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Abstract
This paper presents a system-level design environment

for data transport processing systems. In this environment,
designers can easily verify system behavior by formally
defining data structures and their related actions, without
considering detailed timing. In addition, the verified
specification can be translated into synthesizable RTL
descriptions by a dedicated RTL generator. Thus, using
lower-level EDA tools, actual hardware can be obtained
directly from a system-level specification.

1. Introduction

Recently, various kinds of multimedia services on the
Broadband Integrated Services Digital Network (B-ISDN)
have been introduced, and many more new services will be
available in the near future. To keep in step with this situation,
transport processing systems must be enhanced continuously.

From the system design point of view, it is very
important to define total system behavior as soon as possible.
So, system designers often want to concentrate on drawing
new ideas and verifying them quickly without worrying
about detailed hardware implementation issues such as
precise clock timing.  To realize such an environment, several
rapid prototyping systems have been proposed [1][2][3].
However, they still require a great deal of low-level
specifications with which the system designers are not
familiar. Thus, even now, system designers often specify
system-level behaviors using their own paper-based informal
formats, because they cannot use any computer -aided tools.

To help remedy this situation, we proposed a novel
system-level specification method called “FORM” (Frame
Oriented Representation Method ) [4]. The method is well
tuned to specifying transport processing systems. Based on
FORM, we developed a system-level design environment.
The environment allows designers to specify system-level

behavior formally through familiar input methods, and verify
them using a system-level simulator. In addition, the verified
specifications can be translated into synthesizable RTL
descriptions by an RTL generator. Thus, actual hardware
can be obtained from the system-level specifications using
other EDA tools. We believe that this environment bridges
the gap between system-level designs and lower-level ones
in the telecommunications area.

This paper discusses related work in the next section.
Section 3 describes the FORM system overview including
features, configurations, and the system model. Section 4
describes the specification editor for the formal specification
description tool (FORM_EDIT). Section 5 describes the
specification simulator for directly simulating its description
(FORM_SIM). The RTL generator (FORM_GEN) for
formal specifications is described in Section 6. Section 7
presents the evaluation results of when the FORM system is
applied to the specification description of the  ATM-AAL5
termination function[5][6].

2. Related Work

To describe a specification of telecommunication
systems, various methodologies such as SDL, Estelle, and
LOTOS and their tools were proposed [7][8][9][10][11].
They are based on a finite state machine model. Therefore,
they can model telecommunication systems and can be used
to describe system specifications. The aim, however, is to
describe high-level service applications and protocols of
telecommunication systems. This makes it difficult to use
the specifications for transport processing systems which
must process transmission data in real time. So the
methodology is not suitable for our requirement.

On the other hand, the Hardware Description Language
(HDL) is used when describing a hardware specification.
By using HDL, designers can describe high speed and well
optimized hardware specifications. However, when
describing HDL, designers must be well aware of hardware



and they must consider the activation timing of each action
in the description. Thus it is difficult for system designers to
describe a specification of a transport system using HDL.
Recently, various EDA tools that describe RTL/gate level
specification have been proposed. Some EDA tools have
several kinds of graphical user interfaces (GUIs) such as
hierarchical block diagrams, state diagrams, and truth tables
[12]. Since designers can select the entry interface as they
like, these tools may be regarded as more user-friendly design
entry tools. Even though such tools have sophisticated entry
interfaces, they are the same kind as existing ones because,
on such tools, the final descriptions of system functions must
be broken down into RTL taking into consideration the
activation timing of each process. Although behavioral level
design tools have been developed and some progress has
been made in improving the ease of use, designers must still
recognize clock cycles and provide constraints for execution
timing [13]. Therefore, these tools are suitable for logic
circuit designers, but not yet suitable for system designers
to represent system-level specifications.

To solve the above problems we propose a new design
method for the transport processing system FORM, by which
system designers are able to describe easily transport
processing system specifications. Our system is built on
FORM and frees system designers from considering the
activation timing of each process. The system accomplishes
this through describing specifications using only
synchronization, the transmission data structure, and the
Transport Processing Action (TPA) for the transmission data.
Some systems have a similar input form using the frame
structure and action for system functions [14][15]. However,
the designers must recognize clock cycles and define tool
constraints for activation timing. The proposed system can
optimize state transitions for controllers and will be useful
for logic circuit designers who must design efficient circuits
for ASIC. On the other hand, our system aims to easily
express system-level specification written by system
designers. So in our system, designers can describe
specifications without suffering hardware constraints and
rapidly achieve a prototyping system such as the FPGA-
based emulator to verify the functions [16]. Our system
enables system designers to concentrate on considering
system-level functions without specifying the hardware
implementation in detail.

