuits [5] originated from the output compare functions of

the timing unit of the Motorola 68HC11 micro-controller.

Brie
y, we have chosen to model and traverse the following

functions:

� frc is a 16 bit free{runnning counter with a pre-scaler.

� oc self a self-triggered �xed period counter.

� oc �x a �xed period counter.

� oc prog abs a programmable absolute counter.

� oc prog rel a programmable relative counter.

Observe that frc is also a sub{component of all the other

timers. All circuits except s1512 have a single output, as-

sociated with the end{of{count condition. In the case of

s1512 we have done experiments with the eoc output.

6.1 Building the Timed Transition Relation

For the experiments presented in this section we use a

program built on top of the Colorado University Decision

Diagram (CUDD) package. The experiments run on a

266 MHz PentiumII processor with 256 Mbytes of main

memory, and dynamic reordering (as supported by the

CUDD package) active.

Table 1 presents data about building the full TTR with

a free{running counter of 12 bits. # L and # I represent

number of latches and inputs, respectively. # Max-� is the

maximum length of a silent path. # Nodes is the number

Circuit #L #I Max-� #Nodes #Arcs Time

TRg TTR
P

[sec]

s838 1 32 34 4095 309 2384 9.22�1018 87

s1512eoc 57 29 255 17465 26923 1.29�1025 829

frc 32 1 4095 434 2135 4095 44

oc �x 59 3 4095 3881 13071 2.82�1014 237

oc self 58 2 4095 4963 24008 5.63�1014 467

oc prog rel 59 19 4095 4178 14305 1.89�1018 255

oc prog abs 59 19 4095 3719 19486 9.22�1019 449

Table 1: Building Bounded TTRs.

of nodes of the BDDs. # Arcs is the number of timed

transitions in TTRP . Memory requirement is not reported

but, in all the cases, is limited to a few Mbytes of main

memory.

In all cases we were not able to evaluate the full TTR

by means of iterative squaring (due to BDD node explo-

sion). Using the technique presented in Section 4, all the

experiments required a fairly low CPU time and reasonable

sizes for the TTRs/BTTRs.

Table 2 shows a similar set of data of Table 1 for cir-

cuit oc self with di�erent sizes of the free{running counter.

Bit is the number of bits of the free{running counter

added to the circuit and limiting the length of the observed

silent paths. Mem. indicates the required main memory

(in Mbytes) with a cache table of 1; 000; 000 entries for

the CUDD package. As the table shows, scalability of the

problem is good, i.e., we are able to jump in time up to 216

clock cycles.

Bit Max-� # Nodes # Arcs Mem. Time

TRg TTR
P

[Mbyte] [sec]

8 255 4943 6573 3.09�1013 2.5 28

10 1023 4953 7852 1.41�1014 2.9 248

12 4095 4963 24008 5.63�1014 5.0 467

14 16383 4973 88756 2.25�1015 17.0 2584

16 65535 4983 399637 9.01�1015 48.0 24485

Table 2: Building a Bounded TTR for circuit oc self with

di�erent free{running counter sizes.

Table 3 shows data on PTTRs to be used in connection

with BTTRs. n is the number of relations computed by

means of simpli�ed squaring (Equation 4). We show BDD

size for: TR �P , the initial Transition Relation and-ed with

P ; PTTR, the array of n relations, where the k-th element

(PTTRk) represents subsets of silent paths of length l = 2k;

PTTRk

max, the maximum size relation within the previous

set. The last column shows execution times.

Circuit n # Nodes Time

TR � P PTTR PTTR
k

max
[sec]

s838 1 33 467 5593 469 0

frc 15 436 2584 216 2

oc �x 20 3044 58463 8098 9

oc self 20 3261 53348 6814 6

oc prog rel 20 2985 94985 11992 31

oc prog abs 20 2423 101036 10198 13

Table 3: TTR Approach.

BDD size and execution time are largely within an ac-

ceptable range for state-of-the-art BDD packages. This is a

good starting point for the experimental results described

in Section 6.2, because TTRs, BTTRs and PTTRs are com-

puted once and forall and used for several simulations.

6.2 Simulation in the Polis{Ptolemy environment

To evaluate, in terms of simulation speed, the technique

presented so far we decided to work in the Polis [6] envi-

ronment with the Ptolemy [7] simulator.

