
Asynchronous Scheduling and Allocation

Anatoly Prihozhy
University of Informatics and Radioelectronics, 6 P.Brovka, Minsk 220027, Belarus

Abstract

This paper presents an approach to generating asynchro �

nous schedules of various concurrency levels and describes
novel net-based scheduling and allocation optimization tec �

hniques for asynchronous high-level synthesis. The asynch �

ronous schedules are optimized through the sets of concurr �

ent variable and statement pairs. Experimental results and a
comparison of the net-based techniques with the best seq �

uential scheduling and allocation techniques are presented.

1: Introduction

Asynchronous circuits inherently data driven, are active
only when they do useful work and allow low power consu�

mption, timing fault tolerance, and high-speed operation with
an average delay instead of a worst-case delay [1,2,6].
Techniques for synthesis of asynchronous circuits have been
proposed at logic, high, and system levels. The Petri Net is
the most universal model to specify an asynchronous behav �

ior. The Signal Transition Graph model is a Petri Net the
transitions of which are interpreted as value changes on
circuit signals. The Predicate/Transition Nets are a system
level specification model that deals with concurrency and
covers both control and calculation. Currently the majority of
high-level synthesis tools target at the synchronous RTL-
structures [3-4] and perform scheduling that introduce control
steps and finite state machine states. The Tangram high-level
VLSI programming language supports the entire automatic
compilation into asynchronous circuits.

2: Asynchronous schedules

The asynchronous schedule is a four-tuple AS=(V,S,F,
MO) where V is a set of variables, S is a set of statements, N=
S∪V is a set of nodes, F⊆N×N is a flow relation, and MO⊆F
is the initial marking. The edges in F may be labeled with
Boolean variables that regulate the token flow. The node i
input-edges set and output-edges set are denoted *i and i*.
Statement-node i is enabled if *i⊆M and variable-node j is
enabled if *j∩M≠∅. An enabled node fires, removing a token
from edges in *i and adding a token to edges in i*. Two nodes
i and j are concurrent if marking M exists for which i*∩M≠∅
and j*∩M≠∅, otherwise the nodes are sequential. The
sequential nodes may share the same resources, while the
concurrent nodes may not.

The asynchronous pipelined schedule of maximum con�

currency is derived from CDFG. A pair of request/ acknow �

ledge signals (Figure 2) is introduced for each pair statement
/output-variable and input-variable / statement (Figure 1). All
the request edges except the incoming edges for input
variables and the acknowledge outgoing edges for the input
variables belong to the initial marking. Asynchronous
schedules of less concurrency are derived from the maximum
con� currency schedule by adding and/or removing edges and
tokens. This mechanism allows generating a less pipelined
schedule, reducing a pipelined schedule to a nonpipelined one
(Figure 3), and decreasing the concurrency level of the
nonpipelined schedule. Concurrency relations Cv and Cs for
the variables and statements define the maximum sets Dv

M

and Ds
M of concurrent variable and statement pairs. A less

concurrent schedule is defined by subsets Dv⊆Dv
M and Ds⊆

Ds
M. The schedule execution time is characterized by value

TD = (1/|U~D|)* ΣΣ ΣΣ tfu(i)

u∈U~D i∈u
where D=Ds, |U~D| is the cardinality of the clique set of graph
G~D=(N,~D) and tfu(s) is the average execution time of the
functional, storage, and interconnection units associated with
statement s. The schedule cost is

 NFU

Sfu
D = ΣΣ sj * (max mjv)

j=1 v∈VD

where NFU is the number of functional unit types, VD is the set
of cliques of graph GD=(N,D), and mjv is the number of
functional units of type j needed to execute the clique v state�

ments concurrently. The number of storage units is estimated
through the concurrency relation Cv, and the number of
interconnection units is estimated through the maximum
number of different variables in a set VD clique.

l oop
R:=(X <A); --1
exi t when not R; --2
C:=X +(2 * X); --3
B:=U* DX ; --4
D:=B* C; --5
G:=U-D; --6
E:=Y * DX ; --7
H:=E+(2 * E); --8
U :=G-H; --9
X :=X +DX ; --1 0
Y :=Y +B; --1 1

end lo op;

Figure 1: VHDL-
behavioral description

3
++ C B

1 << X ∗∗ 5

 R ++
10

D ∗∗ 4

exit 2 −− 6

 ++
11

 Y G U

∗∗
7

E ++
8

H −−
9

Figure 2: Maximum time
concurrency schedule

3: Optimizing an asynchronous schedule

I decompose the high-level synthesis problem into four
subproblems: to optimize the concurrency level, to solve the
existence problem, to generate a schedule, and to map the
schedule onto an asynchronous RTL-structure. To find set D,
two optimization tasks are considered: P1: min {TD|SD ≤SO}
and P2: min {SD|TD ≤TO} where SO and TO are the bounding
cost and time. The pairs are consecutively added to D while
solving P1 and the pairs are consecutively removed from D
while solving P2. The selection of the pair to be added or
removed depends on the order of pairs in maximum set DM

and on the contents of current sets D, U~D, and VD. The pairs
are ordered on the freedom for a statement to execute
concurrently with other statements.

