Efficient Verification using Generalized Partial Order Analysis

Steven VercauterénDiederik Verkest, Gjalt de Jonfjand Bill Lin*
* IMEC Laboratory, Kapeldreef 75, B-3001 Leuven, Belgium
T Alcatel Telecom, F.Wellesplein 1, B-2018 Antwerpen, Belgium
! ECE Department, University of California, San Diego, La Jolla, CA

Abstract The second source is due to concurrently marked con-
flict places. A conflict place specifies a choice in a Petri
This paper presents a new formal method for the efficient net. In conventional analysis, each branch of a conflict place
verification of concurrent systems that are modeled using amust be traversed independently. When there are multiple
safe Petri net representation. Our method generalizes uporonflict places marked concurrently, all possible combina-
partial-order methods to explore concurrently enabled con-tions of paths must be enumerated, which has an exponen-
flicting paths simultaneously. We show that our method cantial complexity with respect to the number of concurrently
achieve an exponential reduction in algorithmic complexity marked conflict places. This source of complexity is not

without resorting to an implicit enumeration approach. avoided by partial-order analysis techniques, thus leaving
many problem instances still intractable.
1 Introduction In this paper, we describe generalized partial-order

analysistechnique that can enumerate conflicting paths si-
Most modern embedded systems are notoriously diffi- multaneously, thus extending the partial-order anal_ysis ap-
cult to design. Despite utmost care exercised by designersProach to tackle also the second source of combinatorial
initial design specifications often contain subtle, difficult to €XPlosion. Our technique is based on a modified represen-
detect, errors that result from unanticipated interactions be-{&tion of markings to distinguish the different conflicting
tween the concurrent parts. Traditional analysis methodsPaths. The firing rules have been modified in combination

such as simulation are often inadequate for uncovering suchith the partial-order analysis technique to enumerate con-
errors, especially those that only occur under rare condi-flicting paths simultaneously. This new analysis technique

tions. Thus, automated formal verification tools are becom- €N demonstrate exponential reduction in complexity, as il-
ing an indispensable part of a designer’s tool-box. lustrated by the examples shown in Section 4.

In [16] we explained how both specification and imple- Another tec_hmque fo_r tackllng. the comblnatorlal e?<plo-
mentation of an embedded system can be formally repre_S|on problem is symbolic an.alys_|s_. Symbolic analysis ap-
sented by the Petri net formalism [12]. In this paper, we Proaches [2, 3, 5, 11] that implicitly enumerate the state
will focus on a novel formal method for efficiently verify- SPaceé have been used to tackle the complexity problem;
ing concurrent systems modeled as a Petri net. Convenlhey are effective when the state space being traversed can
tional analysis for Petri nets mainly involves a reachability P€ €fficiently encoded using binary decision diagrams. We

analysis of the underlying state space. However, there are®€li€ve this approach is complementary to our method that
two primary sources of combinatorial explosion that makes &MS to address specifications whose state space cannot be

this conventional approach intractable for many problem in- fficiently encoded. , ,
stances. The remainder of this paper is organized as follows.

The first source is due to concurrently enabled actions. S€Ction 2 reviews the basic definitions and properties of

Due to the underlying unbounded delay assumption of PetriP€fi néts, as well as conventional, partial-order and sym-
nets, concurrently enabled actions may fire in any order. bolic analysis techniques. Section 3 presents our general-

This interleaving semantics requires the analysis to enumer

ized partial-order analysis approach. Section 4 discusses
ate all possible orderings, which has a factorial complexity the implementation aspects and the results. Conclusions are
with respect to the number of concurrently enabled actions.

drawn in Section 5.
To circumvent this problem, partial-order analysis (also re-
ferred to as stubborn-set or anticipation analysis) techniques2 Background
have been developed where it has been shown that only one
interleaved sequence needs to be analyzed for deadlock and In this section we provide some background material
liveness checks [6, 9, 14]. necessary for the exposition of our work. In Section 2.1 we



review basic definitions and properties of (classical) Petri net and all arcs correspond to a transition from one marking
nets [12]. In Section 2.2 we discuss a straightforward ap-to another due to firing of some transition in the net. The
proach to verification and the problems involved. In Sec- reachability graph of a Petri nét, denoted a®tG(N), can

tion 2.3 partial-order analysis techniques are discussed, ashen be interpreted as the reflexive transitive closure of the
well as their limitations. In Section 2.4 the symbolic tech- next-state relation defined in Definition 2.4.