3. FORM System Overview

3.1 System Characteristics

The characteristics of the FORM system are described
below.

a) Formal specification
The transport processing specifications are specified

using the transmission data structure and relevant processing
functions. Unclear points in the specifications are removed
by this description form. In addition, the computer can
process the specification, thus facilitating the designing
process.
b) TPA definition in partial order

The FORM system does not need a detailed timing
design from system designers. System designers only define
the activating order of each TPA related to the transmission
data structure. The detailed activating timing is defined
automatically by the FORM system, and the definition
method is described in the next subsection.
c) System-level simulation

This system allows direct simulation of formal
specification without conversion to RTL. If a simulation is
performed after converting specification descriptions into
RTL, it makes it difficult to associate the results with the
specification descriptions one-to-one. Therefore, this system
function enables clear associations to be formed between
the simulation results and the specification descriptions. The
correction of mistakes is facilitated within the specification,
and this reduces the turn around time for the system design.
d) RTL generation

To link system designers and existing EDA tools, and
verify the behavior of specifications on a real system, RTL
is generated from formal specifications. FORM_GEN
generates synthesizable RTL by determining the activating
timing of each action from the rule described in Section 4.2.
e) Multi-platform

To implement this system as a multi-platform tool. We
use Tcl/Tk [17] and GNU C++ as implementation tools.
Therefore, this system can be used on various operating
systems (OSs) on which Tcl/Tk and GNU C++ are available.
Only the source code of the FORM_SIM simulation engine
requires compiling when moving it on to other operating
systems. FORM_EDIT is constructed using only Tcl/Tk, so
it can be used on various OSs without any changes or
recompiling where Tcl/Tk is available. Formal specification
data can also be used in any FORM system on other various
OSs such as Microsoft® Windows®95.

FORM systems aim to always provide the same design
environment for system designers even if they have several
design platforms with different OSs.
f) Client server system

FORM_SIM comprises a user interface and simulation
engine. The user interface and simulation engine can work
as cooperative independent programs on different computers.
These programs will be able to be carried out on different
computers. Our system is built based on an implementation
strategy suited to a client-server system.



3.2 FORM Model

The model used in the FORM system is described
below. In this system, we regard the main data stream as
transmission data (Fig. 1). The data is transmitted as bit
stream data and the transport processing system handled by
FORM processes it as eight bit parallel data in one clock
cycle. Transmission data have a data format that has a
network management/control information part called an
overhead or header, a part called a payload that stores the
information a user transmits at each layer.  Another part
called multiplexed structure transmission data is usually
stored with similar structured data in the payload. In the
header part multiple data sets are defined by the designer.
Data sets are a data area where TPA should be performed.
Each data set is positioned at a location specified at some
distance from the forefront of the transmission data. An ATM
cell, as an example of transmission data, has some data sets
in the header part such as VPI and VCI.

We divided the processing of each layer into the
synchronization processing part and the data processing part
(Fig. 2). The synchronization processing part reveals

transmission data from bit stream data. The data processing
part contains several TPAs for transmission data, such as
the TPA act_vpi processes data set VPI. We assume each
action is activated by the input of related data sets, such as
the TPA act_vpi is activated by inputting data set VPI. So
the activation timing of actions is implicitly defined through
the transmitted data structure. The data processing part
comprises multiple TPA modules. Each TPA module
processes a specific data set in the transmission data and is
activated when the relevant data set is input.

Thus, system designers can design system specifications
including timing information without considering the
activation timing of each TPA because definitions are created
by associating the location of data sets within the
transmission data and the TPA modules that processes them.
However, some data processes, such as error correction, must
be processed first regardless of the position in the
transmission data or data relationship. Therefore, system
designers must prioritize the processing execution of TPA.
The proposed system’s grouping prioritizes TPA in the same
way into a group called an action block.