4: The schedule existence problem

To solve the existence problem is to prove that an asyn�

chronous schedule exists which realizes the given behavior
correctly and has the concurrency level defined by sets Dv and
Ds. The cyclic schedule existence problem is formulated in a
matrix equation form to prove matrices F and MO exist and
define a correct live and safe net. The maximum concurrency
noncyclic nonpipelined schedule is described by a statement
precedence relation Q [5]. Set D is defined by matrix Qx

D in
which Boolean variable xij for (i,j)∉D defines whether i
precedes j (xij=1) or j precedes i (xij=0). A noncyclic schedule
exists if the following combined logical equation has a
solution: For i,j,k∈S

L1= + (xki⊕xkj) + (xik≡xkj) + (xik⊕xjk)=0 for (i,j)∈D
 k<i i<k<j j<k
(k,i)∉D (i,k)∉D (i,k)∉D
(k,j) ∉D (k,j) ∉D (j,k) ∉D

L2= + (~xij&xik&xkj) + (xij&~xik&~xkj)=0
 i<k<j
(i,j)∉D
(i,k) ∉D

(k,j) ∉D and xij=1 for (i,j)∉DM.
If L1 and L2 have no solution, D must be modified. In [5] L1 is
represented as labeled graph Gx

D which nodes are variab� les
labeled 0 and 1 and edges are pairs of variables connect � ed ⊕
and ≡. Whether a solution exists or not, depends on features
of graphs GD and Gx

D.

5: Generating an asynchronous schedule

Two types of conflicts are possible for L1 and L2 [5]. To
generate D that solves P1 and P2 and satisfies L1 and L2, I
find a graph Gx

D optimal labeling and use target function
f=α∗p+β∗p++γ∗c+δ∗c+ where p+ (p) is the number of conflict
pairs or nodes that increase (do not increase) the execution
time or cost, c+ (c) is the number of conflicts associated with
the pairs and nodes, and α, β, γ, and δ are factors. Depending
on the factor values, the number of conflicts, conflict pairs,
conflict nodes, and the schedule critical path are minimized.
To generate the statement direct precedence relation HD,
value 1 in position (i,j) of the precedence matrix QD is
replaced with 0, if the Boolean multiplication of row i and
column j equals 1. The resulted schedule includes all the
variable- and statement-nodes and for each pair (i,j)∈HD the
edge that connects the statement i output variable to statement
j (Figure 4).

6: Results

Experimental results obtained on a PC 486/50 for the
fifth-order wave filter [4] are presented in Table 1. Some of
the asynchronous schedules have the critical path shorter than
the critical path of feasible sequential schedules generated by
the ALPS system (ILPF). The average path length is 18% less
than the critical path length.

Acknowledgments
Submitting this paper for DATE98 has been encouraged by
professors Bernard Courtois, Wolfgang Nebel, Jean Mermet,
and Franz Rammig. The author is grateful to them.

References
[1] Courtois B., "CAD and Testing of ICs and Systems: Where are

we going?", Journal of Microel. Syst. Integr., Vol.2,No.3, 1994.
[2] Nebel W. and Mermet J. ed., Low Power Design in Deep

Submicron Electronics, Kluwer Acad. Publ., 1997.
[3] Jerraya A., Park I., O'Brien K., "Amical: An Interactive High-

Level Synthesis Environment", EDAC'93, 1993.
[4] Hwang T., Lee J., Hsu Y., "A Formal Approach to the

Scheduling Problem in High- Level Synthesis", IEEE Trans.on
CAD, Vol.10, No.4, 1991.

[5] Prihozhy A., "Net Scheduling in High-Level Synthesis", IEEE
Design & Test of Computers", Spring 1996.

[6] Rammig F., “System Level Design”, Fundamentals and
Standards in Hardware Description Languages, Mermet J.ed.,
Kluwer Academic Publishers, 1993.

3
++ C B

1 << X ∗∗ 5

 R ++
10

D ∗∗ 4

exit 2 −− 6

 ++
11

 Y G U

∗∗
7

E ++
8

H −−
9

Figure 3: Maximum space
concurrency schedule

<< 1
3
++ C B

X ∗∗ 5

R ++ 10 D ∗∗ 4

exit 2 −− 6

 ++
11

 Y G U

∗∗
7

E ++
8

H −−
9

Figure 4: Schedule generat-
ed for 2 ALUs and 1 Mult

Table 1. Schedules generated for the fifth-order filter
Parameter Values
Adders /
Multipliers

1 / 1 2 / 1 2 / 2 3 / 2 3 / 3

ALPS: cycles 28 21 20 18 17
AHILES: Set D
 Critical path
 Average path

39
28

22.6

103
20

17.9

114
19

17.5

210
18

15.1

219
17

14.8

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