niques are elaborated. Two important properties of Petri nets dieenessand
) safenessLiveness concerns the question whether a transi-
2.1 PetriNets tion can ever be fired, and is opposed to deadlock. Safeness
means that a placghould notcontain more than one token
Definition 2.1 (Petri Net) A Petri net is a tuple¥ = at any time. In this paper only safe Petri nets are considered.

(P,T,F,mo),withPNT =0, F C(PxT)U(T x P)
andmg : P — N.

_— 2.2 Conventional Analysis
In the above definitio® denotes a set of placeE,a set

of transitions,F' a flow relation andng an initial marking.
In Figure 1(a), a simple Petri net (PN) is shown. The places A giraightforward approach to verification is to explic-
are depicted with the open circles, the transitions are de-jyy enumerate all reachable states. Reachability analysis,
picted with the annotated bars, and the flow relation is rep- 5jso known as exhaustive simulation or state space gener-
resented by the arcs. The black dots represent tokens, angyio, is indeed a powerful formal method for detecting er-
the initial token configuration represents the initial mark- 45 iy concurrent and distributed systems that have a finite
ing. In the sequel, these notations will be kept. For a placegiate space. A deadlock is then said to occur when there
(transition)z, e andxe denote the preset and postserpf g 5 reachable state from which the system (Petri net) can-
that are referred to as the set of input and output transitions;, o perform any action (transition). This approach however
(places) ofr, respectively. , , _ suffers from thestate explosion problerthat is an exponen-
Two transitions areonflictingor are said to b conflict i) increase in the number of reachable states. The source

when they share common input places. Imaximal con- ¢ this exponential complexity are concurrently enabled ac-
flict(ing) se(MCS) all transitions that are in conflictwitha  jons (transitions). In Petri net terms this is illustrated in
transition of the set, are also included in the set. Figure 1 by means of an example.

Definition 2.2 Lett,u € T.

conflict(t,u) = (et N ou % () Petri net State Graph
mes(T) = {T'|Vt e T\ T' : Yu € T' : =conflict(t,u)}

Besides the structure of a Petri net, there is also an as- pl p2 p3
sociated dynamics. Atateor marking, is the mapping of

the places to the natural numbdPs — N, indicating the a b ¢

number of tokens in the places. Transitions between states

are dictated by the following firing rule. In the sequép

denotes the set of all states (markings) of a Petri net with p4 pS p6

|P| places.

Definition 2.3 (Enabling Rule) Lett € T'andm € Mp. Figure 1: (a) Marked Petri net (b) Reachability graph

enabled(t,m) =Vp € ot : m(p) > 1

Definition 2.4 (Firing Rule) Lett € T, m € Mp and In the example of Figure 1(a), a simple Petri net is de-

enabled(t,m) = true. picted residing in an initial state or marking where tran-
m(p) &1 ifpcet)\te sitions A, B and C' are enabled. In this state, all three

nextstate(m(p),t) = ¢ m(p)+1 fpecte\et transitions can be fired separately, each firing resulting in
m(p) otherwise anew state. In each of these new states, the two other tran-

sitions remain enabled and can be fired, in turn leading to

Definition 2.3 states that a transitiorcan fire if all its two new states. In this example, we then end up 8ith
input places contain at least one token. Definition 2.4 statesdifferent firing sequences arterleavingsas can be seen in
that firing oft removes one token in all its input places and Figure 1(b). This factorial blow up causes the state space
adds a new token in all its output places. explosion problem: especially for large systems that exhibit

The set of all reachable states is representedéacha- lots of concurrency, the state space can be too large with re-
bility graph, as shown in Figure 1(b). In such a reachability spect to the time and other resources needed to inspect all
graph all vertices correspond to a valid marking of the Petri states in the space.



