An Efficient Divide and Conquer Algorithm for Exact Hazard Free Logic
Minimization

JW.JM. Rutten, M.R.C.M. Berkelaar, C.A.J. van Eijk, M.A.J. Kolsteren
Eindhoven University of Technology
Information and Communication Systems Group
e-mail: jeroen@ics.ele.tue.nl

Abstract

Inthispaper weintroducethefirst divideand conquer algo-
rithmthat is capable of exact hazard—free logic minimiza-
tion in a constructive way. We compare our algorithmwith
the method of Dill/Nowick, which wasthe only known meth-
od for exact hazard—free minimization. e show that our al-
gorithmismuchfaster than themethod proposed by Dill/No-
wick by avoiding a significant part of the search space. We
arguethat the proposed algorithmisa promising framework
for the devel opment of efficient heuristic algorithms.

1 Introduction

One of the bottlenecks of asynchronous design is the logic
synthesis step. During this step it is often required that the
logic expressions to be generated are free of hazards for a
given set of transitions under the unbounded wire delay
model [1]. This is e.g. the case during the synthesis of
Asynchronous Burst Mode Machines. It has been shown
that these machines can successfully be used to implement
large asynchronous designs [4]. Until recently hazard—free
logi ¢ expressions had to be designed by hand, since no algo-
rithmwasknown to generatethem. Thefirst al gorithm capa-
ble of generating hazard—free logic expressions was pro-
posed by Dill/Nowick [1]. This algorithm is capable of
generating an exact pla—based sol ution. It usesan exact two—
level minimizer, like espresso [5], to generate all primeim-
plicants. A filter is applied to al these prime implicants to
render them dynamic hazard—free (dhf). A minimal selec-
tion is made of the fittest implicants to generate an exact
minimal solution in terms of the number of prime impli-
cants. Since there can be an exponential number of prime
implicants, thismethodisonly applicabletorelatively small
examples.

In this paper we propose a new exact divide and con-
quer algorithm, similar totheoneused in espresso, thatisca
pable of generating hazard—free logic expressions in a
constructiveway. That is, we directly generate hazard—free
logic without the need of a—posteriori fixing. Not only isthis
very important from atheoretical point of view, sincewebe-
lieveitisthefirstinitskind, itisalsoimportant from aprac-

tical point of view since by some modifications the algo-
rithm is capable of generating both exact and heuristic
solutions. We show that this algorithm can avoid part of the
search space and therefore is much faster than Dill/No-
wick’s method for larger examples. In this paper we focus
onsingleoutput functions. Singleoutput minimizationisan
important operation during multi-level logic synthesis and
thedescribed algorithmscan beappliedinthat field. Wealso
outline the modifications necessary to alow the described
algorithms to operate on multiple output functions; due to
lack of space details are omitted.

2 Background

A binary—valued input, binary—valued output function can
bedescribedby f: B"— BU{*} where B = {0, 1}. Here,
astar indicatesthepart of thefunction belonging tothedon’t
care set. The offset of fisdenoted as R

A cube S is a non empty Cartesian product space
S X § X .. XS, where § C B. A minterm is a cube
where |S| = 1. Animplicant isacube that has no intersec-
tion with the offset. A prime implicant is an implicant that
isnhot covered by any other implicant. Givenafunctionf, the
goa of 2-evel minimization isto find aminimal selection
of prime implicants such that the on—set of this function is
completely covered.

Letafunction f be expressed over theinput variables
XgeeXne f|Xi is called a cofactor of function fwith respect to
input variable x;. Itisdefined as:
f|Xi = f(X,...,X = 1,...,X,). Thenegativecofactor, f|,;iis
defined as: f|fi = f(Xy...,% = 0,...,%X)-

A function is said to be unate in a variable x; if
fl,, S flzor fl C f|,. Inthefirst casethefunctionisposi-
tive unate in x;, in the latter case, the function is said to be
negativeunatein x;. A functionisunateif itisunatein each
variable.

3 A new divide and conquer technique

In this section we introduce anew divide and conquer algo-
rithm, the threeway method, that iscapable of calculating all
primeimplicants. Weintroducethisal gorithm becauseit can
be converted to generate the set of all dhf—primeimplicants,

which, to the best knowledge of the authors, is not possible
with e.g. the algorithm used by espresso. Furthermore, we
show that thisalgorithmis capable of avoiding asignificant
part of the search spaceby only generating contributing dhf—
prime implicants. We start by introducing the problem of
hazard—free logic minimization.

