
Correct High-Level Synthesis: a Formal Perspective

J.M. Mendías, R. Hermida, M. Fernández
Dpto. de Arquitectura de Computadores y Automática

Escuela Superior de Informática. Universidad Complutense de Madrid. Spain
e-mail: mendias@eucmos.sim.ucm.es, rhermida@eucmax.sim.ucm.es

Abstract

This paper presents a formal synthesis system which
delegates the design space exploration to non-formal, and
potentially incorrect, high level synthesis tools. W ith a
quadratic complex ity , our system obtains either a truly
correct-by-construction design, since the formal design
process constitutes itself the verif ication process, or demon-
strates that the solution found by the conventional tool was
incorrect.

1: Introduction
Behavioural synthesis tools have had to evolve quickly

last years, and all this development has got a price to be
paid: the complexity of algorithms grows and the support-
ing data structures becomes more sophisticated. As a
consequence, the bugs in the tools proliferate. The effect is
that reliance in synthesis tools decreases and nowadays no
sensible designer takes the risk to accept a circuit automati-
cally generated without a later validation step.

To address this problem the so-called formal synthesis
systems appeared recently [1]. Their aim is to perform all
the design steps within a purely mathematical framework,
where the synthesis process itself becomes the proof of
soundness of the implementation. There are three common
characteristics of these systems: i) they just use a single
mathematical formalism; ii) they synthesise by sequentially
applying a set of behaviour preserving transformations; iii)
they are not automatic: although any transformation can be
done automatically, the sequence is decided by a designer.

In this paper we will present the main features of the
formal tool FRESH (FRom Equations to Hardware) that
covers the whole HLS process. Like previous systems, the
tool is not self-contained, but besides the possibility of
being operated by a designer, it can be driven by a conven-
tional HSL tool, thus creating a framework where the
correctness of the design can be ensured automatically. The
main advantages of this system are: Easiness that means not
having to modify conventional tools to adapt them to the
mathematical formalism; they simply must deliver the
results of their search. Reliability that means selecting a
kernel of few simple transformations (which minimises the
number of error sources) and adopting a declarative
representation with first-order formal semantics (which
simplifies both designer interpretation and tool processing).
A pplicability is obtained neither by constraining the kind of
accepted behaviours nor the kind of reachable designs.
Eff iciency is obtained by specialising the system in order
to perform complete formal synthesis processes (from specs
to datapath+controller) with quadratic complexity.

2: System representation
It is well-known that a combinational circuit, alike a

linear data-flow graph, can be represented by a set of
equations describing its structure. If we, additionally, want
the set of equations to be able to describe fedback sequen-
tial circuits or iterative computations, we must add a
temporal operator to represent delay. We call this operator
fby (followed by) and this sort of representation equational
spec. The equational spec of a 2nd order recursive filter
looks as follows:

 { out = z - (a1 (0 fby z) + a2 (0 fby 0 fby z))
z = b1 (0 fby z) + b2 (0 fby 0 fby z) + in }

An equational spec, besides the schematic interpreta-
tion, has a useful semantics in terms of streams. A stream
is a sequence (infinite for our purpose) of values belonging
to certain domain in correspondence with those ones carried
by a signal along time. If a signal denotes a stream then,
every combinational operator will denote a pointwise
stream function; every constant will denote a stream with
a single value infinitely repeated; and fby will be the
operator that inserts a value in the head of a stream.

Getting equational specs from procedural ones (i.e.
VHDL) is not difficult. It is enough to compile the source
code and describe the resulting graph in terms of a set of
mutually recursive equations. However, in many applica-
tions it is easier to bypass the elaboration of procedural
code, since equational specs can be directly obtained from
alternative specification styles like block diagrams or
temporal specs.

To derive a circuit implementation from a given spec,
it is necessary that both of them, as well as, all the interme-
diate states (e.g. partially scheduled or partially allocated
graphs) share a single representation formalism. So it is
necessary to find some extra temporal operators which can
express the key idea of any HLS process: the time multi-
plexed use of hardware resources.Thus, we will define the
operators << (replicate) and >> (sample) to express the
frequency ratio between two signals, and the operator ||
(interleave) to express multiplexed use of resources. In
addition we will use the symbol # (wildcard) to represent
those values computed but not stored in certain cycle (i.e.
calculated by a resource which no operation has been
assigned to). And, finally, we will introduce the next
operator as the inverse of fby. As an example, let index =
<1,2,3,4...> be an stream, then:

(index << 2) = < 1, 1, 2, 2, 3, 3, 4 ... >
(2 >> index) = < 2, 4, 6, 8, 10, 12, 14 ... >
(# || index) = < #, 2, #, 4, #, 6, # ... >
(next index) = < 2, 3, 4, 5, 6, ... >