2.3 Partial Order Analysis reachability graph it still results in a number of states equal
to 2Vl 1.

To verify the liveness properties of a Petri net, it can From all this, it is clear that it would be desirable to not
be shown [6] that it is not necessary to build the complete restrict the analysis to firing each transition sequentially, as
reachability graph for a net. Instead of constructing all in- with classical firing rules of Petri nets. Instead we would
terleaving execution sequences, only a few are needed tdike to order the transitions, and evaluate points at which
extract the external behavior and these still cover the in- series of transitions can be fired, since we do not need to
ternal non-determinism. Continuing with the example of consider intermediate steps, but only final reachability in-
Figure 1(a), suppose we are in the (depicted) initial stateformation.
where transitionsi, B, C are all enabled. Instead of firing
all 3 transitions, in this state it is only necessary to pursue 2.4 Symbolic Reachability Analysis
with one transition, at least if liveness is the main concern
of our analysis. Indeed, the firing df will keep transitions Another approach to reachability analysis is to use Or-
B andC enabled. In turn, in the next state it is sufficient dered Binary Decision Diagrams (OBDD's) [2] to repre-
to fire only B, for example. Finally, we only have selected sent the state graph symbolically. OBDD’s are known to
one path from the full reachability graph. So we went from be compact representations for symmetric functions. For
N factorial interleaving taV linear interleavings, which is  applications with non-linear communication patterns, how-
quite substantial. ever, symbolic techniques generally perform worse [4], as

The method can also be lifted to transitions that are in the non-linear structure makes it difficult to find a good vari-
conflict, that is transitions that share common input places.able ordering for the OBDD’s. Thus, the state explosion
Suppose in a certain stafE’ is a maximal (i.e. it cannotbe  problem can still be present, especially as the encoding of
extended) set of conflicting transitions that are all enabled.the transition function is based on the interleaving seman-
Thenitis clear, that from this particular state, it is sufficient tics.
to fire only those transitions belonging®®, "anticipating” Recently, an approach was described [1] that incorpo-
all other enabled transitions. Indeed, the latter transitionsrated partial-order reduction into an OBDD-based symbolic
remain enabled after firing the transitions®f, therefore reachability analysis. While this method improves over
not affecting the liveness properties of the net. standard symbolic reachability analysis, it still requires an

The method has been presented in different variants [6, 9 efficient encoding of the state space, which may not ex-
14]; they are all based on the observations described abovest. We therefore believe that [1] is complementary to
By using partial-order semantics for state-transition basedour method that aims to address specifications whose state
systems, they abstract from the interleaving semantics. Al-space cannot be efficiently encoded.
though originally presented to preserve liveness properties,
the method can also be used to dedsafenesproperties 3 Generalized Partial Order Analysis
of the net and is even patrtially applicable to model checking
as described in [6, 9].
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@ ®) 3.1 Rationale

In this section the key ideas of our generalized partial-
order analysis approach are elaborated in detail. Section 3.1
presents an intuitive overview. Section 3.2 formally defines
Generalized Petri nets, the working vehicle of our analy-
sis approach. Section 3.3 discusses the analysis procedure
itself.

Figure 2: (a) Petri net (b) “Anticipated” reachability graph ~ As mentioned in the discussion on the partial-order
methods, for the Petri net shown in Figure 2, the firing rules
of classical Petri nets restrict the analysis to firing each tran-

Problem. These methods, however, still have problems sition sequentially. In this work, we overcome this problem,

with concurrently enablecconflict places Suppose a by enumerating conflicting paths simultaneously. Simply

marked Petri net as shown in Figure 2. In this example Petriputting a token in the output places of the fired transitions
net, we haveV pairs of conflicting transitions (the marked will not suffice, as this would lead to execution sequences
places are called conflict places). For this application, thethat are not possible in the “original” reachability graph,
partial-order methods compute the reachability graph de-possibly hiding the presence of deadlock situations. It is
picted in Figure 2(b). It first selects and firg¢sl,, By} clear that the representation of the markings has to be mod-

— i.e. a maximal set of conflicting transitions that is en- ified to distinguish the different conflicting paths. In this pa-

abled — then{A;, B, }, and so forth. Although the com- per we therefore present a modified Petri net model, called

puted reachability graph is significantly smaller than the full a Generalized Petri Net (GPNbhat is clarified in Figure 3.



