A VHDL SGRAM Model for the Validation Environment of a High
Performance Graphic Processor

Michael G. Wahl

Universitat Siegen
Siegen, Germany

Abstract

To wvalidate the functionality of a new highly com-
plex graphics processor described in VHDL the working
environment of the processors has to be modelled. In
some cases appropriate models for the external compo-
nents are commerically available, in other cases these
models have to be created. In this paper a general
memory model for SGRAMs is presented which had
to be implemented to have a flexible simulation envi-
ronment for a high speed graphics processor at hand.
Key features are the generality, the support of SGRAM
arrays of various shapes and functions supporting the
simulation process. This functionality goes far be-
yond the capabilities of currently commercially avail-
able SGRAM models.

1 Introduction

Current systems are no longer described at gate
level but using a hardwrae description language like
VHDL or Verilog. In parallel to the system itself an
appropriate description of the environment must be
at hand to be able to simulate the system. The test-
bench (Figure 1) consists of the interconnections of the
surrounding components as well as their timing and
behaviour. The VHDL model described below cov-
ers significantly more than the pure functionality of a
single SGRAM. First, parameters of various SGRAMs
have been extracted to get a model which covers the
worst case of all considered SGRAMs to become in-
dependent of a single vendor as well as the size of the
currently offered SGRAMs. Second, the memory of
a graphics processor usually consists of more than a
single SGRAM which leads to the requirement that ar-
rays of SGRAMSs have to be supported. Finally, before
simulation the memory array has to be initialized and
after the simulation run the contents of the memory
has to be dumped for further analysis.

2 SDRAMS and SGRAMS

Contrary to the standard DRAMs, the SDRAMS
and SGRAMS are synchronuous memories. This
means that the function of the memory is programmed
and while one operation is in progress the control bus
can be used to program the second memory bank.
This allows the creation of a continuous data stream to
and from the memory. The behaviour of an SDRAM
is described by a state machine. This state machine

Holger Volkel

SP3D Chipdesign
Starnberg, Germany

is quite complex because most of the operations can
be interrupted and any other operation may follow.
In addition, most of the state transitions depend on
the clock edge while other transitions happen asyn-
chronously. The SGRAMS cover all functions of the
SDRAMS. In addition they allow operations which
usually occur in a graphic environment like filling a
set of memory locations with the same value (colour)
or changing only specific bits which are masked by the
mask register. This helps to avoide time consuming
read-modify-write cycles.

Test Bench
[\ (Multimediachip) |[A
VHDL-Mode
Memory Bus [||
PCI-BUS SRAM/
Verilog- . SGRAM
Model Arbiter VHDL-
Vi Model
—A|N|M c
3388 |8
N AN He 1o [< xl J |\ Y,

Figure 1: Testbench for a multimedia chip

3 The VHDL model

The VHDL model consists of three major parts.
The SGRAM core model describes the behaviour of
a single SGRAM chip. The system model allows to
describe a memory module consisting of one or more
memory chips, which can be configured in arbitrary
ways, whereas the debug module allows the writing
and dumping of the memory without the necessity to
simulate the complete model. In addition, all com-
mands issued to the SGRAM and all intended state
transitions are checked if they are valid or not.

3.1 The SGRAM core model

The SGRAM core is the largest part of the model.
The challenge to this model was not only to describe
one specific SGRAM but provide a scaleable general
model for SGRAMs. They are available in various

sizes currently in the range from 8 to 16 Mbit. The
width of the data bus varies from 4 to 32 Bits. The
size of the used address bus depends on the memory
size and the width of the data bus.

The SGRAMs are available in two different archi-
tecture variants. The architecture can support either
pipelined operation or prefetch operation. In pipelined
mode a new column address can be sent to the mem-
ory with each cycle which is a feature often used for
graphics applications. The prefetch architecture al-
lows the loading of a new column address only every
second clock cycle, but the operating frequency of the
memory is higher.

The interface of course supports the normal 1/0
according to the SGRAM specification (address bus,
data bus, control bus with clk, cke, cas, ras, cs, we
and dsf, and the dqm bits). Internally there is an
interface to the debug module and to the file I/O for
the load/store function. The latter is done using fixed
file names, assuming that the file names are modified
using a shell script.

3.2 Timing parameters

The timing parameters of the memory have been
taken from [4] as well as from the data sheets of the in-
dividual manufacturers [2][3][5]. The parameters used
in the model as default values are the worst case speci-
fications. They are described using generics and hence
can easily be updated.

The implementation of the state machine is
straightforward. There are only a few things to con-
sider: First, the SGRAM has two banks, so there has
to be made a decision if the command is issued for
bank a or bank b. Second, both banks can have dif-
ferent states, so the state calculation has to be done
for both banks at each clock. Finally, the state of one
bank can affect the state of the other bank.

For the outside world the memory is synchronous,
but internally it works asynchronously. This becomes
visible at the point where the read latency has to
be programmed because the SGRAM itself does not
know about its operation speed and hence cannot de-
termine by itself in which clock cycle the data will
be available. For the model another point is of more
importance: The states, respectively the transitions
in the states precharge, row_active and write_rec, de-
pend not only on the clock but on timing constraints,
too. So the model has to check if a command is issued
in time or too early. To simulate this behaviour ”vir-
tual states” had to be introduced which behave like
the other states but generate an error message if the
timing constraints are violated.

3.3 The System Model

To be able to describe memory systems consisting
of two or more SGRAMs a method is implemented
allowing the specification of arrays of memories. The
total size of the memory system is currently limited
by the default width of the address bus of 32 bits.
Because this is a generic, an extension of the capactiy
can easily be done. An example of a system consisting
of two memories is given in Figure 2.

3.4 The Debug Model

One of the main requirements for the SGRAM
model was the support of the initialization of the mem-
ory before the start of the simulation and the ability to
dump the memory at the end of the simulation. The
implementation of this option helped to reduce the
simulation time, because initialization and dumping
can now be done in one simulation tick. In addition,
the memory can be initialized so that it is possible to
trace back if a memory cell has been accessed or not.

data(15..0)
] data(15..0
data(31..16) I—: a(l?L(..O)) Modul 1
8(11..0) control bus
control bus 1 dbg_bus(31..0)
dbg_clk sgram.vhd|
data(31..16
a(l?L(..O)) Modul 2
—— control bus
dbg_bus(31..0)
» dbg_clk sgram.vhd
sgram.ini — init dbg_bus(31..0) J
— dump dbg_clk
dbg_sgram.vhdl
sdram_mod.vhdl
sgram.dmp

Figure 2: An example configuration

4 Summary

The general SGRAM module model described
above covers all aspects which are required for the sim-
ulation of a graphic processor. The functionality of the
model goes far beyond what a single SGRAM does. It
is vendor independent and scaleable and it supports
debug functions reducing the simulation time. It was
successfully used in the design of a multimedia chip
which is now in production.

References

[1] Y.C. Hsu, K. F. Tsai,J. T. Liu, E. S. Lin, VHDL
Modelling for Digital Synthesis. Kluver Academic
Publishers, Dordrecht, 1995

[2] Hitachi Synchronous DRAM Application Notes.
Hitachi Semiconductor and IC Division, 1995

[3] IBM Datasheets for 0316409C, 03116809C, SA 14-
4711-01, Revised 01/96. IBM Corporation, 1996

[4] Micron Technical Notes SDRAM / SGRAM: De-
sign for Compatibility, Part 1-8. Micron Technol-
ogy Inc., 1995

[5] NEC Datasheets for uPD}516412, uPD/516821,
wPDJ516161, ID-3394A, Published 10/94. NEC
Corporation, 1994

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

