
1

Abstract

This paper presents an innovative technique to efficiently
develop hardware and software code generators. The
specification model is first converted into its equivalent data
structure. Target programs result from a set of
transformation rules applied to the data structure. These
rules are written in a textual form named Script. Moreover,
transformations for a specific code generator are easier to
describe because our solution uses a template of the required
output as another input. The result is a meta-generator
entirely written in Java. The concept and its implementation
have been demonstrated by developing a C/WxWorks code
generator, a behavioral VHDL generator, a synthesizable
VHDL generator.

1: Goal

The CoDesign process includes the transformation of a
high-level specification model into standard programming
languages for microprocessors, DSPs and standard HDL for
ASIC synthesis. One or several code generators are needed
for that. Each generator must implement the know-how of
professional Hw/Sw designers. A generator is strongly
dependent on several aspects: the syntax and semantics of
the specification input, the syntax and semantics of the code
or program output, the transcription rules between the input
and the output. Transcription rules are mostly versatile as
they are related to the quality - simplicity, code size, speed,
gate number, etc. - of solutions produced.

The question raised in this paper is: how to efficiently
develop such generators? Most tools are based on a specific
internal data structure representation of the input
specification model from which target programs are
produced. Script languages such as PERL and TCL were not
found convincing for data structure manipulations. We first
experimented a meta-tool [4], particularly GraphTalk from
Xerox and its related meta-generator LEdit which is based
on LEX and YACC. Because of several limitations we
decided to conceive and implement an innovative global
approach. This paper summarizes our solution and the
concepts on which it is based. As a matter of fact, we have
considered the MCSE functional model in its textual form
as the input, but the solution is not limited to that model [1],
[2].

DATE 98, Paris, France, 23-26 Feb 1998

2: Our solution: the concept of meta-generator

The principle of our meta-generator is depicted in
Figure 1. We briefly explain the four aspects on which it is
based.

 -Figure 1 - Principle of our generation technique.

-A- Text <-> Data Structure conversion

The first aspect of our solution considers that an internal
Data Structure (DS) organization can be automatically
created from the grammar rules of the input text during its
parsing. This means that each text must correspond to a
grammar. This is naturally the case for standard languages
such as C, C++, VHDL, etc. For specific texts such as
specification models, their grammars must be defined -
which is not a hard task and has to be done only once.

To convert any text into its equivalent DS and the reverse,
we have developed the concept of meta-structure and have
implemented two operations:Load to convert any text
complying to a grammar into a data-structure;Save to
generate and format a text from a data structure. Our solution
is based on a meta-parser named JavaCup [3].

-B- Template as a model for the output

The second aspect of our solution considers a template
model expressed in the syntax of the output language as
another input to each generator. The template model (textual
form) contains one instance of each program structure or
construction needed in the text output. For example, for a
synthesizable VHDL program, component entities and
architectures, processes, blocks, configurations.... are
needed. Each instance is declared in its most complex form.
The powerfulness of this solution is that the output results
from data structure operations such as copy or duplication

Scan & AnalyzeParse

Analysis &
Transformation

Output
programs

Scan & copy

Parse

Generic output structures

Save

Parse

Script

Interpretation & execution

Programmable part

Specification

Template

input

B

A
A

C

D

A

A Programmable Multi-Language Generator for CoDesign

J.P. Calvez, D. Heller, F. Muller, O. Pasquier

IRESTE, University of NANTES, FRANCE

2

the output produced. The script DS can then be converted into
a textual form and re-executed. This can be an interesting
means to create an interactive generation or synthesis tool.
Moreover any script can be converted into a Java program
to deliver a native generator. The result is a specific efficient
generator.

3: Result and experimentation
We have prototyped 3 specific generators using the

MCSE model as the specification input to demonstrate and
validate the concept. Our tool currently runs on any platform
and may also be used through the Web.

The three generators are not complete today and not fully
debugged and tested. But we can give significant results
which demonstrate the appropriateness of the concept and its
implementability. The following table shows quantitative
results for the 3 generators. File sizes are given in number
of characters or bytes.

