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Abstract

This paper presents a new formal method for the efficient
verification of concurrent systems that are modeled using a
safe Petri net representation. Our method generalizes upon
partial-order methods to explore concurrently enabled con-
flicting paths simultaneously. We show that our method can
achieve an exponential reduction in algorithmic complexity
without resorting to an implicit enumeration approach.

1 Introduction

Most modern embedded systems are notoriously diffi-
cult to design. Despite utmost care exercised by designers,
initial design specifications often contain subtle, difficult to
detect, errors that result from unanticipated interactions be-
tween the concurrent parts. Traditional analysis methods
such as simulation are often inadequate for uncovering such
errors, especially those that only occur under rare condi-
tions. Thus, automated formal verification tools are becom-
ing an indispensable part of a designer’s tool-box.

In [16] we explained how both specification and imple-
mentation of an embedded system can be formally repre-
sented by the Petri net formalism [12]. In this paper, we
will focus on a novel formal method for efficiently verify-
ing concurrent systems modeled as a Petri net. Conven-
tional analysis for Petri nets mainly involves a reachability
analysis of the underlying state space. However, there are
two primary sources of combinatorial explosion that makes
this conventional approach intractable for many problem in-
stances.

The first source is due to concurrently enabled actions.
Due to the underlying unbounded delay assumption of Petri
nets, concurrently enabled actions may fire in any order.
This interleaving semantics requires the analysis to enumer-
ate all possible orderings, which has a factorial complexity
with respect to the number of concurrently enabled actions.
To circumvent this problem, partial-order analysis (also re-
ferred to as stubborn-set or anticipation analysis) techniques
have been developed where it has been shown that only one
interleaved sequence needs to be analyzed for deadlock and
liveness checks [6, 9, 14].

The second source is due to concurrently marked con-
flict places. A conflict place specifies a choice in a Petri
net. In conventional analysis, each branch of a conflict place
must be traversed independently. When there are multiple
conflict places marked concurrently, all possible combina-
tions of paths must be enumerated, which has an exponen-
tial complexity with respect to the number of concurrently
marked conflict places. This source of complexity is not
avoided by partial-order analysis techniques, thus leaving
many problem instances still intractable.

In this paper, we describe ageneralized partial-order
analysistechnique that can enumerate conflicting paths si-
multaneously, thus extending the partial-order analysis ap-
proach to tackle also the second source of combinatorial
explosion. Our technique is based on a modified represen-
tation of markings to distinguish the different conflicting
paths. The firing rules have been modified in combination
with the partial-order analysis technique to enumerate con-
flicting paths simultaneously. This new analysis technique
can demonstrate exponential reduction in complexity, as il-
lustrated by the examples shown in Section 4.

Another technique for tackling the combinatorial explo-
sion problem is symbolic analysis. Symbolic analysis ap-
proaches [2, 3, 5, 11] that implicitly enumerate the state
space have been used to tackle the complexity problem;
they are effective when the state space being traversed can
be efficiently encoded using binary decision diagrams. We
believe this approach is complementary to our method that
aims to address specifications whose state space cannot be
efficiently encoded.

The remainder of this paper is organized as follows.
Section 2 reviews the basic definitions and properties of
Petri nets, as well as conventional, partial-order and sym-
bolic analysis techniques. Section 3 presents our general-
ized partial-order analysis approach. Section 4 discusses
the implementation aspects and the results. Conclusions are
drawn in Section 5.

2 Background

In this section we provide some background material
necessary for the exposition of our work. In Section 2.1 we



review basic definitions and properties of (classical) Petri
nets [12]. In Section 2.2 we discuss a straightforward ap-
proach to verification and the problems involved. In Sec-
tion 2.3 partial-order analysis techniques are discussed, as
well as their limitations. In Section 2.4 the symbolic tech-
niques are elaborated.

2.1 Petri Nets

Definition 2.1 (Petri Net) A Petri net is a tuple� =

hP; T; F;m0i, with P \ T = ;, F � (P � T ) [ (T � P )

andm0 : P ! N.