3.3 System Configuration

The FORM system comprises the specification editor,
the specification simulator, and RTL generator as shown in
Fig. 3. The specification editor for preparing a formal
description of specifications is called FORM_EDIT. The
specification simulator for simulating formal specification
descriptions is called  FORM_SIM and the RTL generator
which generates synthesizable RTL from formal
specifications is called FORM_GEN. The user interface of
this system is constructed by Tcl/Tk and the processing
engine is constructed by GNU C++.

Each tool is used in the following manner. First using

Fig. 1. Transmission Data Structure

Fig. 2. FORM Model Fig. 3. FORM System Configuration
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The data processing description uses condition tables
and a state transition diagram. The activating timing for each
TPA in a condition table is evaluated by analyzing the
relationship of all variables which are used in descriptions
of data processing. So designers can obtain timing constraints
for RTL without considering the activation timing of each
TPA. Timing determination is explained in detail in the next
subsection.

4.2 Determination of Processing Timing

The system processes the functions below for fixing
the activation timing of each TPA.
1) Analyzing the relationship of all variables and data set
names used in descriptions
2) Determining the order of activation timing of each TPA
3) Inserting a buffering process
An example is described below (Fig. 4).

It is supposed that data set A~E occur in that order. In
Condition Table 1, the values of data sets B and C determine
value X. Similarly in Condition Table 2, the values of data
sets B, D, and E determine variable Y. In Condition Table
3, variable X and variable Y determine the value of data set
A. In Table 1 when data set C is input, variable X is
determined because data set C is input after data set B. In
Table 2 when data set E is input, variable Y is determined
because data set E is finally input after other data sets are
input. Thus in Table 3, variables X and Y can be determined
by inputting data set C and E. Value Y is determined after X
because data set E is input after data set C is input. So the
value of data set A is determined at the same time as data set
E is input. As in the above example, the evaluation timing
for each action in a condition table is determined by analyzing
the relationship of all variables and data sets.

In the above example the value of data set A is
determined by the values of data sets B, C, D, and E that are
input after A is input, so buffering is required for the data in
data sets A, B, C, D to rewrite the value of data set A. So
this system automatically creates a buffering module for four
cycle units in an action block when it is needed, as in the

FORM_EDIT, the system designer defines a multiplexed
structure of the transmission data and location of data sets
within the transmission data. Then the designer defines the
synchronization processing and TPA within the data
processing part. After that the specification is verified by
simulation. The simulation involves formal specifications
which are directly created by FORM_EDIT and the results
are displayed in the specification window. The simulation
results and formal specification descriptions are tightly
coupled. So if some errors are detected, the system designer
can quickly correct them. After correcting the mistakes, RTL
is generated from formal specifications by the FORM_GEN.
A real system can be constructed from the synthesizable RTL
with existing EDA tools and the functions of the defined
transport system can be adequately verified. This system
will allow top-down design from system-level specification
for system designers.

4. Specification Editor (FORM_EDIT)

4.1 Configuration

This specification editor comprises the following
definitions:
• Multiplexed layers

The layered structure is defined by alternately placing
the synchronization processing part and data processing part
between the data input and result output.
• Transmission data structure

The structure of the transmission data which are
processed in each multiplexed layer is defined. Specifically,
the total length of the transmission data, header length, and
the location and name of data units are defined.
Transmissions with variable length data can also be defined.
• Synchronization processing

A method is described for extracting transmission data
from the input data or storing transmission data in the
transmission data payload in another layer. Because
synchronization processing is included as a library in
FORM_EDIT, the actual description is completed only by
selecting an appropriate synchronization processing module.
• Data processing

Basically system designers write TPAs to specified data
sets in the defined transmission data. TPAs are described in
accordance with the description format for C Language. The
arithmetic operator, bit operation operator, and logic operator
in C Language are supported and if-else sentences and while
sentences are used as the control structure. For the sake of
easy designing, basic data processing such as Cyclic
Redundancy Check (CRC) operation and scramble operation
are included as libraries. More complicated actions are
defined by grouping some TPAs. System designers can also
use macro functions in other designs.

Fig. 4. Determination of Processing Timing
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above situation.

