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Abstract

We present a technique for determining the best data
cache size required for a given memory-intensive applica-
tion. A careful memory and cache line assignment strat-
egy based on the analysis of the array access patterns ef-
fects a significant reduction in the required data cache size,
with no negative impact on the performance, thereby free-
ing vital on-chip silicon area for other hardware resources.
Experiments on several benchmark kernels performed on
LSI Logic’s CW4001 embedded processor simulator confirm
the soundness of our cache sizing and memory assignment
strategy and the accuracy of our analytical predictions.

1. Introduction

The architectural flexibility offered by em-
bedded processor-based systems makes the code generation
process much more complex than traditional compilation.
The processor now forms only part of the die: the system
designer thus has to decide what other hardware compo-
nents (e.g., memory, co-processors, etc.) will comprise the
rest of the on-chip silicon area, based on an analysis of the
application. For instance, if an analysis of the application
reveals that the data cache hit ratio is not likely to improve
for cache sizes larger than 1 KByte, the information can be
utilized to allocate expensive on-chip silicon area to other
hardware resources, instead of an unnecessarily large cache.
When coupled with an aggressive compiler that exploits the
knowledge of this optimal configuration, the impact on the
overall design is significant. Given an embedded applica-
tion program and a cache line size, we determine the best
data cache size in cases where the application lends itself to
an exact analysis. When an exact analysis is not possible
(e.g., applications with input data-dependent memory ref-
erence patterns), we generate a graph plotting the expected
variation of cache performance with size, for the given ap-
plication, allowing a system designer to rapidly explore the
performance impact of different cache configurations.
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2. Data Cache Sizing

Consider a direct-mapped cache with two words per line,
executing a section of code implementing matrix addition
shown below.

int a[10][10], b[10][10], c[10][10]
...
for i = 0 to 9

for j = 0 to 9
c[i][j] = a[i][j] + b[i][j]

In any given iteration, a maximum of three distinct cache
lines are accessed in the inner loop, one corresponding to
each array. We can use a data layout strategy [3] which
ensures thata[i][j]; b[i][j], andc[i][j] always map tocon-
secutivecache lines thereby achieving the minimum cache
size of 4 lines. For example, if we mapa[0][0] . . .a[9][9]
to memory locations0 . . . 99;b[0][0] . . .b[9][9] to locations
114 . . .213; andc[0][0] . . .c[9][9] to locations 228 . . .327,
we observe accesses to consecutive cache lines for the first
four iterations. Clearly, the absence of conflicts is also en-
sured in future iterations by virtue of the regular access pat-
terns in the code. Further, the cache size (which is a power
of 2) cannot be reduced to less than 4 without affecting the
performance adversely. A larger cache does not improve
performance due to the lack of temporal locality in the code.

2.1. Arrays with Compatible Access Patterns

We call two arrays accesses in a loopcompatibleif their
index expressions differ by a constant (i.e., independent of
loop variables). This property holds for a large variety of
typical array access patterns. For example, a pair of ac-
cesses to (A[i]; A[i+ 2]) and (A[2i]; B[2i+ 3]) in the same
loop satisfy this property.

If all accesses in a loop are compatible, then we can use
a suitable data layout in memory to avoid cache conflicts
completely. Consider the code fragment in Figure 1(a), to
be mapped into a cache with line size = 4 words. The regions
of the arrays referenced in one iteration are shown shaded in
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for i = 2 to 8
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Figure 1. (a) Example code (b) Shaded region involved
in one iteration (c) Cache mapping

Figure 1(b). A memory assignment of arraysA andB that
avoids conflicts should ensure that the shaded regions ofA

andB never map into the same cache line. We note that
the five consecutive words inA can occupy, in the worst
case, a maximum of two lines in this cache with four words
per line. Similarly, the one word fromB can occupy one
line. Thus, if we adjust the distance betweenA[i � 2] (the
earliestA-word accessed in iterationi) andB[i] (the earliest
B-word accessed in this iteration), so that they are two lines
apart when mapped into cache, we can avoid cache conflicts
during loop execution.The nearest power of 2 greater than
the total number of cache lines computed above would be
the optimum cache size for the loop.

2.2. Arrays Conflicting with Scalars
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Figure 2. Cache conflict between scalars and arrays

Scalars accessed in loops are typically stored in the reg-
ister file, but if the number of scalars exceeds the avail-
able registers, they have to be stored in main memory, and
consequently, accessed through the cache. In such a sce-
nario, conflicts between arrays and scalars in memory are
inevitable, since scalars are mapped to a fixed memory lo-
cation (hence, a fixed cache location), whereas the accessed
array elements map to different cache locations in different
iterations. Figure 2 shows the cache memory where scalars
in a loop map to regionX of the cache, whereas elements
accessed from arraysA andB map to different parts of the
cache in different iterations. Conflicts between scalars and
arrays occur whenever regionX (which is fixed) andY
(which is moving) intersect in the cache. An estimate of
the cache conflicts occurring in one loop iteration between
scalars and arrays is given by:1

C
� (M � nsc +Msc � na),

whereMsc andM are the number of cache lines spanned by
scalars and arrays respectively,nsc andna are the number
of accesses to scalars and arrays respectively, andC is the
number of lines in the cache. Details are described in [1].

2.3. Arrays with incompatible access patterns

When multiple arrays are accessed with incompatible ac-
cess patterns in a loop, it is difficult to formalize a strategy
to avoid conflicts altogether. To compute an estimate of the
number of cache conflicts in this case, we assume a uniform
distribution of the memory accesses in the cache. This is a
good approximation when array access patterns are incom-
patible, and was verified by our experiments. We first divide
the arrays into groupsS1 . . .Sg , with each groupSj consist-
ing of arrays with compatible accesses, and occupying a to-
tal of MSj

cache lines in one iteration. The probability of
the arrays interfering with any of thensc scalars in cache is
M=C (whereM =

P
jMSj

) , so the expected number of
scalar misses is:(M=C)nsc. Similarly, the probability that
an access to any element in groupSj results in a miss, is
the probability that it conflicts with any scalar, or any of the
other groups. Thus, it could conflict if it were to map to any
of theMsc + (M �MSj

) locations occupied by the scalars
and remaining arrays. In other words, the probability of a
conflict miss for groupSj = (Msc +M �MSj

)=C. Thus,
the expected number of misses in one iteration is:
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1
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3. Conclusions

In embedded systems based on microprocessor cores, ar-
chitectural parameters such as on-chip memory can be tai-
lored to the specific application that is being designed. We
described a technique to predict the best data cache size for
a given application analytically. Our experiments on sev-
eral benchmark kernels performed on the CW4001 embed-
ded processor core simulator, predicted optimal cache size
for the applications where the prediction is possible. For
the cases where an optimal cache size does not exist, our
prediction of hit ratio closely follows the actual hit ratios,
and permits the designer to select a good cache size for the
application. The cache conflict estimation forms an impor-
tant kernel routine in our memory exploration environment
([2]), which is an analytical platform that helps perform an
application specific memory customization for embedded
processor-based systems.
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