Asynchronous Scheduling and Allocation

Anatoly Prihozhy
University ofiInformatics andRadioelectronics, B.Brovka,Minsk 220027 Belarus

Abstract

This paper presents an approach to generating asynchro-
nous schedules of various concurrency levels and describes
novel net-based scheduling and allocation optimization tec-
hniques for asynchronous high-level synthesis. The asynch-
ronous schedules are optimized through the sets of concurr-
ent variable and statement pairs. Experimental results and a
comparison of the net-based techniques with the best seg-
uential scheduling and allocation techniques are presented.

1: Introduction

Asynchronous circuits inherently data driven, are adive
only when they do useful work and allow low power consu-
mption, timing fault tolerance, and high-speed operation with
an average delay instead of a worst-case delay [1,2,6].
Tedhniques for synthesis of asynchronous circuits have been
proposed at logic, high, and system levels. The Petri Net is
the most universal model to spedfy an asynchronous behav-
ior. The Signal Transition Graph model is a Petri Net the
transitions of which are interpreted as value danges on
circuit signas. The Predicae/Transition Nets are a system
level spedfication model that deds with concurrency and
covers bath control and cdculation. Currently the mgjority of
high-level synthesis toodls target at the synchronous RTL-
structures [3-4] and perform scheduling that introduce @ntrol
steps and finite state machine states. The Tangram high-level
VLSl programming language suppats the entire automatic
compilation into asynchronous circuits.

2: Asynchronous schedules

The aynchronous shedule is a four-tuple AS=(V,SF,
Mo) where V is a set of variables, Sis a set of statements, N=
SV is a set of nodes, FLONxN is a flow relation, and MgOF
is the initial marking. The elges in F may be labeled with
Boodlean variables that regulate the token flow. The node i
input-edges st and output-edges =t are denoted ‘i and i’.
Statement-node i is enabled if 'iCM and variable-node j is
enabled if j nM#J]. An enabled node fires, removing a token
from edgesin “i and adding atoken to edgesini’. Two nodes
i and j are concurrent if marking M exists for which i’ nM#z0J
and j nM#0, otherwise the nodes are sequential. The
sequential nodes may share the same resources, while the
concurrent nodes may not.

The aynchronous pipelined schedule of maximum con-
currency is derived from CDFG. A pair of request/ adknow-
ledge signals (Figure 2) is introduced for ead pair statement
/output-variable and input-variable / statement (Figure 1). All
the request edges except the incoming edges for input
variables and the adnowledge outgoing edges for the input
variables belong to the initial marking. Asynchronous
schedules of lessconcurrency are derived from the maximum
con-currency schedule by adding and/or removing edges and
tokens. This medhanism allows generating a less pipelined
schedule, reducing a pipelined schedule to a nonpipelined one
(Figure 3), and deaeasing the mncurrency level of the
nonpipelined schedule. Concurrency relations C, and Cg for
the variables and statements define the maximum sets D"y,
and D%, of concurrent variable and statement pairs. A less
concurrent schedule is defined by subsets DYDY, and D°[J
D*%. The schedule execution time is characterized by value

To= (V|Up|)* 2 2 g
ulUp ilu
where D=D°, |U_p| isthe cardinality of the dique set of graph
Gp=(N,~D) and ty is the average exeaution time of the
functional, storage, and interconnedion urits associated with
statemens. The schedule cost is

Nry
Sh= Xs§*(max m)
j:1 VDVD

where Ngy isthe number of functional unit types, Vp is the set
of cliques of graph Gp=(N,D), and m, is the number of
functional units of type j needed to exeaute the dique v state-
ments concurrently. The number of storage units is estimated
through the oncurrency relation C', and the number of
interconnedion unts is estimated through the maximum
number of different variables in a 863 clique.

loop
R:=(X<A); -
exit when not R; --2
C:=X+(2*X); 3
B:=U*DX; 4
D:=B*C; --5
--6
7

'
[any

G:=U-D;

E:=Y*DX; -

H:=E+(2*E); --8

U:=G-H; --9

X:=X+DX; --10

Y:=Y +B; --11
end loop;

Figure 1: VHDL-
behavioral description

Figure 2: Maximum time
concurrency schedule

3: Optimizing an asynchronous schedule

| decompase the high-level synthesis problem into four
subproblems: to optimize the @ncurrency level, to solve the
existence problem, to generate a schedule, and to map the
schedule onto an asynchronous RTL-structure. To find set D,
two optimization tasks are onsidered: P1: min {Tp|S <&}
and P2: min {S5|Tp <To} where S and T are the bounding
cost and time. The pairs are mnseautively added to D while
solving P1 and the pairs are monseautively removed from D
while solving P2. The seledion of the pair to be alded or
removed depends on the order of pairs in maximum set Dy,
and on the contents of current sets D, U_p, and Vp. The pairs
are ordered on the freedom for a statement to exeaute
concurrently with other statements.