3.1 Hazard freelogic minimization

Hazard—freelogicisbased onthedynamic hazard—free (dhf)
implementation of aset of transitions. A transitionisatuple
definedas: < 1,0 > wherel € D"and O € D™ Disgiv-
enby: D = {0,1, 1, |}. A transition cube[1] isacube no-
tated as [A, B], where A and B are mintermsthat indicatethe
starting—point and end—point of a transition in the input
space. The transition cube is the smallest cube that covers
both A and B. Hazard—ree logic considers each transition
individually: each transition isimplemented free from haz-
ards. At the start of each transition, the logic implementing
the behavior of the transition is assumed to be stable.

Hazardscan bestatic or dynamic[1]. Static hazardscan

be avoided by demanding that thetransition cubeiscovered
by an implicant in the solution. Such a transition cube is
called arequired cube. Dynamic hazards are taken care off
by so—called privileged cubes. A privileged cubeisatransi-
tion cubewith an annotated starting—point. Itisformally de-
noted as. p = (p°, p°), where p°is called the body of the
privileged cubeand p*iscalledthestarting—point. All impli-
cantsin adhf—solution are only allowed to intersect aprivi-
leged cube when the starting—point is a so included. Other-
wisetheintersectionis said to beillegal. An implicant that
does not illegally intersect any privileged cube is called a
dhf—implicant. A dhf—primeimplicant isnot covered by any
other dhf—implicant. A minimal dhf—solution consists of a
minimal sel ection of dhf—primeimplicantsthat coversall re-
quired cubes[1].
Example1 Consider acircuit with 4 inputsand 1 output that
issupposed toimplement thefollowing transitionsfreefrom
dynamic hazards: {<t000,1>, <110t,|>, <1111,0>,
<111},t>,<1]10,]>, <|010,0>, <00} 0,1>}. The order of
theinput variablesin these transitionsis abcd. Furthermore
we assume that the circuit implementing all transitions is
stable at the start of each transition. In figure 1 a Karnaugh
map is depi cted showing all thetransitions and the on/offset
that can be derived from this set of transitions. An empty
entry corresponds with adon’t care entry.

If weusea2-evel minimizer, likeespresso, togenerate
aminimal set of prime implicants that covers the depicted
onset, the solution would be: —=1-0, -00—. This solution is
hazardous, which can be shown by examining transition
<1101, >. Inthistransition, input variablesb and d turn on.
Suppose input variable b turns on before input variable d.

a
711 0407
1 ! 14 b
¥ I
d 01,0
1
[

Figure 1: Karnaugh map for a given set of transitions

Wecan observethat cube—00— will turn off. Cube —1-0wiill
turn on, so we have a term takeover that can giveriseto a
static hazard: the output might temporarily turn off. This
hazard can beavoided by demanding that thesolution covers
the smallest cube that covers both the starting—point of the
transition and the minterm entered by turning b on. Sincea
solution must cover this cube, it is called a required cube.
Here, the required cube is: 1-00. Let us add this required
cube to the solution.

Now let us examine if we have successfully removed
all hazardous situations for the given transition. Again, we
assume that input variable b isthefirst to turn on. Because
of the added required cube, the output will remain at one.
Now input variable d switches on. Both the added required
cubeand cube—1-01 will turn off in that case. However the
behavior of this cube might be observed after the required
cubeitself hasturned off. In fact, the behavior of cube—1-0
going on might be observed after the required cube has
turned off, due to our unbounded wire delay model. This
might lead to adynamic hazard: after the output has turned
off, aglitch representing the behavior of cube —1-0 might
be observed. This dynamic hazard can be avoided by de-
manding that during atransition after which the output will
turn off, no cube can temporarily turn on. A cube may turn
on, or it may turn off, but not both. This constraint ismet by
taking into account a set of privileged cubes. The body of
aprivileged cube is equal to the transition cube that covers
thetransition. A privileged cube al so has an annotated start-
ing—point, corresponding to the starting—point of the transi-
tion. A set of implicantsis said to be dhf if theintersection
of each implicant with the body of a privileged cube aso
containsthe starting—point of that privileged cube. If thisis
not the case, the implicant is said to intersect a privileged
cubeillegally. This can lead to a dynamic hazard.