5. Specification Simulator  (FORM_SIM)

5.1 Configuration

As shown in Fig. 5, the proposed simulation comprises
the simulation engine and the results indicator. The
simulation engine creates the simulation directly for
specification descriptions. The result indicator displays the
results output from the simulation engine on the
correspondence description of formal specifications. When
the simulation is executed, the engine requires formal
specifications written using FORM_EDIT and the test pattern
data prepared by the user. FORM_SIM reads formal
specifications created by FORM_EDIT. Test data is
processed based on the specification. As a result of the
simulation, processed test data and values of internal
variables are given and shown in several ways.

5.2 Simulation Engine

Reading every test data unit (eight-bit parallel data),
the simulation engine processes TPA that follow the
activation timing information included in the formal
specifications.  The simulation engine outputs the simulation
results and internal data (debugger condition or value of
variable) of each TPA that conforms to the result indicator
requirements. This simulation engine directly simulates the
formal specifications, but does not process line-by-line like
a software debugger. In the FORM model each TPA is
activated when the relevant transmission data are input. Thus,
this simulator exactly reproduces the FORM model action.

5.3 Results indicator

The results indicator displays values of processed data
units and values of variables on a specification description.
The processing specification description line and the
appropriate conditions are dynamically displayed on a

condition table used on FORM_EDIT. It also controls the
operation of the simulation engine by setting break points in
the specification.  If an error is detected on the specification
during simulation, the corresponding part in the specification
can be immediately corrected using FORM_EDIT.

6. RTL Generator (FORM_GEN)

RTL, such as SFL [18] and Verilog-HDL, can be
generated from formal specification descriptions created
using FORM_EDIT. It predetermines the timing information
when each TPA should be performed based on the FORM
model as described in Subsection 4.2.

Figure 6 shows the block diagram of the RTL
generation. The data processing part of some multiplexed
layers comprises several action blocks. The TPA in each
block can be performed in parallel. These blocks are
connected based on the execution priority order set by the
designer. Each variable in the formal specification is
converted to control signals in an RTL description by
FORM_GEN. Each action block is connected with the same
module interface which consists of data and control signals.
Data inputs and outputs in the data processing part have an
8-bit parallel width, and timing_i and enable_i are reset and
enable signals for the timing controller, respectively.
Timing_o and enable_o are reset and enable signals for the
timing controller in the next multiplexed layer.

Action blocks comprise TPA modules, state transition
modules, and the timing controller. TPA and state transition
modules can be directly generated from formal specifications
created using FORM_EDIT. The timing controller comprises
a counter and decoders that can be automatically generated
without designer assistance. Because the time at which each
TPA should start can be determined as described in Section
4.2, the timing controller generates timing control signals
for TPA and state transition modules by referring to internal
variables.

7. Application Example

Fig. 5. FORM_SIM Configuration
Fig. 6.  FORM_GEN Block DiagramAAAAAAAAAA
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The results of applying the proposed specification
description and simulation environment to the designing of
the ATM-AAL5 termination function are shown below. This
example is written using FORM_EDIT and checked using
FORM_SIM which are implemented on UNIX, Microsoft®

Windows®95, and Windows®NT. Their user interfaces and
simulation results are completely the same.

The ATM-AAL5 termination function comprises the
ATM, AAL5_SAR, and AAL5 layers. The ATM layer
corrects errors in the header and rewrites the Virtual Path
Identifier (VPI) and Virtual Channel Identifier (VCI). The
AAL_SAR layer handles packet construction and the AAL5
layer check errors by CRC32 and strips the padding in the
payload.

7.1 Specification Definition

A specification definition example is shown below.
1) Multiplexed layer structure definition

The layer structure is defined as synchronization
processing and data processing parts for ATM, AAL5_SAR,
and AAL5. In this system layers can be easily added or
deleted through the GUI.
2) Transmission data structure definition

Transmission data structure for ATM, AAL5_SAR, and
AAL5 are defined. The settings of the transmission data
structure and the actual screen for defining ATM cells are
shown (Table 1 and Fig. 7). As shown in Table 1, a value
within the range of the frame length comprises several action
blocks. The TPA in each block can be performed in parallel.
These blocks are connected based on the execution priority
order set by the designer. Each variable in the formal
specification is converted to control signals in an RTL
description by FORM_GEN. Each action block is connected
with the same module interface which consists of data and
control signals. Data inputs and outputs in the data processing
part have an 8-bit parallel width, and timing_i and enable_i
are reset and enable signals for the timing controller,
respectively.  Specification for transmission data and a
variable-length payload also becomes available after the total
length of the transmission data, header length, and other items
are defined. Any desired data area can be selected on the
displayed rectangle and its name is defined. It is possible to
define information by indicating by the bit, if necessary.
3) Synchronization processing definition