In the above definitionP denotes a set of places,T a set
of transitions,F a flow relation andm0 an initial marking.
In Figure 1(a), a simple Petri net (PN) is shown. The places
are depicted with the open circles, the transitions are de-
picted with the annotated bars, and the flow relation is rep-
resented by the arcs. The black dots represent tokens, and
the initial token configuration represents the initial mark-
ing. In the sequel, these notations will be kept. For a place
(transition)x, �x andx� denote the preset and postset ofx,
that are referred to as the set of input and output transitions
(places) ofx, respectively.

Two transitions areconflictingor are said to bein conflict
when they share common input places. In amaximal con-
flict(ing) set(MCS) all transitions that are in conflict with a
transition of the set, are also included in the set.

Definition 2.2 Let t; u 2 T .
conflict(t; u) � (�t \ �u 6= ;)

mcs(T ) � fT 0j8t 2 T n T 0 : 8u 2 T 0 : :conflict(t; u)g

Besides the structure of a Petri net, there is also an as-
sociated dynamics. Astateor marking, is the mapping of
the places to the natural numbersP ! N, indicating the
number of tokens in the places. Transitions between states
are dictated by the following firing rule. In the sequelMP

denotes the set of all states (markings) of a Petri net with
jP j places.

Definition 2.3 (Enabling Rule) Let t 2 T andm 2MP .
enabled(t;m) � 8p 2 �t : m(p) � 1

Definition 2.4 (Firing Rule) Let t 2 T , m 2 MP and
enabled(t;m) = true.

nextstate(m(p); t) =

8<
:

m(p)� 1 if p 2 �t n t�
m(p) + 1 if p 2 t � n � t

m(p) otherwise

Definition 2.3 states that a transitiont can fire if all its
input places contain at least one token. Definition 2.4 states
that firing oft removes one token in all its input places and
adds a new token in all its output places.

The set of all reachable states is represented in areacha-
bility graph, as shown in Figure 1(b). In such a reachability
graph all vertices correspond to a valid marking of the Petri

net and all arcs correspond to a transition from one marking
to another due to firing of some transition in the net. The
reachability graph of a Petri netN , denoted asRG(N), can
then be interpreted as the reflexive transitive closure of the
next-state relation defined in Definition 2.4.

Two important properties of Petri nets arelivenessand
safeness. Liveness concerns the question whether a transi-
tion can ever be fired, and is opposed to deadlock. Safeness
means that a placeshould notcontain more than one token
at any time. In this paper only safe Petri nets are considered.

2.2 Conventional Analysis

A straightforward approach to verification is to explic-
itly enumerate all reachable states. Reachability analysis,
also known as exhaustive simulation or state space gener-
ation is indeed a powerful formal method for detecting er-
rors in concurrent and distributed systems that have a finite
state space. A deadlock is then said to occur when there
is a reachable state from which the system (Petri net) can-
not perform any action (transition). This approach however
suffers from thestate explosion problem, that is an exponen-
tial increase in the number of reachable states. The source
of this exponential complexity are concurrently enabled ac-
tions (transitions). In Petri net terms this is illustrated in
Figure 1 by means of an example.
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Figure 1: (a) Marked Petri net (b) Reachability graph

In the example of Figure 1(a), a simple Petri net is de-
picted residing in an initial state or marking where tran-
sitionsA, B andC are enabled. In this state, all three
transitions can be fired separately, each firing resulting in
a new state. In each of these new states, the two other tran-
sitions remain enabled and can be fired, in turn leading to
two new states. In this example, we then end up with3!

different firing sequences orinterleavings, as can be seen in
Figure 1(b). This factorial blow up causes the state space
explosion problem: especially for large systems that exhibit
lots of concurrency, the state space can be too large with re-
spect to the time and other resources needed to inspect all
states in the space.



2.3 Partial Order Analysis

To verify the liveness properties of a Petri net, it can
be shown [6] that it is not necessary to build the complete
reachability graph for a net. Instead of constructing all in-
terleaving execution sequences, only a few are needed to
extract the external behavior and these still cover the in-
ternal non-determinism. Continuing with the example of
Figure 1(a), suppose we are in the (depicted) initial state
where transitionsA, B, C are all enabled. Instead of firing
all 3 transitions, in this state it is only necessary to pursue
with one transition, at least if liveness is the main concern
of our analysis. Indeed, the firing ofA will keep transitions
B andC enabled. In turn, in the next state it is sufficient
to fire onlyB, for example. Finally, we only have selected
one path from the full reachability graph. So we went from
N ! factorial interleaving toN linear interleavings, which is
quite substantial.