3: High level stages formulation
Once we have got the minimum operator set to express

any partial design, we are going to present a set of proved
properties that they fulfill. With these properties we intend
to formalise mathematically every stage of a HLS process
and to behold the task of designing as a simple first order
equational calculus process. The properties, shown as
families of equations, can be classified as follows:
Inverse operator: states that next is the inverse operator of
fby, and that sample is replicate's.
Temporal distributiv ity : states the distributivity of temporal
operators with respect to combinational ones.
Identity elements: states that any constant signal is not
affected by temporal operators.
High level synthesis: there are five families,
a) Temporal multiplex ing theorem, assigns a cycle to com-
pute an operation tagging remaining cycles with wildcards
for later reuse.
k>>x = k>>(# fby)m(# ||k.- .m .- 1|| # || nextm(x) || # ||..m .|| #)
b) A rchitectural delayers replacement theorem, that allows
to use architectural registers to store auxiliary values in
those cycles in which the registers cannot be observed.
(# ||k.- .m .- 1|| # || nextm((z fby (k>>x))<<k) || # ||..m .|| #)
= (# fby)k-m-1z fby (# fby)m(#||k.- .m .- 1||#||nextm(x)||#||..m .||#)
c) M emorization theorems, replaces chains of delayers by
a feedback one when the values are computed and con-
sumed within the same algorithm initiation:
(# fby)n+1(# ||k.- .m .- 1|| # || x || # ||..m .|| #)
≈ fix(λz.(# fby(# ||k.- .m .- 1|| # || x || z ||..n .|| z || # ||.m .- .n || #)))
or when they are in different initiations:
(# fby)n+1(# ||k.- .m .- 1|| # || x || # ||..m .|| #)
≈ fix(λz.(# fby(z ||.n .- .m || z || # ||k.- .n .- 1|| # || x || z ||..m .|| z)))
The f ix operator allows to express anonymous recursivity,
and ≈ indicates that both streams never transmit different
values (although one of them can transmit a wildcard and
the other one an ordinary value).
d) Decomposition theorem, separates the different RT-level
actions included in a high-level operation (i.e. operand
selection, computation, and result storage) in order to
separately reuse the different hardware modules involved.
(x1 ||.

i
 .- .1 || xi ||.

k
 .- .i || xk) = (x1 ||.

i
 .- .1 || (#||.i .- .1 ||xi||.

k
 .- .i ||#) ||.k .- .i || xk)

e) Input anticipation theorem, states that a value read in a
slow input port can be anticipated.
(x1 ||

k.- .m .- 1|| xk-m-1 || nextm(x<<k) || xk-m+1 ||..
m
 .|| xk)

 = (x1 ||
k.- .m .- 1|| xk-m-1 || (x<< k) || xk-m+1 ||..

m
 .|| xk)

RT-level implementation theorems: formalise the operator
mapping into hardware modules [2].

4: A transformational design kernel
Now we need a set of manipulation rules that allow to

properly apply the properties to transform an equational
spec into another one with the same behaviour, but differ-
ent cost-performance. The rules presented have been proved
to be correct and constitute, as a whole, the only computa-
tion mechanism allowed in our formal synthesis system.
Given that this kernel is small and simple, we have been
able to reduce to a minimum the risk of programming
errors. The summary of the set of rules is: a) Substitution:
to replace any occurrence of a signal by its definition. b)
Rename: to change the name of a signal. c) Expansion: to
replace any subterm of a definition by a new signal, if the
signal is defined as the subterm to be replaced. d) Elimina-

tion: to remove any definition not used by any other. e)
Cleaning: to remove redundant definitions. f) Replacement:
to replace any wildcard by any other term (to be understood
in term of reuse). g) Rewriting to transform a definition
applying a universal first order formula.

5: Automating formal HLS
We have developed an algorithm which governs the

right rule application order to perform formal and automatic
HLS. This algorithm does not explore the design space, but
it applies the decisions already made by a conventional tool
in order to prove they are mathematically correct. So its
inputs are the equational spec of the circuit and the synthe-
sis decisions externally made, and its output is either
another equational spec, representing the designed circuit,
or a report about the erroneous resolutions.

The algorithm understands the original specs as a
single cycle circuit having all the operators chained. Its aim
is to transform this circuit into another one that, keeping
the external data sampling frequency, works internally k
times faster, may have non-chained operators, and may
reuse both registers and operators. To do it, the algorithm
starts from data sources (input ports, constant and outputs
of the architectural delays) and gradually increases the
frequency of each operator, scheduling each one in a cycle.
The process finishes when the data drains are reached
(output ports and inputs of the architectural delays). The
scheme of the algorithm is shown as follows:

inputs : spec, design decisions
outputs : circuit, were decisions correct?

normalization next elimination
source multiplexing scheduling correctness check
architectural delays scheduling action decomposition
for 1 to critical path length delayers feedback
 sample export module reuse
 sample extract allocation correctness check
 operation scheduling multiplexer synthesis
end for control reuse

Its temporal complexity is quadratic respect to the
number of nodes in the graph and linear respect to the
number of cycles in the scheduling. A 2nd. order filter fully
designed (just with RT mapping to go) is next shown:

 { out = 4 >> t31
t40 = t23 - t31
t39 = mux(t23,t29,t28,t56) + mux(in << 4,t28,t29,t56)
t38 = mux(a1,b2,b1,a2,t53) mux(t23,t19,t54)
t19 = 0 fby mux(t19,t23,t57)
t23 = 0 fby mux(t23,t39,t58)
t29 = # fby mux(t38,t29,t61)
t28 = 0 fby mux(t28,t38,t61)
t31 = # fby mux(t39,t40,t61) DATAPATH

t53 = (0 || 1 || 2 || 3)
t54 = (1 || 1 || 0 || 1) CONTROLER
t57 = (0 || 0 || 0 || 1)
t58 = (1 || 0 || 0 || 1)
t56 = (0 || 1 || # || 2)
t61 = (0 || 0 || 1 || 1) }

References
[1] R. Kumar et al. Formal synthesis in circuit design - A
classification and survey. Proc. Formal methods in CAD, 1996.
[2] J.M. Mendías, R. Hermida, M. Fernández. A lgebraic support
for transformational hardw are allocation, Proc. VLSI'97.

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