Conflicting Color Relation
"Red" ( Q) “Green" ( @

(d)

in terms of places that are marked with colored tokens. In
a formal setting, these colors will be representedraysi-
tion sets to distinguish the different conflicting paths. We
also indicated that colors may be conflicting. For example,
in Figure 3(d) we suggested a conflicting color relation, that
states that the colors “red” and “green” are indeed conflict-
ing. In the following, this color relation will be represented

Figure 3: Successive states of a Generalized Petri Net (a)- in the reverse sense — bet of valid transition sets

initial state (b) after firingd and B simultaneously (c) after
firing C

In Figure 3(a) a simple GPN is shown; plgekis filled
with a “white” token, and the transitions, B, C' andD are
tagged with the colors “red”, “blue”, “green” and “yellow”,

respectively. In this initial state, both! are B are enabled,

Definition 3.1 (Generalized Petri Net) A Generalized Pe-
tri Net is a tuple(P, T, F,mg,ro) With PNT = (), F C
(PxT)U(T x P),mg : P — 22" the initial marking and
ro C 22" the valid transition sets.

Besides the structure of the GPN there is also an associ-
ated dynamics. Astateis a tuple(m,r) wherem denotes

and can fire simultaneously to arrive in the state depicted inthemarkingor the mapping of the places to the sets of tran-

Figure 3(b). Transitiom removes the white token from its
input placepl, “paints” it red, and moves it to each of its
output places. Thug;2 andp3 get filled with a red token.
Similarly, transitionB removes the white token from its in-
put placepl, paints it green, and moves it to its output place
p4. The input places oD, viz. p3 andp4, contain tokens
with mutualconflicting colors(as they correspond to con-
flicting transitions). Thus, we don't allow transitian to
fire. TransitionC, on the other hand, can fire. This results
in the state depicted in Figure 3(c). Asis the only tran-

sition that is fired at this stage, there is no need for an extra

coloring byC; the firing of C removes a red token from its
input placeg2 andp3, and puts a red token in its output

placep5. Note that the states, obtained as such, capture all

the information that is related to the “original” reachability
graph.
This approach is compatible with the techniques of the

partial-order methods described in Section 2.3. Suppose th
example Petri net shown in Figure 2(a). Following the rea-

soning of the partial-order methods, in this state it is suf-
ficient to fire only those transitions that belong to one of
the N concurrently enabled conflicting sets. In turn, in the

next states, another conflicting set of transitions can then

be selected. When combined with our approach of firing

a conflicting set of transitions simultaneously, this comes

down to only enumerating one possible interleaving, or al-
ternatively, firing all conflicting sets at the same time. For
this example, we then go froa?¥ +1 <1 to only2 computed
states!

In the following, this intuitive introduction to General-
ized Petri nets is more formalized.

3.2 Generalized Petri Nets

In Section 3.1 we gave an intuitive introduction to Gen-

sition setsP — 22, andr denotes the set of alialid tran-
sition sets. In the sequét represents a set of placés,a
set of transitions, and’; the set of all states of a GPN with
|P| places andT'| transitions.

HAL{B)

Figure 4: Marking of GPN after firing A and B simultane-
ously

To clarify the above, imagine a example GPN marking
as illustrated in Figure 4. In this example, a GPN marking

%r state is shown after firing and B simultaneously. The

placesp2 andp3 get filled with{{A}} and{{B}}, respec-
tively, while placep0 becomes empty — or better contains
an empty set. The need for a set of sets notation is clear
when looking at placel. This place has two incoming
paths, and as a result gets “filled” with two sétd} and
{B}. Associated with this depicted state, there is also a set
of valid setsr = {{A},{B}}. For this example{A, B}

will not be a valid set — and therefore not includedrir
becaused and B are conflicting transitions. Intuitively, a
valid set of transitions denotes a set of transitions that can
“act” together to enable and fire a certain transition. Imag-
ine a transitior¥ that hag?2 andp3 as its input places. The
conflicting transitionsd and B cannot act together to fire
transitionE, and thereford A, B} is notincluded in the set

of valid sets. This information can then be used to “guard”
the enabling of transitio&, effectively preventing the latter
transition from being fired. The classical PN enabling con-

eralized Petri Nets (GPNs). We explained the GPN modeldition and firing rules have to be changed as such, as will