The method can also be lifted to transitions that are in
conflict, that is transitions that share common input places.
Suppose in a certain state,T 0 is a maximal (i.e. it cannot be
extended) set of conflicting transitions that are all enabled.
Then it is clear, that from this particular state, it is sufficient
to fire only those transitions belonging toT 0, ”anticipating”
all other enabled transitions. Indeed, the latter transitions
remain enabled after firing the transitions ofT 0, therefore
not affecting the liveness properties of the net.

The method has been presented in different variants [6, 9,
14]; they are all based on the observations described above.
By using partial-order semantics for state-transition based
systems, they abstract from the interleaving semantics. Al-
though originally presented to preserve liveness properties,
the method can also be used to deducesafenessproperties
of the net and is even partially applicable to model checking
as described in [6, 9].

(a) (b)

A0 B0 1A 1B NA NB

2B

A0 B0

1A
1A1B 1B

2A 2A 2A 2A2B 2B 2B

Figure 2: (a) Petri net (b) “Anticipated” reachability graph

Problem. These methods, however, still have problems
with concurrently enabledconflict places. Suppose a
marked Petri net as shown in Figure 2. In this example Petri
net, we haveN pairs of conflicting transitions (the marked
places are called conflict places). For this application, the
partial-order methods compute the reachability graph de-
picted in Figure 2(b). It first selects and firesfA0; B0g

— i.e. a maximal set of conflicting transitions that is en-
abled — thenfA1; B1g, and so forth. Although the com-
puted reachability graph is significantly smaller than the full

reachability graph it still results in a number of states equal
to 2N+1 � 1.

From all this, it is clear that it would be desirable to not
restrict the analysis to firing each transition sequentially, as
with classical firing rules of Petri nets. Instead we would
like to order the transitions, and evaluate points at which
series of transitions can be fired, since we do not need to
consider intermediate steps, but only final reachability in-
formation.

2.4 Symbolic Reachability Analysis

Another approach to reachability analysis is to use Or-
dered Binary Decision Diagrams (OBDD’s) [2] to repre-
sent the state graph symbolically. OBDD’s are known to
be compact representations for symmetric functions. For
applications with non-linear communication patterns, how-
ever, symbolic techniques generally perform worse [4], as
the non-linear structure makes it difficult to find a good vari-
able ordering for the OBDD’s. Thus, the state explosion
problem can still be present, especially as the encoding of
the transition function is based on the interleaving seman-
tics.

Recently, an approach was described [1] that incorpo-
rated partial-order reduction into an OBDD-based symbolic
reachability analysis. While this method improves over
standard symbolic reachability analysis, it still requires an
efficient encoding of the state space, which may not ex-
ist. We therefore believe that [1] is complementary to
our method that aims to address specifications whose state
space cannot be efficiently encoded.

3 Generalized Partial Order Analysis

In this section the key ideas of our generalized partial-
order analysis approach are elaborated in detail. Section 3.1
presents an intuitive overview. Section 3.2 formally defines
Generalized Petri nets, the working vehicle of our analy-
sis approach. Section 3.3 discusses the analysis procedure
itself.

3.1 Rationale

As mentioned in the discussion on the partial-order
methods, for the Petri net shown in Figure 2, the firing rules
of classical Petri nets restrict the analysis to firing each tran-
sition sequentially. In this work, we overcome this problem,
by enumerating conflicting paths simultaneously. Simply
putting a token in the output places of the fired transitions
will not suffice, as this would lead to execution sequences
that are not possible in the “original” reachability graph,
possibly hiding the presence of deadlock situations. It is
clear that the representation of the markings has to be mod-
ified to distinguish the different conflicting paths. In this pa-
per we therefore present a modified Petri net model, called
aGeneralized Petri Net (GPN), that is clarified in Figure 3.
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Figure 3: Successive states of a Generalized Petri Net (a)
initial state (b) after firingA andB simultaneously (c) after
firing C

