
Optimized Timed Hardware Software Cosimulation without Roll-back�

Wonyong Sung Soonhoi Ha

Department of Computer Engineering

Seoul National University

Seoul, Korea 151-742

e-mail: fyong,shag@iris.snu.ac.kr

Abstract| An optimized hardware software cosim-

ulation method based on the backplane approach is

presented in this paper. To enhance the performance

of cosimulation, e�orts are focused on reducing con-

trol packets between simulators as well as concurrent

execution of simulators without roll-back.

I. Introduction

Cosimulation has gained extensive research focuses but
with diverse approaches depending on their di�erent em-
phasis on con
icting goals such as cosimulation speed,
accuracy, 
exibility, and so on[1]. While our proposed
approach is based on a cosimulation environment that
puts most emphasis on the 
exibility, this paper addresses
how to improve the cosimulation speed. To make a 
ex-
ible cosimulation environment, we use a heterogeneous
approach rather than a uni�ed one. In the heterogeneous
approach, the software simulator and the hardware simu-
lator are separate processes running concurrently and co-
operatively. We propose a backplane approach, in which
a new simulator has only to de�ne the interface to the
backplane, leaving existent simulators unchanged[2].
As system complexity grows, cosimulation speed be-

comes a great concern. Research e�orts on cosimulation
speedup include to use hardware accelerator, to change
cosimulation models across levels of abstractions, and to
accelerate cosimulation speed by reducing the cosimula-
tion overheads. To reduce the cosimulation overhead, one
may use the optimistic approach in which a component
simulator rolls back when it receives a past event from the
other simulator. This approach assumes that the compo-
nent simulator supports rollback mechanism that is usu-
ally not the case. In this paper, we propose another ap-
proach to optimize the conservative timed cosimulation.

II. Optimized Cosimulation

Basic Conservative Timed Cosimulation: For

�This work was supported by Ministry of Education through

Interuniversity Semiconductor Research Center(ISRC-96-E-2103) in

Seoul National University

timed cosimulation the backplane has a priority queue
sorted by the timestamp in the packet. Since all the com-
munication messages are passed through the backplane,
the backplane knows the global status of the cosimula-
tion. After the global clock of the backplane advances to
the global next event's time, the backplane sends the mes-
sage with timestamp to the client simulator. The client
simulator executes until its local clock reaches the global
current time and sends the response packet. On receiv-
ing the response packet, the backplane schedules this re-
sponse packet to its event queue. Then, the backplane
sends message to another simulator, if there is a mes-
sage to the simulator at the current time. When there is
no more event pending at the global time and the client
process is blocked, it informs to the backplane the local
time of the next earliest event scheduled after the global
time. Then, the backplane schedules a dummy event to
the client simulator, which just awakes the client simula-
tor to process the events at the new global time. Since
not all the event driven simulators allow the user to get
the next event time, the local next time is assumed a
unit time increment from the current local time in the
basic mode. While this scheme always guarantees timing
correctness, it will be very ine�cient especially when the
event interval of the client simulator is much shorter than
that of the backplane.

Optimization Mode 1 : If the client simulator has
an API to get the next event time, the client simulator
requests to the backplane to schedule itself at the next
event time. For example, Synopsys VSS VHDL simulator
provides getNextEventTime() in the CLI library. It
reduces the synchronization points drastically specially
when the time unit of the client simulator is much smaller
than the event interval.

Optimized Mode 2 : In mode 2, we allow the local
clock to be ahead of the global clock if the client simulator
is con�rmed not to receive any past event. If there is only
one client simulator, the backplane sends the global next
event time, which becomes the stop time of the client sim-
ulator, to the client simulator along with input messages.
Then, the client simulator can proceed until its local clock
reaches the given stop time or it generates a response mes-



TABLE I

Runtime performance of cosimulation in various timed

cosimulation mode

Mode Total(msec.) BP HW SW IPC

Basic 2,105,881 13.7% 4.2% 0.1% 82%

Mode1 473,277 39.8% 0.9% 0.4% 58.9%

Mode2 308,643 75.1% 1% 0.7% 23.2%

TABLE II

Number of Control/Data Packets(unit : packet)

Mode Total Data Control

Basic 667,047 3,842 663,205

Mode1 24,805 3,842 20,963

Mode2 21,755 3,842 17,913

Mode3 29,801 10,535 19,266

sage to the backplane. If it generates a response message
before the stop time, the message becomes the next event
in the backplane.