LGeneralized Petri nets should not be confused with Colored Petri

Nets [15]. The latter are used in a different context. The notion of col-
ors is introduced just to convey the idea.

become clear below.
Let us return to Figure 3. The actions of firidgand B
simultaneously, and of firing’, are treated differently. In



the former case, the tokens that arrive in the output places Continuing with the example of Figure 5(a) Affires we

of A andB are colored, as to distinguish their mutual exclu-
sive origin. Inthe latter case, no extra coloring is performed,
as we don't need to distinguish from a conflicting transi-
tion that may be fired at the same time (transitidrcannot
fire!). Thus, for the firing of”, we can apply a straightfor-
ward extension of the “original” PN firing rule: a red token
is removed from each of its input placesandp3, and put
into its output place5. From all this, it is clear, that in our
framework we need two firing semantics, nametyualtiple
firing semanticaind asingle firing semanticsThese will be
explained hereafter.

Single Firing Semantics. According to the single firing
semantics a transition can fire once isisgle enabledRe-
member from the above discussion, that the marking of a
place in a GPN can be interpreted as to represent all pos
sible histories of transition firings that lead to the involved
marking. We then say a transition is single enabled when its
input places contain a “common” history, or alternatively,
when the intersection of the transition sets, contained in its
input places, is not empty. If so, the firing of that transition
will remove that common history from its input places, and
put it in its output places.

Definition 3.2 (Single Enabling Rule) Let (m,r) € S%,
t € T. s_enabled(t,(m,r)) =\, cosm(p) N7

Suppose a GPN in a state depicted in Figure S{a)e-
notes the set of valid transition sets; its derivation will be
described later in more detail. For now, it suffices to know
that {A, B} is not a valid set becausé and B are con-
flicting transitions. TransitiomB is not single-enabled as
s-enabled(B,m,r) = {}. Transition A, on the contrary,
is single-enabled asenabled(A, (m,r)) = {{A}}. Thus,
transitionA can fire to go to the next state, according to the
single firing rule

ey (o)
Firing of A

={{A}L{B
r={AL{B}} A

o # F AT

Figure 5: lllustration of the single firing semantics. (a) Ex-
ample GPN marking: with valid sets- = {{ A}, {B}} (b)
Next markingm' after firing transitionA.

Definition 3.3 (Single Firing Rule) Lets = (m,r) € ST,
t € T. scupdate(m, (m,r)) = (m',r)

where
m(p) \ s_enabled(t,s) ifp € ot)\te
m'(p) =< m(p) Us_enabled(t,s) ifpcte\et
m(p) otherwise

arrive in a state depicted in Figure 5(b). Following defini-
tion 3.3 the set_enabled(A, (m,r)) = {{A}} is removed
from its input place®0 andp1 and added to its output place
p3. Note that this firing rule is still “consistent” with the
classical PN firing rule, defined in Definition 2.4. Imag-
ine, for example, two classical PN markings by placing in
Figure 5(a) a token in each place containing} or {B},
respectively. This results in the two classical PN markings
shown in Figure 6(a). An analogousappingof the GPN
marking depicted in Figure 5(b), results in the two classical
PN markings shown in Figure 6(b). Note that these mark-
ings are exactly those markings that could be reached from
the markings shown in Figure 6(a) by firing transitidrus-

ing the classical PN firing rule. We can formally define the
abovemappingas follows.

Definition 3.4 Let (m,r) € SE. mapping({m,r))
{m' €2 Fver:m' ={pe Plvem(p)}}

Note that the marking of a safe PN can be represented
by a set of places, wherepi € m indicates that there
is a token inpi. As a result, the mapping function can be
interpreted as tanap between a state of a GPN and a set
of states of a safe PN with the same structure. For Fig-
ure 5, this givesnapping({(m,r)) = {{p0,p1}, {p0,p2}}
andmapping(m',r) = {{p3}, {p0,p2}}.