In Figure 3(a) a simple GPN is shown; placep1 is filled
with a “white” token, and the transitionsA, B,C andD are
tagged with the colors “red”, “blue”, “green” and “yellow”,
respectively1. In this initial state, bothA areB are enabled,
and can fire simultaneously to arrive in the state depicted in
Figure 3(b). TransitionA removes the white token from its
input placep1, “paints” it red, and moves it to each of its
output places. Thus,p2 andp3 get filled with a red token.
Similarly, transitionB removes the white token from its in-
put placep1, paints it green, and moves it to its output place
p4. The input places ofD, viz. p3 andp4, contain tokens
with mutualconflicting colors(as they correspond to con-
flicting transitions). Thus, we don’t allow transitionD to
fire. TransitionC, on the other hand, can fire. This results
in the state depicted in Figure 3(c). AsC is the only tran-
sition that is fired at this stage, there is no need for an extra
coloring byC; the firing ofC removes a red token from its
input placesp2 andp3, and puts a red token in its output
placep5. Note that the states, obtained as such, capture all
the information that is related to the “original” reachability
graph.

This approach is compatible with the techniques of the
partial-order methods described in Section 2.3. Suppose the
example Petri net shown in Figure 2(a). Following the rea-
soning of the partial-order methods, in this state it is suf-
ficient to fire only those transitions that belong to one of
theN concurrently enabled conflicting sets. In turn, in the
next states, another conflicting set of transitions can then
be selected. When combined with our approach of firing
a conflicting set of transitions simultaneously, this comes
down to only enumerating one possible interleaving, or al-
ternatively, firing all conflicting sets at the same time. For
this example, we then go from2N+1

�1 to only2 computed
states!

In the following, this intuitive introduction to General-
ized Petri nets is more formalized.

3.2 Generalized Petri Nets

In Section 3.1 we gave an intuitive introduction to Gen-
eralized Petri Nets (GPNs). We explained the GPN model

1Generalized Petri nets should not be confused with Colored Petri
Nets [15]. The latter are used in a different context. The notion of col-
ors is introduced just to convey the idea.

in terms of places that are marked with colored tokens. In
a formal setting, these colors will be represented bytransi-
tion sets, to distinguish the different conflicting paths. We
also indicated that colors may be conflicting. For example,
in Figure 3(d) we suggested a conflicting color relation, that
states that the colors “red” and “green” are indeed conflict-
ing. In the following, this color relation will be represented
– in the reverse sense – by aset of valid transition sets.

Definition 3.1 (Generalized Petri Net) A Generalized Pe-
tri Net is a tuplehP; T; F;m0; r0i with P \ T = ;, F �

(P � T )[ (T �P ), m0 : P ! 22
T

the initial marking and
r0 � 22

T

the valid transition sets.

Besides the structure of the GPN there is also an associ-
ated dynamics. Astateis a tuplehm; ri wherem denotes
themarkingor the mapping of the places to the sets of tran-
sition setsP ! 22

T

, andr denotes the set of allvalid tran-
sition sets. In the sequelP represents a set of places,T a
set of transitions, andSTP the set of all states of a GPN with
jP j places andjT j transitions.

{{A}} {{B}}

A B

{{A},{B}}

p3 

p0

p1

{}

p2

Figure 4: Marking of GPN after firing A and B simultane-
ously

To clarify the above, imagine a example GPN marking
as illustrated in Figure 4. In this example, a GPN marking
or state is shown after firingA andB simultaneously. The
placesp2 andp3 get filled withffAgg andffBgg, respec-
tively, while placep0 becomes empty — or better contains
an empty set. The need for a set of sets notation is clear
when looking at placep1. This place has two incoming
paths, and as a result gets “filled” with two setsfAg and
fBg. Associated with this depicted state, there is also a set
of valid setsr = ffAg; fBgg. For this example,fA;Bg
will not be a valid set – and therefore not included inr –
becauseA andB are conflicting transitions. Intuitively, a
valid set of transitions denotes a set of transitions that can
“act” together to enable and fire a certain transition. Imag-
ine a transitionE that hasp2 andp3 as its input places. The
conflicting transitionsA andB cannot act together to fire
transitionE, and thereforefA;Bg is not included in the set
of valid sets. This information can then be used to “guard”
the enabling of transitionE, effectively preventing the latter
transition from being fired. The classical PN enabling con-
dition and firing rules have to be changed as such, as will
become clear below.