The ratio between the Java code size and the Script size
partly represents the speedup in development time for each
generator.

4: Conclusion
 Our meta-generator is fully portable as it is written in

JAVA. Experiments of the technique by developing three
generators demonstrate and validate our approach and its
implementation. The scope of our tool is not limited to the
goal considered in this paper. On one hand, the tool can
consider any text as input and output if they comply with a
grammar. It can also concurrently exploit several input texts
(e.g. C et VHDL templates) and produce several code
programs or models. On the other hand, the script can be
easily modified or produced by another tool; it seems to us
that it can be a promising solution to implement synthesis
techniques for CoDesign. We are considering this aspect for
Hw/Sw communication synthesis.

5: References
[1] J.P. Calvez, Embedded Real-time Systems. A specification

and Design Methodology, John Wiley, 1993
[2] J.P. Calvez, A System-level performance model and method,

CIEM, Issue #6: Meta-modeling: Performance, Software and
Information Modeling, KAP Publisher, 1996, pp 57-102

[3] S.E. Hudson, JAVACUP: LALR parser generator for Java,
User’s manual, GVU Center, Georgia Institute of
Technology, March 1996

[4] B. Nuseibeh, Meta-CASE support for method-based
software development, Proceedings of Meta-CASE’95
Conference, Sunderland, UK, Jan 5-6 1995

Generator
Script
size

MCSE
size

Template
size

Output
size

Interpreted
Execution

time

Java
Code size

JAVA exec.
time

CVxWorks 150 KB 6.33 KB 2.23 KB 3.2 KB 63 s 1 MB 34 s

VHDLSyn 194 KB 6.93 KB 18.6 KB 21.7 KB 111 s 1.2 MB 82 s

VhdlPerf 120 KB 5.41 KB 18.1 KB 33 KB 363 s 1.1 MB 138 s

of parts of the internal data structure of the template, delete
or update of the resulting data structure.

-C- Script concept for DS transcriptions

As the output is the result of data structure operations, the
third aspect of our solution is an answer to describe all
transformations needed. Rules on DS includes: scans and
searches on the specification DS, searches of the template DS
and copies of parts of it, transformations on the output DS.
To describe any DS transformations we have specified a
textual language named Script and its grammar.

The script language defines the required elementary
operations on data structures and also defines how to build
more complex transformation rules; the most complex one
being the whole generator behavior.

The following list indicates the most significant
elementary operations:

- Load a data structure from a text file according to a
specific grammar,

- Save a data structure into a text file,
- Copy or clone a data structure from its designation,
- Copy a single node,
- Delete a whole data structure,
- Delete a single node,
- Update a field in a node,
- Add a node or a data structure (its reference) to a set of

nodes.
More complex rules are based on the three usual rule

compositions: sequential, iterative, conditional. An
appropriate iterative instruction has been selected to
efficiently operate on sets:ForEach(Set : Rule);. Rules can
also be imported from other scripts so enabling reusability.
Rules can be declared in any order; therefore it is more a
declarative language than a procedural one.

Constants and variables can also be declared to store and
manipulate values, strings or grammar names. For an easy
implementation of recursive rules, variables are managed as
stacks and a set of operations on them are available, for
example Push(Var), Pop(Var), LocalVisibility, IsIn, etc.

Thus, developing a generator consists in writing the
appropriate set of transformations. A target program
generation is obtained by the execution of the resulting script.
In fact, our tool is really a meta-generator as the input and
output texts are specified by grammars and its complete
behavior is only resulting from the interpretation of a script.

-D- Interpreted and native execution of a script

The fourth aspect of the solution concerns the execution
of any script. As a script is a text, it is first converted into a
data structure with the Load operation. Then, its execution
consists in the execution of an automaton able to scan the
script DS and execute the elementary operations as
procedures or methods. More powerful is the fact that a script
DS can be internally and/or interactively modified to control

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

