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Abstract

One essential step in sequential logic synthesis con-
sists of �nding a state encoding that meets some require-
ments, such as optimal implementation, or correctness
in the case of asynchronous FSMs. Dichotomy-based
constrained encoding is more general than other con-
strained encoding frameworks, but it is also more dif-
�cult to solve. This paper introduces a new formaliza-
tion of this problem, which leads to original exact and
heuristic algorithms. Experimental results show that
the resulting exact solver outperforms the previous ap-
proaches.

1 Introduction

A k-bit encoding of a set of states S is a mapping �
from S into f0; 1gk. A dichotomy is an unordered pair
fS0; S1g of disjoint subsets of S. An encoding satis�es
a dichotomy fS0; S1g i� there is a bit of the encoding
that distinguishes the states of S0 from the states of S1,
i.e., this bit has the value 0 for the states of S0 and the
value 1 for the states of S1, or vice versa.

De�nition 1 Given a set S of states and a set D of
dichotomies, the constrained encoding problem consists
of �nding a minimum-length encoding that satis�es all
the dichotomies.

Fig. 1 shows a minimum-length encoding satisfying
the three dichotomies ff1; 3g; f2; 4gg, ff3; 4g; f1gg,
ff2; 3g; f4gg, and ff1; 2; 3g;fgg, on the set of states
S = f1; : : : ; 4g

Originally introduced by Tracey [12], dichotomy-
based constrained encoding can be used to solve the fol-
lowing problems: generate an asynchronous implemen-
tation that is critical race free [12], or independent from
the gate and wire delays [13]; generate a minimum-area
PLA implementation [7, 8, 9, 15]; generate optimal PLA
implementations of Boolean expressions [3, 4]; produce
a state assignment for an event-based speci�cation [6];
and solve hazard-free minimization and asynchronous
FSM encoding for multiple-input changes [5].

Fig. 2 illustrates a uni�ed framework [11, 15] for
constrained encoding in sequential logic synthesis: di-
chotomies can be used to express the correctness of
the implementation (race-free, hazard-free, or speed-
independent implementation), or to express some op-
timization criterions (area and speed). It is more gen-
eral than some other frameworks, e.g. [14], which cannot
cope with the state assigment of asynchronous circuits.
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Figure 1: A three-bit encoding.
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Figure 2: A constrained encoding framework.

This paper addresses the exact resolution of the
dichotomy-based constrained encoding problem. Sec-
tion 2 outlines the state-of-the-art. Section 3 gives a
new formulation of the problem and explains how it can
be solved. Section 4 discusses some experimental results.

2 Terminology & Previous Work

A compatible set is a set of dichotomies that can be
simultaneously satis�ed by a single bit encoding. Two
dichotomies are compatible i� they form a compatible
set. A compatible set is necessarily made of pair-wise
compatible dichotomies, but the converse is false. For
example, the three dichotomies ff1; 2g; fgg, ff1; 3g; fgg,
and ff2g; f3gg are pair-wise compatible, but there is no
single bit encoding that satis�es the three of them at
the same time.

Tracey introduced the �rst exact algorithm for con-
strained encoding [12]. His method, which laid down the
basis of most of the subsequent works, is as follows:

(1) Build the set M of all the maximal compatible sets
from the given set of dichotomies D;

(2) Find a minimum number of elements of M that
cover all the dichotomies.
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Figure 3: Face hypercube embedding.

Step (2) is NP-complete, and the cardinality of M can
be exponential w.r.t jDj.

A compatible set can be represented by a dichotomy,
e.g., the compatibility of ff1g; f2; 3gg and ff1; 4g; f2gg
is denoted with the new dichotomy ff1; 4g; f2; 3gg. One
can solve (1) by computing pair-wise compatible di-
chotomies, adding the resulting compatible sets to the
set of dichotomies, and iterating this process until all the
compatible sets are maximal [12, 15, 9]. However this
method is applicable to small size problems because one
needs to examine a huge number of dichotomy pairs.
The reason is that in practice, dichotomies involve a
small number of states, and consequently most of them
are pair-wise compatible. For example, n dichotomies
whose subsets S0's and S1's are all mutually disjoint
produce n(n�1) new dichotomies denoting the compat-
ibility between any two dichotomies. Thus the number

of dichotomies after k (k small) iterations is about n2
k

.