Let us return to Figure 3. The actions of firingA andB
simultaneously, and of firingC, are treated differently. In



the former case, the tokens that arrive in the output places
ofA andB are colored, as to distinguish their mutual exclu-
sive origin. In the latter case, no extra coloring is performed,
as we don’t need to distinguish from a conflicting transi-
tion that may be fired at the same time (transitionD cannot
fire!). Thus, for the firing ofC, we can apply a straightfor-
ward extension of the “original” PN firing rule: a red token
is removed from each of its input placesp2 andp3, and put
into its output placep5. From all this, it is clear, that in our
framework we need two firing semantics, namely amultiple
firing semanticsand asingle firing semantics. These will be
explained hereafter.

Single Firing Semantics. According to the single firing
semantics a transition can fire once it issingle enabled. Re-
member from the above discussion, that the marking of a
place in a GPN can be interpreted as to represent all pos-
sible histories of transition firings that lead to the involved
marking. We then say a transition is single enabled when its
input places contain a “common” history, or alternatively,
when the intersection of the transition sets, contained in its
input places, is not empty. If so, the firing of that transition
will remove that common history from its input places, and
put it in its output places.

Definition 3.2 (Single Enabling Rule) Let hm; ri 2 STP ,
t 2 T . s enabled(t; hm; ri) �

T
p2�tm(p) \ r

Suppose a GPN in a state depicted in Figure 5(a).r de-
notes the set of valid transition sets; its derivation will be
described later in more detail. For now, it suffices to know
that fA;Bg is not a valid set becauseA andB are con-
flicting transitions. TransitionB is not single-enabled as
s enabled(B;m; r) = fg. TransitionA, on the contrary,
is single-enabled ass enabled(A; hm; ri) = ffAgg. Thus,
transitionA can fire to go to the next state, according to the
single firing rule.

Firing of A

{{A}} {{B}}p0 p1 p2

p3 p4

A B

{} {} {{A}}

{{B}}p0 p1 p2

p3 p4

A B

{}

{{A},{B}} {{B}} {}

r = {{A},{B}}

(a) (b)

Figure 5: Illustration of the single firing semantics. (a) Ex-
ample GPN markingm with valid setsr = ffAg; fBgg (b)
Next markingm0 after firing transitionA.

Definition 3.3 (Single Firing Rule) Let s = hm; ri 2 STP ,
t 2 T . s update(m; hm; ri) � hm0; ri

where

m0(p) =

8<
:

m(p) n s enabled(t; s) if p 2 �t n t�
m(p) [ s enabled(t; s) if p 2 t � n � t
m(p) otherwise

Continuing with the example of Figure 5(a), ifA fires we
arrive in a state depicted in Figure 5(b). Following defini-
tion 3.3 the sets enabled(A; hm; ri) = ffAgg is removed
from its input placesp0 andp1 and added to its output place
p3. Note that this firing rule is still “consistent” with the
classical PN firing rule, defined in Definition 2.4. Imag-
ine, for example, two classical PN markings by placing in
Figure 5(a) a token in each place containingfAg or fBg,
respectively. This results in the two classical PN markings
shown in Figure 6(a). An analogousmappingof the GPN
marking depicted in Figure 5(b), results in the two classical
PN markings shown in Figure 6(b). Note that these mark-
ings are exactly those markings that could be reached from
the markings shown in Figure 6(a) by firing transitionA us-
ing the classical PN firing rule. We can formally define the
abovemappingas follows.

Definition 3.4 Let hm; ri 2 SPT . mapping(hm; ri) �

fm0 2 2P j9v 2 r : m0 = fp 2 P jv 2 m(p)gg

Note that the marking of a safe PN can be represented
by a set of placesm, wherepi 2 m indicates that there
is a token inpi. As a result, the mapping function can be
interpreted as tomapbetween a state of a GPN and a set
of states of a safe PN with the same structure. For Fig-
ure 5, this givesmapping(hm; ri) = ffp0; p1g; fp0; p2gg
andmapping(m0; r) = ffp3g; fp0; p2gg.

Firing of A

A B

A B

A B

A B

Figure 6: Classical PN markings “equivalent” to (a) Fig-
ure 5(a) (b) Figure 5(b)

Multiple Firing Semantics According to the multiple fir-
ing semantics a set of transitions - that may be conflicting -
can be fired simultaneously, provided that each transition is
multiple enabled.