Inthisexample, the privileged cube necessary to avoid
adynamic hazard during transition <110t1,]> is
(p°=1-0-, p°=1000). Observe that primeimplicant —1-0
intersectsthe body of thisprivileged cube, but does not cov-
er the starting—point. Therefore this prime is not dynamic
hazard free. For this example a correct minimal hazard free

R = bd+ ad + acd

a
{00 [a
\(y 1(1 1 b
IRARE
1N\o| 9] 1 R: /Ra+ Ry
c 0 —
bd+cd bd+cd+d

F = ad + bed + abd + abc

a
Ra.
1 0 — 1
d+ bd d + bc bed bd

Figure 2: Example of the threeway method

solution consists of three dhf—prime implicants namely:
-110, ——00, 00—

3.2 Thethreeway method

In the threeway method for binary—valued functions, the set
of al primeimplicantsiscalculated by supplying the meth-
od the offset of afunction f. Searching the set of al prime
implicants becomes equal to searching all maximal cubes
that do not intersect the offset.

If we consider avariablewith respect to acube, we can
discernthreecases: thevariableis0, 1 or —(don’'t care). The
main ideabehind thethreeway method isto dividetheorigi-
nal problem of calculating al primeimplicantsintothethree
sub—problems of calculating the set of prime implicantsin
which aselected variable has one of these values. Hencethe
name threeway method. For example, one of the sub—prob-
lemsisto generate the set of primeimplicantsfor which the
selected variableisequal to 1. The basic idea of the method
is depicted in figure 2. Theideato partition the problem of
calculating the set of all prime implicants into three sub—
problemsis not new, it was also used by Coudert to imple-
ment an efficient implicit 2-evel minimizer [3].

Inthe exampleinfigure 2, variable ais used to reduce
theoriginal problem of finding al primeimplicantsinto the
three sub—problems of finding the prime implicants for
which variable a has one of the three possible values.

Thesethreevalues are represented by three edges. The
set of primes for which a is equal to O can never intersect
with that part of the offset where ais equal to 1. Therefore
in order to calculate the set of primes for which ais 0, the
zero—edge for future references, we only need to calculate
the set of maximal cubes that have no intersection with the
negative cofactored offset, since we abstract from variable
a Thisisexpressed as R|,. For the one edge, the offset be-
comes R|.. For the don't care—edge, the offset becomes
Rl. + R| Thisisbecause for any primefor which variable
aisadon’t care, an intersection with R|, or R|;impliesan
intersection with Ritself and viceversa. The new sub—prob-
lems are reduced: the cardinality of the support set is de-
creased.

The original problem can be divided into new sub—
problemsrepeatedly until the offset becomesempty or equal
to the universe cube. In the first case, the set of primes be-
comes equal to the universe cube, since thisisthe maximal
cube that does not intersect the empty offset. In the second
casetheset of primesisempty. The selection of edgestaken,
i.e. the path, determines the assignment of the variables of
the prime.

For thegiven exampleinfigure 2, the offsetisgiven by
R = bd + ad + acd, thecofactorsare R|, = bd + dand
Rlz = bd + cd. By repeating the splitting process, the set
of primes not intersecting R|, can be calculated. This set
turns out to be equal to Primes, = bd. Similarly the set of
primes not intersecting R|z is equal to Primes; = d + bc.
Also it turns out that the set of primes not intersecting
Rl. + Rlz is equa to Primes,,; = bcd. Combining these
primes resultsin:

Primes = a - Primes, + @ - Primes; + Primes,, ;=
abd + ad + abc + bcd.

Figure 3 givesagenera overview of the proposed threeway
method:

R
a

Rla Rl. + Rz Rlz
Figure 3: General threeway model

The primes generated by the zero— or one—edge can be cov-
ered by the primes generated by thedon’t care—edge. There-
foreasingle cube containment (SCC) filtering hasto be per-
formed, to remove all covered cubes, while merging the
solutions of the sub—problemsinto the solution of the origi-
nal problem. Thisis expressed as:

Primes = SCC(a * Primes, + a + Primes; + Primes,, ;)

We will now prove that the proposed method generates all
prime implicants. In order to do so, we need the following
lemma:

Lemma 1 Each cube has an unique path in the search tree.
No two different cubes follow the same path in the search
tree since thiswould imply that for each input variable they
are assigned the same values.

Theorem 1 Each cube generated by the threeway method is
an implicant.