An ordered dichotomy (S0; S1) is an ordered couple
of disjoint subsets of S. One says that two ordered di-
chotomies (S0; S1) and (S0

0
; S0

1
) are compatible i� S0[S

0
0

and S1 [ S0

1
are disjoint. Two dichotomies fS0; S1g

and fS0
0
; S0

1
g are compatible i� (S0; S1) is compatible

with (S0
0
; S0

1
) or (S0

1
; S0

0
). The concept of compatibil-

ity becomes then more manageable, since a set of or-
dered dichotomies is compatible i� they are pair-wise
compatible. One can solve (1) by associating two or-
dered dichotomies to each (unordered) dichotomy, com-
puting all the maximal sets of compatible ordered di-
chotomies, and then converting them back to unordered
dichotomies. Based on this idea, [11] presents an al-
gorithm that computes M in O(jM j). However this
method is still limited by the size of M , which can be
exponential w.r.t. jDj.

In [2] is presented two ZBDD based algorithms to
solve the constrained encoding problem. Both algo-
rithms are based on set covering with compatible sets.
They avoid the bottleneck the other methods face be-
cause ZBDDs allow to manipulate very large sets of com-
patible sets implicitly. However they su�er from the ir-
reducibility of the resulting set covering problems.

Face hypercube embedding is another constrained
state encoding framework [11]. A facet is a subset f
of states of S that are constrained to be encoded within
one face (cube) of the hypercube f0; 1gk, without having
any other state intersecting this face. Fig. 3 shows an
optimal face embedding of the two facets f1 = f1; 2; 3g
and f2 = f3; 4g. The faces spanned by f1 and f2 are
1�� and �10 respectively.

A set of facets can be easily translated into a set of
dichotomies: for every facet f , generate the dichotomies
ff; fsgg for s 2 S � f , which asserts that no other

state intersects the face spanned by f ; also add the di-
chotomies ffsg; fs0gg for s; s0 2 S; s 6= s0, which asserts
that every state is distinguishable. However, there is no
systematic way to translate a set of dichotomies into a
set of facets.

3 Twin Graphs and Dichotomies

The methods that have been proposed in the past
rely on the explicit notion of compatible sets and on
covering. This section introduces a new formalization
which strongly di�ers from this paradigm. It reduces
the original problem to a twin graph coloring. It then
explains how to solve this new problem.

3.1 Formalization

A simple (i.e., undirected and self-loop free) graph G
is denoted with (V;E), where V is its set of vertices, and
E its set of edges. Given a set of vertices V 0, we will
use the notation G�V 0 to denote the subgraph induced
by (V �V 0; E). Coloring a graph consists of assigning a
color to every vertex such that there is no two vertices
linked by an edge that have the same color.

De�nition 2 A twin graph is a pair (G; T ), where G =
(V;E) is a simple graph, and T is a matching1 on V .

Each pair fv; v0g of T is called a twin couple, and we

say that v is the twin of v0. A vertex which belongs to
some pair of T is a twin vertex.

An instance graph of a twin graph (G; T ) is a graph
G� V 0, where V 0 is a set of twin vertices that does not
contain any twin couple. In other words, it is obtained
by removing from G no more than one vertex for every
twin couple.

Let us de�ne a coloring of a twin graph (G; T ) as a
coloring of one of its instance graphs. The minimum
coloring of a twin graph is the minimumcardinality col-
oring that can be obtained over all its instance graphs.
In other words, it is a minimum coloring of G such that
only one vertex of every twin couple needs to be colored,
the other vertex being removed from the graph.

The twin graph (G; T ) derived from a set of (un-
ordered) dichotomies D is such that V is the set of or-
dered dichotomies, G = (V;E) is the uncompatibility
graph of the ordered dichotomies (obtained by linking
with an edge two uncompatible dichotomies of V ), and
T is made of the couples fv; v0g such that v and v0 are
the two ordered dichotomies resulting from a unique un-
ordered dichotomy. From now on, we identify vertex and
ordered dichotomy, edge and uncompatibility.

Theorem 1 The minimum coloring of the twin graph
derived from a set of dichotomies D gives the minimum-
length encoding satisfying D.