Definition 3.5 (Multiple Enabling Rule) Lets = hm; ri 2

STP , t 2 T andT 0 � T .
m enabled(t; s) � fv 2

T
pi2�t

m(pi)jt 2 vg

m enabled(T 0; s) � 8t 2 T 0 : m enabled(t; s) 6= ;

Suppose a GPN in a state depicted in Figure 7(a). The
derivation of the setr0 of valid transition sets will be de-
scribed later in more detail. For now, it suffices to know
that fA;Bg and fC;Dg cannot be included inr0, be-
causeA andB, as well asC andD are conflicting transi-
tions. We say a transitiont is multiple enabledin a state
hm; ri if m enabled(t; hm; ri) 6= ;. TransitionsA and



B are then multiple enabled in the depicted statehmG
0 ; r0i

asm enabled(A;mG
0 ; r0) = ffA;Cg, fA;Dgg 6= ;, and

m enabled(B; hmG
0 ; r0i) = ffB;Cg; fB;Dgg 6= ;. Note

that when a transition is multiple enabled, it is also single
enabled (the reverse, however, is not always true). Thus, in
the statehmG

0 ; r0i bothA andB are multiple enabled, and
can be fired simultaneously, according to themultiple firing
rule.

(a) (b)

A B
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A B
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C D
p3
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{{A,C},{B,D}}

G
m< >r,2 2state 

r2 {{A,C},{B,D}}=

Figure 7: Subsequent markings of a GPN with maxi-
mal conflicting setsfA;Bg and fC;Dg.(a) initial state
hmG

0 ; r0i (b) hmG
1 ; r1i = m update(hmG

0 ; R0i; fA;Bg)
(c) hmG

2 ; r2i = m update(hmG
1 ; R1i; fC;Dg)

Definition 3.6 (Multiple Firing Rule) Let s = hm; ri 2

STP , andT 0 2 mcs(T ) such thatm enabled(T 0; s) = true.
m update(hm; ri; T 0) � hm0; r0i
wherem0(p) =8>>>>>>>>>>>><
>>>>>>>>>>>>:

(m(p) n
[

t2T 0\p�

m enabled(t; s)) \ r0 p 2 �T 0 n T 0�

(m(p) [
[

t2T 0\�p

m enabled(t; s)) \ r0 p 2 T 0 � n � T 0

(m(p) n
[

t2T 0\p�

m enabled(t; s)

[

[
t2T 0\�p

m enabled(t; s)) \ r0 p 2 �T 0 \ T 0�

(m(p) \ r0) otherwise

r0 =
[

t2(TnT 0)

s enabled(t; s) [
[
t2T 0

m enabled(t; s)

Continuing with the example of
Figure 7(a), the simultaneous firing of transitionsA andB
movesm enabled(A; hmG

0 ; r0i) (= ffA;Cg; fA;Dgg) and
m enabled(B; hmG

0 ; r0i) (= fB;Cg; fB;Dgg) from their
common input placep0, to their output placesp1 andp2, re-
spectively. As such, we arrive in the statehmG

1 ; r1i depicted
in Figure 7(b). The updating of the set of valid sets has no
effect in this case, asr1 = r0. As with the single firing se-
mantics, one can also observe the consistency with classical
PN dynamics. Indeed, asmapping(mG

0 ; r0) = ffp0; p3gg

markingmG
0 can be mapped to the marking of a classical

(safe) PN where placesp0 and p3 contain a token. The
markingmG

1 , however, can be mapped to 2 classical PN
markingsmapping(mG

1 ; r1) = ffp1; p3g; fp2; p3gg. Note

that the latter markings can be reached fromffp0; p4gg by
separately firingA andB using the classical PN firing rule.

The same observation can be made when going to the
next state; transitionsC andD are both multiple enabled
in statehmG

1 ; r1i and can be fired simultaneously to go
to the next-statehmG

2 ; r2i, depicted in Figure 7(c). Due
to the extra conditioning ofr1 by s update, the new set
of valid sets now becomesr2 = ffA;Cg; fB;Dgg. As
a result,mapping(mG

2 ; r2) = ffp5; p3gg, and the new
statehmG

2 ; r2i can be mapped to the marking of a classi-
cal (safe) PN where only placesp5 contains a token; i.e.
the marking that can be reached frommapping(mG

1 ; r1) =

ffp1; p3g; fp2; p3gg by firing D andE using the classical
PN firing rule. The extra conditioning of the set of valid
sets rules outfA;Dg andfB;Cg, in fact modeling an ”ex-
tended conflict” relation betweenA andD, and between
B andD, respectively. Indeed, ifA(B) precedesC(D)
andC conflictswith D, thenA(B) conflicts withD(C) and
fA;Dg(fB;Cg) cannot be included in any valid set.

