
 , 8. Dezember 1997 13.38, fpga7_ieee12.frm ,

A Comparing Study of Technology Mapping for FPGA*

Hans-Georg Martin, Wolfgang Rosenstiel
Univ

y
email: <martinh,rosen>@informatik.uni-tuebingen.de

Abstract

This paper investigates some design flows to obtain final
designs on Xilinx XC4000 FPGAs. The examples generated
by high level synthesis were mapped including placement
and routing. This reveals that the common criteria of area
optimal or delay-optimal circuits should be enlar ged by
routability and computing time.

1. Introduction

Since FPGA circuits are increasingly used in man y
fields, a lot of research w as done to obtain a good FPGA
design. While placement and routing is strongly connected
with the detailed architecture inside of the chip and mostly
managed by the commercial FPGA software, the optimiza-
tion and mapping can be more influenced by the user . Our
aim is to compare some design flows to see what is the real
effect of logic optimization and LUT -based technology
mapping with respect to the final design.

The usual design goals of reducing area and/or circuit
delay are supported by a lar ge number of algorithms, b ut
our examples show, that there are tw o other questions of
increasing significance: computing time and routability. We
show that for some e xamples state-of-the-art-tools don‘t
generate final designs, while a simpler mapping approach is
faster or makes a design possible at all.

2. LUT-based Technology Mapping: Overview

The plenty of methods for the LUT -based technology
mapping can be grouped in algorithms for area reduction
(e.g. [3]), delay reduction (e.g. [2] [4] [6] [7] [8]), com-
bined methods [5] and procedures with other aspects [9].

Mostly the methods start with a decomposition step for
the big nodes using Roth-Karp-decomposition, cofactoring
[3], or multiple-output decomposition [6]. Afterwards some
tools perform a strictly technology mapping (node mer g-
ing, [2] [5] [7]), while other include also an expensive logi-
cal restructuring ([3] [8]). Allowing a register retiming ([7]
[8]) offers a dramatic increase of optimization potential.
But less w as researched on mapping for routability: [9]
influences the pins-per-net-ratio [10], merely it can be only
a first step. Section 4 underlines that routability is not only

a question of good placement, but also a matter of appropri-
ate technology mapping.

3. Four Design Alternatives and Examples

Figure 1. Four design flows from high level to FPGA

We investigate four design alternatives (fig. 1).
Design Flow 1: The high le vel synthesis (HLS) is

performed with PMOSS [1]; then the adders and other
functional units are replaced by (f ast) elements of built-in
libraries within a commercial synthesis system (CSS);
thereafter the CSS optimizes and maps this netw ork to
FPGAs, and finally Xilinx software places and routes this
onto a real XC4000 Xilinx FPGA.
Design Flow 2: The difference to design flow 1 is

the usage of an own library with ripple carry adders etc.
Design Flow 3 is flow 2 plus a logical optimization

step with the Berkley tool SIS [12] (script.algebraic).
Design Flow 4, as a first promissing try , uses SIS

also for mapping to 4-input LUTs including collapsing,
cofactoring, and binate covering (script bases on [3], [12]).
Then, assigning some LUTs to the H-function-generator of
the configurable logic blocks (CLB) of Xilinx XC4000
series reduces both the number of CLBs and the delay.

4. Results for the Design Methods

In table 1 and 2 some results for the four design flo ws
are presented, regarding three C-programs (ascii-to-integer,
elliptical wave filter, and differential equation), which were
synthesized with PMOSS for se veral word lengths (4-32,
column 1). The other columns of table 1 depict the FPGA
type, the number of CLBs, and the final circuit delay for
each design flow. The computational effort for these experi-

PMOSS : HLS

CSS: built-in libraries

CSS: logic optimization
CSS: mapping -> FPGA

own library

SIS: logic optimization

SIS: mapping -> FPGA

labelling HMAP

Xilinx -> XC4000

1 2
3 4

* This work was supported by the Deutsche Forschungsgemeinschaft.

 , 8. Dezember 1997 13.38, fpga7_ieee12.frm ,

ments is stated in table 2 (sparc 10, 64 MB main memory ,
pure CPU time only).

Design flow 1 is the best, b ut not always possible. For
circuits without a multiplier (atoi) it deli vers v ery f ast
designs because only design flow 1 uses the carry-logic.

Sometimes design flow 2 produces designs with less
CLBs than flow 1. Design flow 3 (omitted in table 1) yields
to slightly bigger and slower results than design flow 2. So,
a logic minimization added in the flow is not profitable.

Design flow 4 gives the biggest (and often the slo west)
design, but the advantage of this flow is the fact that it pro-
duces results, even if the other methods cannot route the
design (diffeq24). Furthermore, flow 4 is the fastest way to
obtain a design (table 2). F or the big circuits (ellip15,

a. design flow 3 omitted here delivers slightly bigger designs then flow 2
b. the next smaller FPGA allows no placement or no routing
c. routing is not possible
d. Xilinx internal error e. too many CLBs for XC4025

a. time until the message: „routing is not possible“

diffeq24, diffeq31) the design flows 1-3 are very time con-
suming, even if the routing is not possible.

A summary is given in table 3.

5. Conclusion

Commercial tools can handle small as well as large net-
works and they produce good results concerning area and
timing, but they need v ery long computation time. F or
some big examples we find an unacceptable CPU time of 1-
2 days, or the message „circuit is unroutable“ after 9 hours.