Synchronization processing is the method of extracting
and storing transmission data handled in each layer. Specific
synchronization processing is prepared as a library. So the
actual description is completed only by selecting the desired
synchronization processes from the list of functions.
4) Data processing definition

First, the variables to be used in the data processing
part are defined. MESSAGE, INT, BIT, and BYTE type
variables can be used. MESSAGE type variables are used
in control signals and flag signals. In this application
example, a BYTE type variable syndrome sends the
operation results in the header error check operation module
to the errata for error check values. MESSAGE type variables
send the synchronization state and error correction state to
the state transition diagram as local variables for the ATM
layer. Next, a specific data unit is selected. After that
processing contents for each data unit are described. At that
time, each process is prioritized for execution by the designer.

The rewriting of VPI and VCI is shown below as an
example of a condition table (Fig. 8). In this example, the
values of the VPI and VCI are rewritten with the values

Table.1 Definition Value of Transmission Data

Fig. 7. Definition of Transmission Data Structure Fig. 8. Specification of Condition Table
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written in the same column depending on the combination
of the two values.  The cases on the first and second lines
are evaluated when the VPI is input because the VCI is
“Don’t care” for these lines. The cases on the third line and
onward are evaluated when input of the VCI is completed
because the VPI is “Don’t care” or both have values.

For a state transition diagram, the state name is defined
first. Next the states of the original and destination points
are selected. After that, the transition conditions and the
processing to be executed at the transition are described.
The transition conditions and processing contents are
described in text or in a table format. In this application
example, we described the transition between the detection
state and the correction state caused by the error correction
results for the header part of an ATM cell (Fig. 9). The
transition between the detection state and correction state
occurs depending on the comparison results of the header
error check operation with the errata for error check values.

7.2 Simulation

The specification for the transport processing system
comprising the ATM, AAL5_SAR, and AAL5 layers was
simulated in this application example. There was a definition
error in the specification during the description of the
rewriting of the VPI and VCI. It was quickly detected and
corrected through observation of the simulation results on
the specification description (Fig. 10). The proposed
simulator performs various types of monitoring during the
simulation. It especially enables observation of results on

the specification description interface. As shown in Fig. 10,
the simulation step line can be highlighted on the
specification description interface. It was thus easy for
designers to grasp the simulation status on the step line and
to make corrections when an error was detected in a
specification description.

We also conducted similar observations on the
specification description interface using text and state
transition diagrams to confirm whether or not specification
descriptions are correct.

7.3 SFL Generation

Three modules, a_head_c, hec_state ,and vpi_vci are
generated by FORM_GEN and  connected to each other in
prioritized order (Fig. 11). Modules a_head_c and vpi_vci

Fig. 9. State Transition Diagram Fig. 10. Monitoring Condition Table

Fig. 11. Block Diagram of Generated Circuit
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correspond to TPA blocks, which comprise TPA modules
and controllers. The controller comprises a six-bit counter
and decoder, which are generated by taking into account the
timing determination process including the buffering process
as described in Subsection 4.2. These modules handle the
main bit stream in eight-bit parallel data and are controlled
by timing_i and enable_i signals which are used as counter
reset and enable signals. These signals are also generated
for the next TPA block module. Module hec_state is
generated from the state transition diagram. All modules are
created as synchronous circuits with a single phase clock.
FORM_GEN can generate SFL from which TPA block
circuits can be synthesized (Table 2).

8. Conclusion

The FORM system was developed enabling formal
specification description of a transport processing system.
The specification can be confirmed by direct simulation of
the specifications and synthesizable RTL can be generated
from it. The characteristics of this system are summed up in
the following:
a) Formal specifications of a transport processing system
b) System designing without detailed timing definition
c) Direct simulation of a formal specification
d) Generating RTL from formal specifications on familiar

GUIs
e) Multi-platform tool

This system was applied to the functional design of the
ATM-AAL5 termination circuit. The simulation results on
the specification description were observed and the
specification description could be quickly corrected. RTL
is generated from the formal specification. In the near future,
the performance of generated RTL will be enhanced.
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