
Abstract

The importance of identifying false paths in a combi-
national circuit cannot be overstated since they may mask
the true delay. We present a fast algorithm based on
boolean satisfiability for solving this problem. We also
present extensions to this per-path approach to find the
critical path of a circuit in a reasonable time.

1 Introduction

Static timing analysis provides an efficient method to
find the delay of a combinational circuit. The circuit is
translated into a directed acyclic graph with delays for edg-
es and vertices. However, the possible existence of false
paths may lead to an overestimation of the delay. To over-
come this restriction, the sensitization of paths has to be
proven. This is known as the general false path problem.

The general false path problem implies two special
problems: 1. The definition of a sensitization criterion.
2. The algorithmic aspects of verifying the criterion. The
viability-criterion [1][2] and its slight modifications
[3][4][5] are widely accepted. Since we concentrate on the
algorithm, we also use this criterion. Previous approaches
are based on the D-Algorithm (e.g. [3][4][6]), BDDs [1][7]
or boolean satisfiability [7]. The integration of searching
the longest path and simultaneously testing the sensitiza-
tion criteria is known as online-processing. Recent work
concentrated on this problem [3][4].

We use the definitions and notations presented in [2],
[4] and [10].

2 Verifying a single path

We use the following sensitization criterion (see also
[1][2]): At each gate of the path all early-arrive signals (i.e.
signals that are stabilized before the current event) must
present the non-control value. If there are late-arrive sig-
nals, these are ignored which implicitly assumes that they
have the non-control value.

Using boolean satisfiability is a very efficient method
for automatic test pattern generation which has been dem-
onstrated in [9]. The circuit is represented by a conjunctive
normal form (cnf) formula. See [9] on how to obtain this
formula for a given circuit. The formula can be built in lin-
ear time with respect to the number of gates. Trivially, this
formula is satisfiable. A contradiction can be created by the
sensitization conditions which are concatenated (boolean
and-operation) with the cnf formula. If this formula is not
satisfiable, the current path is a false one.

We use a program called “POSIT” written by J. W.
Freeman [10] to examine the satisfiability of the sensitiza-
tion formula.

Although POSIT is very efficient, its runtime can ex-
plode in an exponential way with respect to the number of
clauses and propositions. Since the satisfiability check is
usually very fast, we iterate building the formula. Every
predecessor of the current path gets a value describing the
minimal topological distance (number of gates) to the path
(mdtp). The formula is built regarding only the vertices
which have a mdtp less or equal than a given bound. The
bound is increased until the path is identified as false or all
predecessors are reached and the path is true.

3 Searching for the critical path

It is known for some time that the per-path approach is
not sufficient for finding the critical path in a circuit. The
online-processing algorithm of [6] uses esperance, which is
the greatest possible delay from the current edge to a pri-
mary output, to iteratively build and check sub-paths to
find the critical path in a circuit. We extend this approach
to a technique we call dynamic esperance.

Let in Fig. 1 pathP1={A,D,E,G,H} be the one first
generated. All gates present a unit delay of one. The inter-
connect does not have a delay. The numbers on the inter-
connect show the esperance. The path P1 is obviously false,
sinceF cannot present a non-control value for the gatesU4
(a boolean “1”) andU5 (“0”). All paths which contain the
sub-pathPS={E,G,H} and reachE after time 1 are false
paths. Therefore, the esperance atE after time 1 is 1, atD
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it is 2 and atA andB it is 3 (see values in round brackets in
Fig. 1).

The satisfiability checker is used to find those input
pins i0, ..., in (U4/E, U5/G in Fig. 1) that are necessary for
a path to be false. The algorithm consists of the following
steps:
1. Calculate a time thresholdTth for pin i0. All paths
throughi0, ..., in whose events reachi0 afterTth are false.
Tth is obtained by a breadth-first search. In Fig. 1Tth is 1 at
pin E at gateU4.
2. Mark all edges throughi0, ..., in.
3. Save the esperance for all marked edges.
4. Set the esperance atin to -∞.
5. Backpropagate the dynamic esperance values for all
marked edges. As for the normal esperance calculation,
only the maximum esperance values are backpropagated.
In Fig. 1: OutputG of U4 gets an esperance of 0,E gets 1.
6. Restore the esperance for all edges for all paths through
i0, ..., in. Compare the dynamic esperance ati0 with the stat-
ic one. If it is smaller, backpropagate it under the following
rules to the primary inputs: The dynamic esperance data
structure contains the esperance value and a time threshold
for which the esperance is valid (Notation (1;1) in Fig. 1:
the esperance of 1 on interconnectE is valid after time 1).
Only the maximum esperance without respecting the time
threshold is backpropagated.

Note that the dynamic esperance is only valid fori0
and all its predecessors. The dynamic esperance becomes
the static esperance if the threshold value falls below the
shortest path from a primary input to the current edge (min-
delay-from-source). This is the case for the edgesA, B, D
in Fig. 1.

This path blocking technique prevents the generation
and testing of long false paths.

4 Experimental Results

The program was implemented in C++. The publicly
available ISCAS-85 benchmarks were run on a Sun Ul-
trasparc 1 workstation. Our results are summarized in the
following table (CPU time without parsing the netlist and
building the graph).

5 Conclusions

The problem of verifying a single path and finding the
critical path in a combinational circuit has been considered.
We presented a fast algorithm based on boolean satisfiabil-
ity using the program POSIT written by J. W. Freeman and
complexity reduction techniques. The dynamic recalcula-
tion of the esperance was introduced to allow to search for
the critical path. These techniques are efficient and practi-
cal.
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Fig. 1: Dynamic Esperance

Circuit Longest
topol. path

Critical
path

Time to find
(CPU sec.)

C880 24 24 <1

C1355 24 24 3

C1908 40 37 8

C2670 32 31 27

C3540 47 46 21

C5315 49 47 21

C6288 124 124 5

C7552 43 42 15
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