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Abstract
This paper discusses issues of graphical modelling of

Finite State Machines with Datapath (FSMDs). Tools sup-
porting the graphical entry of state based systems are us-
able by intuition, but need to be based on an exact defini-
tion of semantics of graphical elements. This paper pro-
poses to define semantics of graphical models based on the
hardware description language VHDL.

1 Introduction
The advantages of graphical design representations are

widely accepted. This is shown, e.g., by recent EDA tools
performing Text-to-Graphics ([1]) conversions. Neverthe-
less, graphical models of state based systems are often
lacking a well defined semantics. This is due to apparently
intuitive extensions to classical state diagrams. Section 1.1
illustrates that intuitive graphical models may lead to sur-
prising results. The poster presents a definition of seman-
tics of graphical models of FSMDs based on VHDL.
1.1 Related work

Classical state diagrams [2] do not provide means to cal-
culate output values using arithmetic expressions, to imme-
diately react to asynchronously changing inputs or to ex-
press hierarchy and concurrency. The Statecharts [3] visual
formalism comprises a comprehensive definition for hier-
archical and concurrent models. However, there are rea-
sons why Statecharts is not widely available and accepted
for EDA tasks. Firstly, it is admitted in [3] that concurrency
under some circumstances may cause problems:

... difficult problem arise with the introduc-
tion of events that are generated within the Stat-
echarts itself and are sensed in orthogonal com-
ponents ...

Secondly, applying the Statecharts formalism for the spec-
ification of synchronous FSMDs is too unrestrictive, as
Statecharts regards state transitions be triggered by arbi-
trary (asynchronous) events.

Experiences with SpeedCHART [4] showed that graphi-
cally designed concurrent state machines are not translated

into concurrent HDL code. SpeedCHART represents con-
current FSMDs within a single VHDL process! It disre-
gards the consistency of a graphical model and the final
system’s behavior.

As a consequence the following major shortcomings
motivate to put graphical FSMD models on a solid base: a)
Semantics of graphical representations of concurrent state
diagrams and accompanying communication mechanisms
is not exactly defined. b) Semantics of hierarchical models
is left unclear, especially when moving up and down within
hierarchy. c) Automatically generated HDL is always opti-
mized for synthesis. This may even modify the (graphical)
design’s behavior. d) Graphical models are sometimes in-
conceivably restricted. e) Generated HDL code is hard to
read and to map to the original graphical model.

2 VHDL based semantics
VHDL is standardized by the IEEE [5] defining syntac-

tical issues of the language as well as the exact simulation
algorithm. Therefore a VHDL model has a standardized
simulation semantics [6]. This paper proposes to construct
a synthesizable VHDL model from a graphical representa-
tion. This VHDL code is not optimized in any sense but
provides a clear semantics of what has been graphically
designed and serves as a reference model for further opti-
mization efforts.

2.1 Transition actions
State transitions and attached datapath actions are exe-

cuted synchronously. Figure 1 shows conditions and ac-
tions in the graphical state diagram as well as in the cor-
responding VHDL1 code.Cdenotes a condition expressed
in VHDL, not containing any side effects, i.e., assignment
statements.TA represents arbitrary VHDL code, contain-
ing sequential VHDL statements only. Thus no concur-
rency may be defined within transition actions.TA allows
to assign values to registers which are computed from dat-
apath registersR, input valuesX , and values of outputs of
internal combinational blocksD. Entry- and Exit-Actions

1For the sake of brevitybegin/end statements are omitted but are
indicated by indentations.



S1 S2
C1/TA1

process(clk)
  if clk'event & clk='1' then
     case state
        when S1 =>
           if C1(r,x,d) then
              TA1(r,x,d);
              state <= S2;
        when S2 => ...

C: R  X  D  {true,false}
TA: R  X  D  R

Fig. 1. Labels of transitions are composed of conditions (C) ac-
tions (TA) implementing register assignments.

S1 S2
SA1:d1<=x*3;
    r1<=x+4;
    d2<=*DC*;

SA2:d1<=x*2;
    d2<=4;

Fig. 2. State actions for asynchronous Mealy-type behavior.

of states are executed immediately before and after of tran-
sition actions, respectively. Synthesis tools will instantiate
registers for assignments within transition actions. If an
output should be recalculated on changing input values, a
state action has to be defined.

2.2 State actions
State actions are asynchronously executed and define

combinational behavior. Figure 2 illustrates that a signal
value has to be preserved by means of a register (r1 ) if it
is not specified for all possible states. However,d1 andd2
are purely combinational signals, as their values are explic-
itly defined for all possible states.*DC* denotes a don’t-
care value which achieves additional optimization potential
as no register has to be instantiated ford2 . A synthesizable
don’t-care value is not available for arbitrary VHDL data
types. Hence the*DC* -value in the proposed graphical
environment extends the possibilities of modelling.

2.3 Combining asynchronous and synchronous
assignments

The combined application of asynchronous and syn-
chronous assignments to a single signal may result in a
conflicting situation as illustrated in Figure 3a. Figure 3b
shows a valid assignment, because no conflict exists at any
time. Experiments have shown that CAE tools may support
synchronous as well as asynchronous assignments to a sys-
tem’s output but not their combined usage. As this is not a
problem for hand-coded designs it should also be possible
to graphically express this situation. Figure 3c shows the
proposed solution and gives an exact definition of graphi-
cal semantics.

2.4 Concurrency and hierachy
Concurrent operation of components is an intrinsic fea-

ture of hardware and thus it is fundamental to any hard-
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SA: y1<=x1*2SA: y1<=x1*2a) b)

process(clk)
  if clk'event & clk='1'
   case state
     when S1 =>

 y1_sync<=0 -- TA
 state<=S2;

process(state,r,x,d)
 case state
   when S3 =>
    y1_async<=x1*2 --SA

process(state,y1_sync,y1_async)
 case state
   when S2 =>
       y1<=y1_sync;
   when S3 =>
       y1<=y1_async;c)

Fig. 3. Combined asynchronous and synchronous assignments:
a) erroneous definition, b) valid combination, c) conflict resolu-
tion defined in VHDL-code.
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Fig. 4. Semantics of transition labels and hierarchical representa-
tions of transitions entering a hierarchical state.

ware description language to cope with parallelism. The
proposed semantics of concurrent state machines heavily
relies on this strength of VHDL.

Hierarchical models are well suited to achieve clearness
and compactness of design representation. However, most
hierarchical graphical representations have unclear seman-
tics due to artificial entry/exit states which may only even-
tually consume state machine time depending on attached
conditions. SpeedCHART considers flattening to be an op-
timization step which even may change a system’s timing
behavior. In our approach flattening serves as a definition
of hierarchical representations. Hierarchical and flattened
representations have to have identical behavior. The se-
mantics of a hierarchical state is, as it is in Statecharts, the
exclusive-orof its substates (Figure 4).
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