Polis is centered around a single FSM{like representa-

tion, which is well suited to our target class of control{

dominated systems. Ptolemy treats the system to be de-

signed as a hierarchical collection of objects, described at

di�erent levels of abstraction and using di�erent semantic

models to communicate with each other. In particular, we

used the Discrete Event domain of Ptolemy to implement

the event-driven communication mechanism. This domain

is event{driven, rather than data-driven as most other do-

mains in Ptolemy, and hence seems the most appropriate

for our purposes. In fact BDDs representing the TTR can

be loaded into the Polis environment and used for simula-

tion purposes. Polis already provides an RTL library for

the counters, and we derived from them TTR{based behav-

ioral models in which next output change is immediately

computed when counting is started.

The results obtained are summarized in Table 4. We

used a Sun Enterprise 450 server, with 128 Mbyte of RAM,

running at 250 MHz.

We concentrate on the free{running counter with pre-

scaler frc and on the oc * timers. The complex experiment

is produced by using four oc �x in parallel and the RTL

description is optimized with the four timers sharing the

same frc counter.

The second column (RTL) indicates the CPU time for

the RTL simulation and the third one the CPU time for the

TTR{based behavioral simulation. The last column shows

the ratio between the two.

To have meaningful timing data, we always simulated

500; 000 clock cycles. As we can reasonably compute TTR

up to a depth of 214 we perform experiments in which

counting phases of di�erent length are repeated several

times (e.g., counting phases up to 1000 repeated 500 times).

Experimental data do not vary too much if the depth of

counting is changed. Therefore we decided to report only

average values over a certain number of runs.

Simulation times are very similar for all the circuits

under test; this is due to the fact that the function of

the circuits does not change too much. The speedup has

a minimum value of 34:9 for the complex circuit. In all

cases we are able to substantially decrease simulation time,

without a�ecting the behavior of the simulation.

Circuit RTL Behavioral Ratio

[sec] [sec]

frc 41.6 0.6 69.3

oc �x 77.7 0.8 97.1

oc self 84.0 1.0 84.0

oc prog rel 74.4 1.6 46.5

oc prog abs 73.8 1.2 61.5

complex 195.4 5.6 34.9

Table 4: Simulation CPU times in the Ptolemy environ-

ment.

7 Conclusions

In this paper we address the problem of dealing with silent

paths of FSMs, i.e., paths that are characterized by no ob-

servable activity under constant inputs. In particular, we

describe how to solve these problems, using Timed Tran-

sition Relations. We �rst examine how to eÆciently com-

pute Timed Transition Relations. Then, we apply them

on logic simulation. In this �eld, we are able to automat-

ically extract a BDD{based behavioral model (from the

RT or Gate Level description) able to \jump" in time and

to avoid the simulation of internal events. Experimental

results regarding the construction of the relation and its

use in the Ptolemy simulation environment (under Polis)

are reported. They show the potential usefulness of the

approach.

References

[1] S. V. Campos and E. Clarke. Real{Time Symbolic

Model Checking for Discrete Time Models. T. Rus and

C. Rattray Editors, Theories and Experiences for Real{

Time System Develpment, AMAST Series in Comput-

ing, May 1994.

[2] J. Fro�l, J. Gerlach, and T. Kropf. An EÆcient

Algorithm for Real-Time Model Checking. In Proc.

EDAA/ACM/IEEE ED&TC'96, pages 15{21, Paris,

France, March 1996.

[3] T. Kropf and J. Ruf. Using MTBDDs for Dis-

crete Timed Symbolic Model Checking. In Proc.

EDAA/ACM/IEEE ED&TC'97, pages 182{187, Paris,

France, March 1997.

[4] Y. Matsunaga, P. .C. McGeer, and R. K. Brayton. On

Computing the Transitive Closure of a State Transition

Relation. In Proc. ACM/IEEE DAC'93, pages 260{

265, Dallas, Texas, June 1993.

[5] G. Cabodi, P. Camurati, L. Lavagno, and S. Quer. Ver-

i�cation and Synthesis of Counters based on Symbolic

Techniques. In Proc. EDAA/ACM/IEEE ED&TC'97,

pages 176{181, Paris, France, March 1997.

[6] F. Balarin, E. Sentovich, M. Chiodo, P. Giusto,

H. Hsieh, B. Tabbara, A. Jurecska, L. Lavagno,

C. Passerone, K. Suzuki, and A. Sangiovanni-

Vincentelli. Hardware-Software Co-design of Embedded

Systems { The POLIS experience. Kluwer Academic

Publishers, 1997.

[7] J. Buck, S. Ha, E. A. Lee, and D. G. Masserschmitt.

Ptolemy: a Framework for Simulating and Prototyping

Heterogeneous Systems. International Journal of Com-

puter Simulation, special issue on Simulation Software

Development, January 1994.

	Main page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