Figure 6: Classical PN markings “equivalent” to (a) Fig-
ure 5(a) (b) Figure 5(b)

Multiple Firing Semantics According to the multiple fir-

ing semantics a set of transitions - that may be conflicting -
can be fired simultaneously, provided that each transition is
multiple enabled

Definition 3.5 (Multiple Enabling Rule) Lets= (m,r) €
ST,teTandT' CT.

m_enabled(t, s) = {v € [, co; m(pi)|t € v}
m-enabled(T',s) =Vt € T' : m_enabled(t, s) # )

Suppose a GPN in a state depicted in Figure 7(a). The
derivation of the set, of valid transition sets will be de-
scribed later in more detail. For now, it suffices to know
that {A, B} and {C, D} cannot be included imy, be-
causeA and B, as well aC and D are conflicting transi-
tions. We say a transitiohis multiple enabledn a state
(m,r)y if m_enabled(t,(m,r)) # 0. TransitionsA and



B are then muItipIe enabled in the depicted staté, o)
asm_enabled(A, mg §.r0) = {{A,C}, {A,D}} # 0, and
m_enabled(B, (m§ ,10)) ={{B,C}, {B,D}} # 0. Note
that when a transmon is multiple enabled, it is also single

that the latter markings can be reached frpfp0, p4}} by

separately firingd and B using the classical PN firing rule.
The same observation can be made when going to the

next state; transition§' and D are both multiple enabled

enabled (the reverse, however, is not always true). Thus, inin state (m$,r;) and can be fired simultaneously to go

the statelm§’, o) both A and B are multiple enabled, and
can be fired simultaneously, according to theltiple firing

rule.
"o, {)

B5h

={A,C}.{B,C},

o= LIACHB.Ch o
{AD}BD) ) (A0}BD} )

state <m 0.79>

HACh
{AD}

r,={A.CHB.D}

G
state <m1 ry> state <mp,r,>

Figure 7: Subsequent markings of a GPN with maxi-
mal conflicting sets{A, B} and {C, D}.(a) initial state
(m§,ro) (b) (M§,r1) = m_update((m§, Ro), {A, BY})

(C) <m§, 7'2> = m_update((m?, R1>, {Cv D})

Definition 3.6 (Multiple Firing Rule) Let s = (m,r) €
ST, andT’ € mes(T) such thatm_enabled(T', s) = true.

m_update({m,r), T") = (m',r")
wherem/(p) =
( (m(p) \ U m_enabled(t,s))Nr' peoT'\T e
teT'Npe
(m(p) U U m_enabled(t,s))Nr' peT' e\ eT'
teT' Nep
(m(p) \ U m_enabled(t, s)
teT'Npe
U U m_enabled(t,s)) Nr' peeT'NT'e
teT' Nep
L (m(p)Nr') otherwise
r' = U s-enabled(t, s) U m-enabled(t, s)
te(T\T") teT’
Continuing with the example of

Figure 7(a), the simultaneous firing of transitiohsand B
movesm_enabled(A (m§, 7)) ={{A,C},{A, D}})and
m_enabled(B, (m§,r0)) (= {B,C},{B, D}}) from their
common input placg0, to their output placesl andp2, re-
spectively. As such, we arrive in the stéte$’, 7, ) depicted

in Figure 7(b). The updating of the set of valid sets has no
effect in this case, ag = rq. As with the single firing se-
mantics, one can also observe the consistency with classica
PN dynamics. Indeed, asapping(m§,ro) = {{p0,p3}}
markingm§ can be mapped to the marking of a classical
(safe) PN where places) and p3 contain a token. The
markingm{’, however, can be mapped to 2 classical PN

ma.rklngSmappmg(m1 ,r1) = {{pl,p3}, {p2,p3}}. Note

to the next-statém’, r»), depicted in Figure 7(c). Due
to the extra conditioning of, by s_update, the new set
of valid sets now becomes = {{4,C},{B,D}}. As

a result, mapping(m$,r2) = {{p5,p3}}, and the new
state(m$’, ;) can be mapped to the marking of a classi-
cal (safe) PN where only placeé contains a token; i.e.
the marking that can be reached frampping(m§,r) =
{{p1,p3}, {p2,p3}} by firing D and E using the classical
PN firing rule. The extra conditioning of the set of valid
sets rules ouf 4, D} and{B, C'}, in fact modeling an "ex-
tended conflict” relation betweedA and D, and between
B and D, respectively. Indeed, ifA(B) precedesC'(D)
andC conflictswith D, then A(B) conflicts withD(C") and
{A, D}({B, C?}) cannot be included in any valid set.