Optimization mode 3 : Up to optimized mode 2,
the backplane waits until the client simulator responds
after it sends input messages. Therefore, no parallelism
is exploited in the distributed cosimulation. In mode 3,
we allow to send the simultaneous messages to multiple
client simulators at the current global time. The global
clock of the backplane, however, can not advance until it
receives response packets from the client simulators. We
run client simulators concurrently in the distributed en-
vironment. The more optimization is possible when the
partitioned graph is feed-forward or acyclic. We topo-
logically sort the partitioned graph that corresponds to a
client simulator each. Then, the ancestor simulator can be
ahead of the descendant simulator. Therefore, the back-
plane keeps track of event time for each arc, not for the
whole event queue. The backplane allows a past event
to the global queue as long as it is not a past event on
the associated arc. In our experiments, only the top-most
client simulator run in optimization mode 2. The other
simulators run in mode 1 because the backplane is hard
to guarantee that it will not receive any past event from
the ancestor simulator after local clock advancement.

TABLE III

Comparison cosimulation time between serialized and

parallel execution in mode 3 (unit : msec.)

Total HW1 HW2 SW IPC

Serial 934,169 7,515 4,076 2,088 411,672

Parallel 586,772 7,417 4,212 2,048 403,998

III. Experimental Results

We de�ne the cosimulation time into four parts: VHDL
simulation time(HW), software simulation time(SW),
cosimulation backplane time(BP), and interprocess com-
munication time(IPC). After we cosimulate the QAM ex-
ample with 320 loop counts, we get the pro�ling results
presented in table I and III. Under assumption that the
transmission bandwidth is 19,200bps, the 320 loop counts
means 1 second of real time. The reason why the VHDL
simulation time is much smaller than the total cosimu-
lation time is that the VHDL model is very simple. The
main source of low performance of cosimulation is the IPC
overhead mainly due to the control packets between the
backplane and the client simulator. Table II shows how
many control packets are needed in each mode. The IPC
time as well as the number of control packets is reduced
using mode 1 and 2. The backplane parts, which includes
the global event queue management, is also reduced ac-
cording to the reduction of the number of control pack-
ets To experiment the optimization mode 3, we partition
the hardware module into two parts. Each sub-module
is simulated by separate Synopsys VSS simulator run on
the di�erent machine. Even though more computational
resources are used, as shown in table 3, the QAM sim-
ulation in mode 3 shows worse performance due to the
partition of the VHDL module. The other reason is that
only one of the two VHDL simulators uses the optimized
mode 2. Since the optimization approach in mode 3 is
quite di�erent and even the model graph is also di�erent,
comparison of the result of mode 3 with those of other
modes is not so meaningful. Thus, we compare the result
in case of serialized run of simulators with that in case
of parallel run. Although the items are almost same, the
total runtime is reduced in case of parallel run because of
the runtime overlap.

IV. Conclusion

Based on our cosimulation backplane environment,
cosimulation speedup approaches are devised and imple-
mented. Shrinking the number of control packets and
utilizing concurrent simulation reduce the cosimulation
runtime while the 
exibility of backplane is maintained.
According to the various model topology, selective adap-
tation of optimized mode will be possible.

References

[1] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-

Vincentelli, \Design of Embedded Systems: Formal Methods,

Validation, and Synthesis", Proceedings of the IEEE, Vol. 85,

No. 3,March 1997.

[2] W. Sung and S. Ha, \Hardware Software Cosimulation Back-

plane with Automatic Interface Generation", ASPDAC'98,

1998.


	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index