Proof. (sketch) An independent set of the uncompati-
bility graph G is a compatible set. Thus any k-coloring

1A matching on a set of vertices is a set of edges that has no
self-loop and such that no two edges have a common endpoint.
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Figure 4: Coloring the twin graph of some dichotomies.

({1,2},{})

({3},{2})

({1,3},{}) ({},{1,3})

({2},{3})

({},{1,2})

1 2

2

3

3

1

1

1

2

Figure 5: Twin graph coloring and symmetry breaking.

of the uncompatibility graph, which partitions V into k
independent sets, yields a k-encoding. However a mini-
mumcoloring of the uncompatibility graph does not nec-
essarily produce a minimum encoding. This is because
each dichotomy generates two ordered dichotomies, and
that only one of those needs to be put in the partition,
i.e., needs to be colored. This is precisely the de�nition
of the coloring of a twin graph. 2

Consider the set of four dichotomies ff2; 3g; fgg,
ff1; 3g; f2gg, ff1; 2g; f3;4gg, and ff4g; fgg. Fig. 4
shows on the left the uncompatibility graph G of the
ordered dichotomies. Edges between twin vertices are
shown with a bold line. The middle graph is the same
graph optimaly colored with 6 colors, assuming it is a
\normal" graph. The graph on the right shows the op-
timal coloring of the twin graph with 3 colors. The twin
vertices and their incident edges that have been removed
are shown with dotted lines.

The reader may think that �nding a \normal" mini-
mum coloring of the graph resulting from removing ev-
ery edge between twin vertices gives also a minimumcol-
oring of the twin graph derived froma set of dichotomies.
One reason for this intuition is the strong symmetry of
such twin graphs. Indeed, a twin graph derived from a
set of dichotomies can be drawn as a graph whose pairs
of twin vertices are organized in rows, and the graph is
completely symmetric w.r.t. to a vertical axis. In the
example of Fig. 4, the minimum coloring of the graph
in the middle, when ignoring the bold edges, is made of
3 colors, as is the minimum coloring of the twin graph.
But this is not true in general. The reason is that or-
dering the dichotomies creates new edges that encode
the uncompatibility of sets otherwise made of pairwise
compatible unordered dichotomies.

For instance, consider the three dichotomies
ff1; 3g; fgg, ff2g; f3gg, and ffg; f1; 2gg. They are pair-
wise compatible but they do not form a compatible set.
Fig. 5 shows the corresponding twin graph. The middle
graph shows the same uncompatibility graph, and its
\normal" minimum coloring is made of 3 colors, with or
without keeping the edges between twin vertices. How-
ever, the minimum coloring of the twin graph, shown on
the right, is made of 2 colors only.

3.2 Algorithm

Let D be a set of dichotomies over a set of states S.
The algorithm that solves the encoding problem with
twin graph coloring is as follows:

(1) Compute a set of irredundant, reduced, ordered di-

chotomies V from D (in O(jSj � jDj2)).

(2) Build the uncompatibility relation on V to obtain
the twin graph (in O(jSj � jDj2)).

(3) Color the twin graph (NP-complete).

(4) Build an encoding from the coloring (in O(jDj �
jSj)).

This algorithm avoids the bottlenecks of the previous
methods: it does not need to build the set of maximal
compatible sets M , whose potential exponential size is
an obvious limiting factor; and it can be ran within a
polynomial size memory (in O(jDj3)), which is not the
case for BDD/ZBDD based methods.

Steps (2) and (4) are straightforward. We address
some details of steps (1) and (3) in the sequel.

3.2.1 Reduced Set of Ordered Dichotomies

If one generates all ordered dichotomies from D, one
obtains a complete symmetric twin graph of 2jDj nodes.
However, one can break the symmetry of this graph by
generating a reduced set of ordered dichotomies.

Since complementing any bit of the encoding still pre-
serves the dichotomy constraints, one can force one state
to have an all-zero encoding. This means that from a
completely symmetrized set of ordered dichotomies, one
can select one state s of S, and remove all ordered di-
chotomies (S0; S1) such that s 2 S1. Choosing a state
s that minimizes the number of resulting ordered di-
chotomies can be done in time linear w.r.t. the size of
all dichotomies.