3.3 Analysis Procedure

Suppose now a safe classical PN = (P, T, F,mq)
and a Generalized Petri net with the same struchire=
(P, T, F,m§,ro) with

Grn | o ifp€Emy
mg (p) = {} otherwise
ro = {v € 2T\Vt,u € T : conflict(t,u) = {t,u} Z v}

then it is clear thatnapping(m§, 7o) = {me} and no two
conflicting transitions can be part of any valid set. One can
then proceed with the reachability analysis as follows. In
state(m§, 7o) we search for candidate Maximal Conflict-
ing Sets (MCS’s). A candidate MCE' must be multiple
enabled, and firind”" will not disable any other MCS that
was already multiple enabled, as well as any other transition
t ¢ T' that was single enabled. As a result, the same reduc-
tion techniques of the partial-order methods can be applied:
selecting only one interleaving sequence, or alternatively,
firing all candidate MCS’s at the same time and postponing
the possible firing of the other transitions to a future state.
Moreover, one is guaranteed that the reached state can be
mapped to a set of states of the "original” reachability graph
RG(N).

If in state (m§’, ) no candidate MCS'’s can be found,
one has to fall back on the single firing semantics and again
apply partial-order reductions, if possible. Similarly, with
the single firing rule, one is guaranteed to be "in track” with
?Iassmal PN dynamics.

The same reasoning applies to all next reachable states.
By induction, one can then conclude that the following
algorithn? computes enough of the reachable states of a

2As to not clutter the algorithm, we left out the code that checks a.o.
that the firing of an enabled transition is not postponed “forever”.



GPN to decide about the behavior of a safe PN with the single-execute (G, s, t)

same structure.

A property that is often checked for is the freedom of
deadlock. In this framework, the definition of a deadlock is

characterized bydeadlock((m%,r))
Jm € mapping(m,r) : YVt € T : =enabled(t,m)

Effectively, this boils down to checking upon

Z s_enabled(t, (m,r)) #r

teT

Algorithm Generalized Partial-Order Reachability Analysis
global: RG/x reachability graph:/
reachability-graph (N, @)

in: atuple N=( P, T, F), amarking 3 such that P, T, F, m ) is a safe

Petri net
begin

ro ifp€mg
let mg’ (p) = {7- {} otﬁerwise
letrg ={v € 27 |Vt1,t2 € T : conflict(t1,t2) = {t1,t2} Z v}
letso=(m$,ro)
RG=[{s}.,0 %]
reach (N, g)
end

reach (N, s)

in:atuple N=(P, T,F),astate s¥m,r)

begin

let single-enabled-trans £t € T | s.enabled(t, s}
Search for candidate-mcs

if U s_enabled(t,s) r

teT
then report deadlock possibility at state s
else ifcandidate-mcs ()
then multiple-execute (N, s, candidate-mcs)
else if3 T' C single-enabled-trans: & mcs(T))
then forall t € T' do
single-execute(N, s, t)
od
else forallt € single-enabled-trando
single-execute (N, gt})
od
fi
fi
fi
end

multiple-execute (N, s, mcs)

in: atuple N P, T, F), a state s X m, r), a set mcs of
maximal conflicting sets that are multiple enabled in state s
begin

letT' = U T;
T; Emces
let s’ = m_update(s, T')
add (s, T, s') to RG
if s RG
thenreach (N, s")
fi
end

in:anetN <X P, T, F,), astate s X m, r), atransition t that is single
enabled in state s

begin

let s’ = s.update (s, t)

add (s, t, s’) to RG

if s’ ¢ RG

thenreach (N, s')

fi

end

4 Implementation and Results

The techniques presented in this paper have been im-
plemented in a tool, calleduLIg, in about9000 lines of
C code. To assess the viability of our approach, we have
carried out a number of experiments that suffer from the
state explosion problem. The analyzed examples were the
non-serialized version of the well-known Dining Philoso-
phers Problem (NSDP) [6], the Asynchronous Arbiter Tree
(ASAT) [1], the Overtake Protocol (OVER) [4], and Read-
ers and Writers (RW) [4].