Proof: We only generate a cube when the offset becomes
empty. Certain paths exist in the search tree after which the
offset becomes empty. By lemma 1 each path corresponds
toaunique cube. Following apathisequal to calculating the
cofactor of the offset with respect to thiscube. Sincethisco-
factor is empty, the cube must be an implicant. []

Theorem 2 Eachimplicant generated by thethreeway meth-
odisprime.

Proof: Suppose primeimplicant d coversanimplicant c gen-
erated by thethreeway method. Sinced doesnot intersect the
offset, the cofactor of the offset w.r.t. d isempty. Therefore,
following the path that belongsto d leads usto aleaf—node
wherethe offset isempty. Sod iscreated. Implicant c might
also be created, but due to the SCCilter, itisremoved. []

Theorem 3 Thethreeway method will generateall primeim-
plicants.

Proof: Suppose a prime d is missing. Again we can follow
its path and observe that the offset again will be empty.
Therefore d will be generated. []

Theorem 41f theoffsetisunateinvariablea, then thethree-
way method can be reduced to a twoway method.

Proof: The primes generated by Primes, or Primes; can be
covered completely by the primes of Primes,, 5 This hap-
penswhen the offset, and therefore also the onset isunatein
a certain variable. If the offset is unate in variable a then
R.CR; or RCR, Inthat case R, + Ry = R; or
R, + Rz = R, Thereforetheprimesgenerated by thezero—
(one-) edgewill becovered completely by the primesgener-
ated by thedon’t care—edge. Thereforethethreeway method
becomes atwoway method. [

We can use this observation to significantly reduce the
search spaceby selecting unatevariablesassoonaspossible.

3.3 Generating all dhf—prime implicantswith the
dhf-threeway method

Here, wepropose modificationsthat will allow thethreeway
method to generate the set of all dhf—primeimplicants. This
is accomplished by keeping track of the set of privileged
cubesduring the process of splitting the original problem of
calculating all dhf—primes.

The problem of calculating the set of all prime impli-
cants is transformed into one of calculating al dhf—prime
implicants. For the sub—problemswe now want to cal culate

theset of all dhf—primesfor whichthesplitting variablea as-
sumes values zero, one or don't care.

Let us examine the set of dhf—prime implicants for which
variableaisequal to 1. Sincevariableaisequal to 1 for any
primecal culated by the 1-edge, any privileged cubethat has
astarting—point for which aisequal to 0, will beintersected
illegaly whenitsbody isintersected. To avoid thisintersec-
tion we must add the cofactored body, pS of each of these
privileged cubes to the offset of the 1-edge. This way, we
can guaranteethat the set of primesgenerated by the 1-edge
will not intersect these privileged cubesillegally. However,
the primes still might intersect those privileged cubes that
have a starting—point for which variable ais egual to oneor
don’t care. Therefore, wemust keeptrack of theseprivileged
cubes by passing them on. Resuming, the offset and set of
privileged cubes that are passed on to the 1-edge are ex-
pressed as.

P, = (pl. | pls = 0

Ri = R+ {pls | pl =0

We represent the set of privileged cubes and the Offset
passed on to the 1-edge by adding a subscript 1.

We now consider the case where the splitting variable
aisequal to don't care: we follow the don’t care—edge. We
can not determinewhich subset of the set of privileged cubes
will alwaysbeintersectedillegally. Therefore we must con-
sider the set of all co—factored privileged cubes. Thisis ex-
pressed as.

P, = Pl. + Pl
The offset is expressed as:
R, = Rla + Rl

A subscript of 2 represents the setsthat are passed on to the
don’t care—edge. Notethat P,isnot equal to P, + P.Infig-
ure 4 the general model of the dnhf-threeway method is de-
picted.
(R,P)
a

(Ro, Po) Ry, Py) (R, Py
Figure 4: General model of the dhf-threeway method

Theorem 5 The set of implicants generated by the dhf—
threeway method is dynamic hazard free.