3.3 Analysis Procedure

Suppose now a safe classical PNN = hP; T; F;m0i

and a Generalized Petri net with the same structureNG =

hP; T; F;mG
0 ; r0i with

mG
0 (p) =

�
r0 if p 2 m0

fg otherwise
r0 = fv 2 2T j8t; u 2 T : conflict(t; u)) ft; ug 6� vg

then it is clear thatmapping(mG
0 ; r0) = fm0g and no two

conflicting transitions can be part of any valid set. One can
then proceed with the reachability analysis as follows. In
statehmG

0 ; r0i we search for candidate Maximal Conflict-
ing Sets (MCS’s). A candidate MCST 0 must be multiple
enabled, and firingT 0 will not disable any other MCS that
was already multiple enabled, as well as any other transition
t 62 T 0 that was single enabled. As a result, the same reduc-
tion techniques of the partial-order methods can be applied:
selecting only one interleaving sequence, or alternatively,
firing all candidate MCS’s at the same time and postponing
the possible firing of the other transitions to a future state.
Moreover, one is guaranteed that the reached state can be
mapped to a set of states of the ”original” reachability graph
RG(N).

If in state hmG
0 ; r0i no candidate MCS’s can be found,

one has to fall back on the single firing semantics and again
apply partial-order reductions, if possible. Similarly, with
the single firing rule, one is guaranteed to be ”in track” with
classical PN dynamics.

The same reasoning applies to all next reachable states.
By induction, one can then conclude that the following
algorithm2 computes enough of the reachable states of a

2As to not clutter the algorithm, we left out the code that checks a.o.
that the firing of an enabled transition is not postponed “forever”.



GPN to decide about the behavior of a safe PN with the
same structure.

A property that is often checked for is the freedom of
deadlock. In this framework, the definition of a deadlock is
characterized by :deadlock(hmG; ri) ,

9m 2 mapping(mG; r) : 8t 2 T : :enabled(t;m)

Effectively, this boils down to checking upon

X
t2T

s enabled(t; hm; ri) 6= r

Algorithm Generalized Partial-Order Reachability Analysis

global: RG=� reachability graph�=

reachability-graph (N, m0)
in: a tuple N =h P, T, Fi, a marking m0 such thath P, T, F, m0 i is a safe
Petri net
begin

let mG

0
(p) =

n
r0 if p 2 m0

fg otherwise
let r0 = fv 2 2T j8t1; t2 2 T : conflict(t1; t2) ) ft1; t2g 6� vg

let s0 = h mG

0
, r0 i

RG = [ f s0 g , ;, s0 ]
reach (N, s0)
end

reach (N, s)
in: a tuple N =h P, T, Fi, a state s =h m, r i
begin
let single-enabled-trans =f t 2 T j s enabled(t, s)g
Search for candidate-mcs

if
[
t2T

s enabled(t,s)6= r

then report deadlock possibility at state s
else ifcandidate-mcs6= ;

then multiple-execute (N, s, candidate-mcs)
else if9 T’ � single-enabled-trans: T’2 mcs(T))

then forall t 2 T’ do
single-execute(N, s, t)

od
else forall t 2 single-enabled-transdo

single-execute (N, s,ftg)
od

fi
fi

fi
end

multiple-execute (N, s, mcs)
in: a tuple N =h P, T, Fi, a state s =h m, r i, a set mcs of
maximal conflicting sets that are multiple enabled in state s
begin

let T’ =
[

Ti2mcs

Ti

let s’ = m update(s, T’)
add (s, T, s’) to RG
if s’ 62 RG
then reach (N, s’)
fi
end

single-execute (G, s, t)
in: a net N =h P, T, F,i, a state s =h m, r i, a transition t that is single
enabled in state s
begin
let s’ = s update (s, t)
add (s, t, s’) to RG
if s’ 62 RG
then reach (N, s’)
fi
end

4 Implementation and Results

The techniques presented in this paper have been im-
plemented in a tool, calledJULIE, in about9000 lines of
C code. To assess the viability of our approach, we have
carried out a number of experiments that suffer from the
state explosion problem. The analyzed examples were the
non-serialized version of the well-known Dining Philoso-
phers Problem (NSDP) [6], the Asynchronous Arbiter Tree
(ASAT) [1], the Overtake Protocol (OVER) [4], and Read-
ers and Writers (RW) [4].