To compare with state-of-the-art verification tools, we
have chosen SPIN extended with the Partial-Order Pack-
age (SPIN+PO) [8], and the Symbolic Model Verifier
(SMV)(Release 2.4.4) [10], as representatives of the partial-
order methods and the symbolic techniques, respectively.
We used both packages, as well as our prototype General-
ized Partial Order Analysis tool, to test the examples for
deadlock situations. However, obtained results are also
valid for safety checks, since the verification of a safety
property can always be reduced to a check for deadlock [9].
A numeric overview of the results is shown in Table 1.

In Table 1 the number of states of the complete reacha-
bility graph, the number of states of the reachability graphs
derived using (generalized) partial-order analysis, as well
the peak BDD sizes encountered during symbolic reacha-
bility analysis, are listed for various instances of the param-
eterized examples. CPU times, measured on a HP K260
with 896 MB RAM, are also included.

For NSDP, ASAT and OVER, generalized partial-order
analysis outperforms both SPIN+PO and SMV. A drastic
improvement is observed for NSDP and ASAT. For NSDP
3 states are sufficient to detect all deadlock situations, inde-
pendent of the number of philosophers. As can be observed,
CPU times increase linearly with problem size.

For RW, generalized partial-order analysis performs bet-
ter than SPIN+PO, but slightly worse than SMV. This is be-
cause RW exhibits a lot of conditional behavior where non
of the classical partial-order reduction techniques can be ap-
plied — this is also visible in the reduced state space which
equals the complete state space. For this problem, OBDD’s
apparently provide an efficient encoding of the state space.



Table 1: Results of Generalized Partial Order Analysis (GPO)

Problem(size) States SPIN+PO SMV GPO
States| Time(s) | Peak BDD-size| Time (s) | States| Time(s)
NSDP(2) 18 12 0.08 1068 0.04 3 0.01
NSDP(4) 322 110 0.13 10018 0.22 3 0.03
NSDP(6) 5778 1422 1.07 52320 8.97 3 0.04
NSDP(8) 103682 | 19270 25.62 687263 | 1169.30 3 0.05
NSDP(10) 1.86 % 10° | 239308 | 453.16 > 24 hours 3 0.06
ASAT(2) 88 33 0.08 1587 0.05 8 0.01
ASAT(4) 7822 192 0.11 117667 79.61 14 0.06
ASAT(8) 1.58 % 10° 3598 1.12 > 24 hours 23 0.35
OVER(2) 65 28 0.09 3511 0.08 6 0.01
OVER(@3) 519 107 0.13 10203 0.19 7 0.02
OVER(4) 4175 467 0.44 11759 0.64 8 0.04
OVER(5) 33460 2059 2.05 24860 3.59 9 0.06
RW(6) 72 72 0.06 3689 0.09 2 0.05
RW(9) 523 523 1.51 9886 0.16 2 0.20
RW(12) 4110 4110 16.89 10037 0.28 2 0.61
RW(15) 29642 29642 | 194.33 10267 0.43 2 1.50

5 Conclusions 4]

In this paper we presented a nogeneralized partial- [5]

order analysistechnique that can enumerate conflicting
paths simultaneously, thus extending the partial-order tech-
nigues [6, 9, 14] to tackle also the explosion problem due

to concurrently marked conflict places. The approach is 7
based on &eneralized Petri Nehodel that has a modified
marking representation to distinguish the different conflict-
ing paths.

The experimental results are very promising. As illus-
trated in Section 4, for certain examples one can demon-
strate exponential reduction in complexity. The method has (9]
been applied to some real-life applications in embedded
system design (e.g. a Quadrature Amplitude Modulation
modem), where it also provided significant gain [16].

Recently, a number of interesting methods [7, 13] have
been proposed for the efficient timing verification of con-
current systems, modeled @isned Petri netsWe are cur-
rently investigating how these methods can be leveraged tq;
our work.

(8]

[10]

[11]

[13]
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