4. The schedule existence problem

To solve the existence problemisto prove that an asyn-
chronous shedule exists which redizes the given behavior
corredly and has the mncurrency level defined by sets DY and
D®. The gyclic schedule eistence problem is formulated in a
matrix equation form to prove matrices F and Mg exist and
define a orred live and safe net. The maximum concurrency
noncyclic nonpipelined schedule is described by a statement
precedence relation Q [5]. Set D is defined by matrix Q% in
which Bodlean variable x; for (i,j)CD defines whether i
preceadesj (x;=1) or j precedesi (x;=0). A noncyclic schedule

exists if the following combined logicd equation has a
solution: Fori j,k[JS
Li= +(Xalxg) +(Xi=xiq) +(XiIxi9=0 for (i,j)[ID
k<i i<k<j i<k
(ki)D (i,9 D (i,k oD
(kj) D (kj) D (1.k) LD
L= +(-%&Xi&Xg) + (% &~Xi&~%q)=0
i<k<j
(i,)D
(i, D
(kj) (D and x;=1for (i,j) (Dy.

If L, and L, have no solution, D must be modified. In[5] L, is
represented as labeled graph G5 which nodes are variab-les
labeled 0 and 1 and edges are pairs of variables conned-ed [J
and = Whether a solution exists or not, depends on feaures
of graphsG, andG'p.

e

(X}

10

Figure 3: Maximurnspace
concurrency schedule

Figure 4: Schedulgenerat-
ed for 2ALUs and 1Mult

5: Generating an asynchronous schedule

Two types of conflicts are possble for L; and L, [5]. To
generate D that solves P1 and P2 and satisfies L; and Ly, |
find a graph G5 optimal labeling and use target function
f=alp+Bp" +y(e+0[t" where p* (p) is the number of conflict
pairs or nodes that increase (do not increase) the exeaution
time or cost, ¢ () is the number of conflicts associated with
the pairs and nodes, and a, B3, y, and J are fadors. Depending
on the fador values, the number of conflicts, conflict pairs,
conflict nodes, and the schedule aiticd path are minimized.
To generate the statement dired precelence relation Hp,
value 1 in paosition (i,j) of the precalence matrix Qp is
replaced with O, if the Bodlean multiplicaion of row i and
column j equals 1. The resulted schedule includes all the
variable- and statement-nodes and for ead pair (i,j)Hp the
edge that conneds the statement i output variable to statement
j (Figure 4).

6: Results

Experimental results obtained on a PC 48650 for the
fifth-order wave filter [4] are presented in Table 1. Some of
the asynchronous shedules have the aiticd path shorter than
the aiticd path of feasible sequential schedules generated by
the ALPS system (ILPF). The average path length is 18% less
than the critical path length.

Acknowledgments

Submitting this paper for DATE98 has been encouraged by
profesors Bernard Courtois, Wolfgang Nebel, Jean Mermet,
andFranzRammig. The author is grateful to them.

References
[1] Courtois B., "CAD and Testing of ICs and Systems: Where are
we going?", Journal dflicroel. Syst.Integr., Vol.2,No0.3, 1994.

[2] Nebel W. andMermet J. ed., Low Power Design in Deep
Submicron ElectronicKluwer Acad.Publ., 1997.

[3] Jerraya A., Park 1Q'Brien K., "Amical: An Interactive High-
Level Synthesis Environment", EDAC'93, 1993.

[4] Hwang T., Lee JKHsu Y., "A Formal Approach to the
Scheduling Problem in High- Level Synthesis", IEE&ns.on
CAD, Vol.10, No.4, 1991.

[5] Prihozhy A., "Net Scheduling in High-Level Synthesis", IEEE
Design & Test of Computers"”, Spring 1996.

[6] Rammig F., “System Level Design”, Fundamentals and
Standards in Hardware Description LanguayyessmetJ.ed.,
Kluwer Academic Publishers, 1993.

Table 1. Schedules generated for the fifth-order filter

Parameter Values

Adders / 1/1 2/1 2/2 3/2 | 3/3

Multipliers

ALPS: cycles 28 21 20 18 17

AHILES: Set D 39 103 114 210 219
Critical path 28 20 19 18 17
Average path 22.6 17.9 17.5 15.1 | 14.8

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

