
Denotational Semantics of a Behavioral Subset of VHDL

F�elix Nicoli

LIM - ESA 6077

CMI - Universit�e de Provence

39, rue Joliot-Curie

13453 Marseille - France

email : nicoli@gyptis.univ-mrs.fr

Abstract

This paper introduces a denotational semantics of a

behavioral subset of VHDL. This subset is restricted to

basic data types only and does not allow for clauses

in wait statement. We consider the full model of

time and resolution, we give a precise de�nition of the

simulation mechanism. Easy translation rules from

VHDL to Boyer-Moore logic can be derived from that

semantics.

1 Introduction
Hardware Description Languages and more partic-

ularly VHDL [4] are more and more widely used in

modern CAD tools, therefore it is a major aim to give

it a formal semantics suitable for synthesis as well as

for veri�cation. Many approaches have been proposed

to ful�ll that need. Since VHDL is a complex lan-

guage each approach focuses on a restricted subset.

Here we introduce a denotational semantics of a be-

havioral subset of VHDL. That semantics is inspired

by works done in [1, 5]. The following table summa-

rizes the VHDL features taken into consideration by

our di�erent approaches. + means that the feature is

considered and � means that it is not.

Features [Russino�] [Salem, Borrione] [Nicoli]

� time + + +

� time + - +

signals + + +

variables - + +

behavior - +/- +

structure + + -

data-
ow + + +/-

asynchronism + - +

resolution - - +

We follow the methodology given in [1], that is, we

split the semantics into three parts : a semantics of

elaboration, a semantics of simulation, and �nally, the

semantics of the elaboration-initialization-simulation

procedure. Our data structures for time and wave-

forms are similar to those of [5].

2 Behavioral Subset - Preprocessing

We consider descriptions that are composed of

process statements that include basic sequential

statements, for clauses are forbidden in wait state-

ments.

Those descriptions are preprocessed as follows.

Mainly, process statements are transformed so as

they have only one wait statement as last statement.

That translation has been proposed in [3]. The re-

sulting process is a nested if-then-else shaped process

where every condition is a reactivation condition. The

last else-branch only contains a null statement. The

last statement is a wait statement with the general

resuming condition of the process (roughly speaking,

the disjunction of every wait resuming condition of

the original process). From a semantic point of view,

that wait statement is useless because every relevant

information stands in the if-then-else statement.

3 Denotational semantics

Roughly speaking, our semantics expresses how ob-

jects of a description (signals and variables) are modi-

�ed by VHDL statements during a simulation interval.

We have chosen to de�ne that semantics in a denota-

tional way, so that it can easily be encoded in the

Boyer-Moore prover [2].

Our models of time and signal values correspond

to structures informally described in [5]. A simulation

time is a pair (a; b) of natural numbers where a corre-

sponds to the physical simulation time and b stands for

the delta simulation time. Signal values are denoted

by waveforms. A wavefom is the ordered (by increas-

ing simulation time) list of the events associated with

a signal. An event is a pair (v; t) that means that a sig-

nal receives the value v at simulation time t. Given a



signal, we associate one waveform with each process in

which it is assigned and another one called \resolution

waveform" which stores the successive resolution val-

ues of the signal. In fact we extend resolution to non

resolved signals in order to have an uni�ed processing

for every signal of the description. For a non-resolved

signal, we consider that its resolution function is the

identity.

We de�ne two other semantic objects : the \sensi-

tivity list" of an architecture and the list of resolved

signals called \resolution list". As we perform resolu-

tion for every signal in a description, the resolution list

is simply the list of every assigned signal (resolved or

not). The sensitivity list is the list of the signal used in

the computation of the next simulation time. It con-

tains the signals that appear in the wait statement of

every process statement.

The overall semantics is composed of four parts.

Since we assume that the descriptions only include

processes, the semantics of elaboration mostly con-

sists in denoting objects, giving them initial values

and in building the sensitivity and resolution lists.

The simulation cycle semantics expresses modi�ca-

tions on variable values and signal waveforms at the

end of a simulation cycle. It is the composition of

the simulation semantic functions of the process state-

ments included in an architecture. That means that

we give a sequential meaning to concurrent instruc-

tions. This is possible because two di�erent process

statements are always modifying di�erent semantic

objects even when they denote the same syntactic ob-

ject (in case of a resolved signal). Indeed two processes

do not share the same variables and resolved signals

are associated with one waveform per process in which

they are assigned. So the process statements modify

di�erent waveforms. Because of the nested if-then-

else shape of processes, the wait statement is no more

useful in the semantics and is simply omitted. The

simulation cycle semantic function of a process is the

composition of the simulation semantic functions of its

constitutive sequential statements.

The simulation loop semantics formalizes how vari-

ables and signals are modi�ed after the iteration of the

simulation interval. The next simulation time and res-

olution are computed in that semantic function. It

expresses the iteration of resolution and simulation

cycles as the least �xed-point of a functional. That

�xed-point can be the unde�ned function.

The global semantics expresses the full simulation

of a description. i.e. the initialization and simula-

tion loop phases by the composition of the previous

semantic functions.

4 Conclusion
We have proposed a denotational semantics of a be-

havioral subset of VHDL. That semantics takes into

account fundamental aspects such as the model of

time, the resolution mechanism and wait statements.

It is currently limited to simple data types. That sub-

set will be extended so as to take into account for

clause of wait statements and shared variables de�ned

in VHDL'93.

Because of the functional nature of that semantics,

it is easy to implement in the Boyer-Moore logic. For

a given design, we obtain a set of Nqthm functions on

which both simulation and partial proofs are possible.

We get functions related to the simulation cycle and

one \simulation" function which expresses the simu-

lation loop. Such a split of the simulation semantics

allows to perform proof on a simulation cycle as well

as on the full simulation loop.

References
[1] Dominique Borrione and Ashraf Salem. Denota-

tional Semantics of a Synchronous VHDL Subset.

In Robert K. Brayton, Edmund M. Clarke, and

P.A. Subrahmanyam, editors, Formal Methods in

system design, volume 7, chapter 3, pages 53{71.

Kluwer Academic Publishers, August 1995.

[2] Robert S. Boyer and J S. Moore. A Computational

Logic Handbook. Academic Press Inc (London),

1988.

[3] David D�eharbe and Dominique Borrione. Seman-

tics of a Veri�cation Oriented Subset of VHDL.

In Paolo E. Camurati and Hans Eveking, edi-

tors, Correct Hardware Design and Veri�cation

Methods, number 987 in LNCS, pages 293{310.

Springer, October 1995.

[4] IEEE Press. 1076-1993 IEEE Standard VHDL

Language Reference Manual, 1993.

[5] David M. Russino�. A formalization of a Subset

of VHDL in the Boyer-Moore Logic. In Robert K.

Brayton, Edmund M. Clarke, and P.A. Subrah-

manyam, editors, Formal Methods in system de-

sign, volume 7, chapter 1, pages 7{25. Kluwer Aca-

demic Publishers, August 1995.


	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index