To compare with state-of-the-art verification tools, we
have chosen SPIN extended with the Partial-Order Pack-
age (SPIN+PO) [8], and the Symbolic Model Verifier
(SMV)(Release 2.4.4) [10], as representatives of the partial-
order methods and the symbolic techniques, respectively.
We used both packages, as well as our prototype General-
ized Partial Order Analysis tool, to test the examples for
deadlock situations. However, obtained results are also
valid for safety checks, since the verification of a safety
property can always be reduced to a check for deadlock [9].
A numeric overview of the results is shown in Table 1.

In Table 1 the number of states of the complete reacha-
bility graph, the number of states of the reachability graphs
derived using (generalized) partial-order analysis, as well
the peak BDD sizes encountered during symbolic reacha-
bility analysis, are listed for various instances of the param-
eterized examples. CPU times, measured on a HP K260
with 896 MB RAM, are also included.

For NSDP, ASAT and OVER, generalized partial-order
analysis outperforms both SPIN+PO and SMV. A drastic
improvement is observed for NSDP and ASAT. For NSDP
3 states are sufficient to detect all deadlock situations, inde-
pendent of the number of philosophers. As can be observed,
CPU times increase linearly with problem size.

For RW, generalized partial-order analysis performs bet-
ter than SPIN+PO, but slightly worse than SMV. This is be-
cause RW exhibits a lot of conditional behavior where non
of the classical partial-order reduction techniques can be ap-
plied – this is also visible in the reduced state space which
equals the complete state space. For this problem, OBDD’s
apparently provide an efficient encoding of the state space.



Table 1: Results of Generalized Partial Order Analysis (GPO)

Problem(size) States SPIN+PO SMV GPO
States Time(s) Peak BDD-size Time (s) States Time(s)

NSDP(2) 18 12 0:08 1068 0:04 3 0:01

NSDP(4) 322 110 0:13 10018 0:22 3 0:03

NSDP(6) 5778 1422 1:07 52320 8:97 3 0:04

NSDP(8) 103682 19270 25:62 687263 1169:30 3 0:05

NSDP(10) 1:86 � 106 239308 453:16 > 24 hours 3 0:06

ASAT(2) 88 33 0:08 1587 0:05 8 0:01

ASAT(4) 7822 192 0:11 117667 79:61 14 0:06

ASAT(8) 1:58 � 106 3598 1:12 > 24 hours 23 0:35

OVER(2) 65 28 0:09 3511 0:08 6 0:01

OVER(3) 519 107 0:13 10203 0:19 7 0:02

OVER(4) 4175 467 0:44 11759 0:64 8 0:04

OVER(5) 33460 2059 2:05 24860 3:59 9 0:06

RW(6) 72 72 0:06 3689 0:09 2 0:05

RW(9) 523 523 1:51 9886 0:16 2 0:20

RW(12) 4110 4110 16:89 10037 0:28 2 0:61

RW(15) 29642 29642 194:33 10267 0:43 2 1:50

5 Conclusions

In this paper we presented a novelgeneralized partial-
order analysistechnique that can enumerate conflicting
paths simultaneously, thus extending the partial-order tech-
niques [6, 9, 14] to tackle also the explosion problem due
to concurrently marked conflict places. The approach is
based on aGeneralized Petri Netmodel that has a modified
marking representation to distinguish the different conflict-
ing paths.

The experimental results are very promising. As illus-
trated in Section 4, for certain examples one can demon-
strate exponential reduction in complexity. The method has
been applied to some real-life applications in embedded
system design (e.g. a Quadrature Amplitude Modulation
modem), where it also provided significant gain [16].

Recently, a number of interesting methods [7, 13] have
been proposed for the efficient timing verification of con-
current systems, modeled asTimed Petri nets. We are cur-
rently investigating how these methods can be leveraged to
our work.
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