3.2.2 Coloring a Twin Graph

A \normal" sequential graph coloring algorithm picks
a vertex v, colors it with a color non con
icting with
v's neighbors, and iterates until all vertices are colored.
Backtracking is forced to �nd better solutions, or when
one cannot color a vertex without con
ict [1].

One can sequentially color a twin graph by having
two possible actions: one can pick a twin couple fv; v0g
and keep v as the twin representative, thus removing v0



from the graph; or one can pick a twin-free vertex (i.e.,
a vertex whose associated twin vertex, if any, has been
removed from the graph) and color it. The performance
of this algorithm is very dependent on the action taken
at each step. We now discuss the possible strategies and
heuristics to decide which action should be carry out at
each recursion.

Selecting a Vertex to Color

A good heuristic to select a vertex to be colored is the
DSATUR algorithm [1]. It consists of picking the vertex
that has the largest saturation number (i.e., the num-
ber of forbidden colors, which are the colors used by its
neighbors), and in breaking ties with the largest degree
in the uncolored graph. The idea is to choose the vertex
that is the most \di�cult" to color, and that propagates
as many constraints as possible.

Selecting a Twin Representative

Let g be a function that estimates how di�cult the col-
oring of a vertex v is (the greater the value of g(v), the
more di�cult v is to color). Let Represent be the heuris-
tic that select a twin representative for a twin couple
t = fv; v0g. A natural choice for the twin representative
is the vertex that is the easiest to color:

Represent(t) = argmin
v2t

g(v): (1)

We want to pick the representative of the most di�cult
twin couple to color, which is:

argmax
t2T

g(Represent(t)):

Strategy

There are two extreme strategies:

(1) \color as late as possible": �rst choose all the twin
representatives, then color the resulting graph.

(2) \color as soon as possible": whenever a vertex is
twin-free, it is immediately colored.

Strategy (1) performs poorly for the following reasons.
If one selects the \wrong" twin representative v from
a twin couple fv; v0g in the early stages of the recur-
sions, one has to exhaust the search for an optimal color-
ing on a suboptimal instance graph before backtracking
and considering v0 as the twin representative. Moreover,
there is no color constraint information to help the twin
representative selection.

Strategy (2) performs reasonably well. However,
since it colors all twin-free vertices before selecting any
twin representative, it can underperform when the sym-
metry of the twin graph has been broken and twin cou-
ples are far harder to color than the initial twin-free
vertices. This situation can occur since in practice a
reduced sets of ordered dichotomies is not symmetric.

The general strategy, which can alternate twin repre-
sentative selection and twin-free vertex coloring in any
order, opens many alternative heuristics. The simplest

of them merely merges the twin representative heuristic
with the coloring vertex selection heuristic. It consists
of computing the vertex v maximizing select :

select(v) =

(
g(v) if v is twin free
g(v) if v = Represent (t) for some t 2 T
�1 otherwise

If the resulting vertex is twin free, we color it, else we
select it as the twin representative of the twin couple it
belongs to. We use this strategy, where g captures the
DSATUR heuristic. In practice, this strategy closely
mimics strategy (2) but overcomes the problem men-
tioned above.

4 Experimental Results

The benchmark consists of MCNC industrial ex-
amples representing a wide range of FSMs. Face-
embedding constraints are generated with ESPRESSO-
MV [10]. We compared the algorithm presented in this
paper with the best known previous exact solvers, [11]
and [2]. The results are summarized in Table 1.

The twin graph coloring paradigm consistently beats
the two other methods, and it can solve problems that
fail to terminate otherwise. Note that our method �nds
the �rst known exact solution for the long-standing tbk
example (the minimum solution is 17, while the best
known upper bound was 18). When limiting the number
of backtracks to 5000, one obtains a heuristic solver,
which �nds the optimum solution in all but 4 cases.

5 Conclusion

This paper introduced a new approach to solve
dichotomy-based constrained encoding. It showed how
the later reduces to a twin graph coloring problem, and it
explained how to solve this new problem. Experimental
results show that the resulting algorithm outperforms
the other best known exact solvers.

The twin graph coloring formalization opens new op-
portunities to tackle the constrained encoding problem,
exactly and heuristically. In particular, sophisticated
vertex and action selection during the twin graph color-
ing can lead to better and faster constrained encoding
heuristics. Also, symmetry breaking and dynamic lower
bound computation are two challenging problems that
can help the resolution.
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