The advantage of our simple mapping approach (design
flow 4) is that it can manage some big e xamples in a much
shorter period of time (up to 13 times f aster) with slightly
worse results. Though there exist more sophisticated tools,
design flow 4 is a real possibility for FPGA design, espe-
cially for rapid prototyping.

6. Outlook

In the future it will be w orth to combine the usage of
carry-logic in the FPGAs with design flow 4 or with a more
advanced LUT-based technology mapping for obtaining
fast and suitable designs. Also we w ant to investigate the
reasons of unwirability of the big examples in detail and try
to find better mapping criteria for routability.

References
[1] H.-J. Eikerling, W. Hardt, J. Gerlach, W. Rosenstiel. „A

Methodology for Rapid Analysis and Optimization of Embedded
Systems.“ In Symposium on Engineering of Computer Based
Systems, Friedrichshafen, Germany, March, 1996.

[2] R.J.Francis, J.Rose, and Z.Vranesic. „Technology Mapping for
Lookup Table-Based FPGAs for Performance“. ICCAD 91, pp. 568-
571.

[3] Rajeev Murgai, N. Shenoy, R.K. Brayton, A. Sangiovanni-
Vincentelli. „Improved Logic Synthesis Algorithms for Table Look
Up Architectures“. ICCAD, 1991, pp. 564-567.

[4] J. Cong and Y. Ding. „FlowMap: An Optimal Technology Mapping
Algorithm for Delay Optimization in Lookup-Table Based FPGA
Designs“. IEEE Trans. on Computer-Aided Design, 13:1-12, 1994.

[5] J. Cong and Y.-Y. Hwang. „Simultanious Depth and Area
Minimization in LUT-Based FPGA Mapping“. Proc. ACM 3rd Int‘l
Symp. on FPGA, Feb. 1995, pp. 68-74.

[6] C. Legl, B. Wurth, and E. Eckl. „A Boolean Approach to
Performance-Directed Technology Mapping for LUT-Based FPGA
Design“. 33rd DAC 1996, pp. 730-733.

[7] Peichen Pan and C.L.Liu. „Optimal Clock Period FPGA Technology
Mapping for Sequential Circuits“. 33. DAC 1996, paper 45.1.

[8] J. Cong and C. Wu. „FPGA Synthesis with Retiming and Pipelining
for Clock Period Minimization of Sequential Circuits“. DAC 1997,
pp. 644-649.

[9] M.Schlag, J. Cong, and P.K. Chan. „Routability-driven technology
mapping for lookup table-based FPGA‘s. IEEE Trans. on CAD,
13:13-26, 1994.

[10] P.K. Chan, M.D.F. Schlag, and J.Y. Zien. „On Routability Prediction
for Field-Programmable Gate Arrays“. 30. DAC 1993, pp. 326-330.

[11] Xilinx Inc., San Jose, CA-95125. „The Programmable Logic Data
Book“, 1994.

[12] E.M. Sentowich, K.J. Singh et al. „SIS: A System for Sequential
Circuit Synthesis“. Documentation included in the SIS package.

 Table 1: Results for 4 design flows a: #CLB + delay

flow 1 flow 2 a flow 4
expl. #i/o type #clb ns type #clb ns type #clb ns

atoi08 33 4002A 44 49.3 4002A 29 73.5 4002A 53 83.2

atoi16 42 4003 63 47.3 4002A 39 122.5 4003 83 110.4

atoi32 58 4004A 103 70.9 4004A 66 234.8 4004A 141 226.5

ellip04 67 4004A 104 102.5 4004A 109 90.6 4005 b 137 108.9

ellip08 131 4005H 178 119.0 4008 b 184 111.5 4008 236 131.6

ellip15 243 4025 d 288 162.7 4025 313 180.2 4025 397 182.0

diffeq04 35 4002A 52 68.9 4003 b 55 66.4 4003 76 81.9

diffeq08 67 4004A 101 115.6 4005 b 104 130.8 4005 159 130.4

diffeq16 131 4008 248 247.6 4010 b 267 268.7 4013 b 399 284.8

diffeq24 195 4025 458 -- c 4025 486 -- c 4025 d 759 420.0

diffeq31 251 4025 695 -- c 4025 713 -- c 4025 1155 -- e

 Table 2: CPU times in hours:minutes at a sparc10

flow 1 flow 2 flow 3 flow 4
expl. CSS xilinx CSS xilinx SIS CSS xilinx SIS xilinx

atoi08 4 7 6 4 0 6 5 2 3

atoi16 5 7 8 6 0 8 8 3 6

atoi32 7 15 14 12 1 14 16 4 10

ellip04 9 23 10 29 1 10 1:29 4 13

ellip08 16 2:11 16 37 2 18 37 9 30

ellip15 29 34:07 37 5:21 3 39 25:37 17 2:20

diffeq04 7 11 7 11 0 7 7 3 5

diffeq08 12 1:43 11 25 1 12 18 6 15

diffeq16 30 6:17 28 1:24 3 30 1:41 18 58

diffeq24 1:17 a 9:59 1:12 a 9:30 10 1:04 57:31 40 5:12

diffeq31 2:46 a 9:15 1:53 a 8:56 22 2:01 a 7:26 1:12 --

 Table 3: Ranking of the design flows

Type of example without a multip
(atoi)

lier with a multip
(ellip,

lier
diffeq)

Design Flow 1 2 3 4 1 2 3 4

#CLB + +++ ++ - +++ ++ + -

Delay +++ ++ + + ++ ++ + +

CPU-Time ++ + + +++ --- + -- +++

Design is possible ++ ++ ++ ++ - - + +

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