Proof: By contradiction. Suppose the method generates an
implicant c that illegally intersects a privileged cube p. We
now start to follow the path belonging to c. After an edge,
pcanstill beavailable, inacofactored form, or itisremoved
during the process of calculating the set of privileged cubes
that must be passed on. Inthelatter case, the cofactored form

of p*isempty inwhich casethe cofactored body of p, p°is
added to the offset. Thiswould make anillegal intersection
of cwith pimpossible. Sincecissupposedtointersect privi-
leged cube pillegaly, p must remainin the transported set
of privileged cubes. We can apply this story in arecursive
way until the offset becomes empty. Here cisbeing created
anditisequal totheuniversecube. However, sincecisequal
to the universe cube, it cannot intersect pillegally, because
the starting—point isincluded in the intersection. Therefore
cisadhf-implicant. [

Theorem 6 The set of implicants generated by the dhf—
threeway method is dhf—prime.

Proof: Suppose d is a dhf-implicant that covers dhf—impli-
cant ¢ generated by the threeway method. Now let’s follow
the path belonging to d. The threeway method didn’t gener-
ated, meaning that whenwetraced weend up at aleaf—node
wherethe offset is not empty. We assumethat d does not in-
tersect theoriginal offset. Theoffset, intersected by d, there-
foreisduetothebody of at |east one privileged cubethat has
been added to the offset. Thisimpliesthat d will at leastille-
gally intersect one privileged cube. Therefored cannot bea
dhf—prime implicant. (]

Theorem 7 The set of dnhf—primes generated by the dhf—
threeway method is complete.

Proof: Thethreeway method generatesall primeimplicants.
The dhf—threeway method generates dhf—prime implicants.
Suppose adhf—prime cismissing from the set generated. If
wefollow the path belonging to this primewe will discover
that at the node where c should have been created, the offset
isnot empty. Therefore cisnot valid: it intersectsthe origi-
nal offset or it intersects aprivileged cubeillegally. The set
of dhf—primesiscomplete. []

Again we can reduce the threeway method to at most
atwoway method if the offset isunate in at least one vari-
able. However, in the dhf-threeway method this constraint
isnot enough. Theset of privileged cubesmust also betaken
into account since these privileged cubes can eventually
contribute to the offset in the process of calculating the set
of dhf—primes for one of the sub—problems. Therefore, we
can only skip the 0 (1) edge if P, isequal to P, (P,) and
R, = Ry(R; = Ry.

3.4 Generating contributing (useful) dhf—prime
implicants

The dhf-threeway method is capable of generating all dhf—
primeimplicants. However, many of these dhf—primeswill
never contribute to avalid solution because they only cover
the don’t care set or because they only partially cover some
required cubes. The threeway method for binary functions
canbemodifiedto avoidthegeneration of theseprimes. This
ispossible because the sol utions of sub—problemsdo not in-
teract to generate the solution of the original problem, asis

the case in the unate recursive paradigm used in espresso.
Thismeansthat if we know that an edge will not generatea
set of contributing/useful primes, we can just discard that
edge. It will have no influence on the other primes being
generated.

Inorder to detect edgesthat will not generate contribut-
ing primes we also must keep track of the set of required
cubes. Theideaisto refrain from cal cul ating the primes be-
longing to a certain edge when the set of required cubesis
empty. In figure 5 the modifications necessary to the dhf—

threeway method are depicted.
(RP,Q
a
0 - 1
(RO! PO! QO) (R21 P21 QZ) (Rla Pla Ql)
Figure 5: General model to generate contributing dhf—
primes

Here Qisused to represent the set of required cubes. We al-
ready know how to calculate sets R, and P,. What remains
to be answered is how to determine sets Q,. Let us start by
examining the 1-edge. We only want to propagate those re-
quired cubesin Qfor whichvariableaalsoisequal to 1. All
other required cubes are only partially covered, or not cov-
ered at al. So we can express Q, as.

Q=1{d. | a-q=q]

A similar expression existsfor Q,. For the don’t care—edge
we must propagate al, cofactored, required cubes. So we
can express Q, as.

Q; = Qla + Ql
3.5 Multiple output functions

In this section we will discuss in an outline how the de-
scribed threeway method can be modified to take into ac-
count multiple output functions. In order to do so, we have
extended the threeway method to be ableto deal with multi-
ple—valued functions. All output variables can be combined
intoonemulti—valued variablewithacardinality equal tothe
number of outputs [5]. This multi—valued variable can be
used to split the original problem into three new sub—prob-
lems, just likeabinary variable. Thisisdoneby partitioning
this multi—valued variableinto two partitions. For the 0 and
1—edge the offset simply become equal to the offset cofac-
tored to the appropriate partition. This, however, is not the
case for the don't care—edge. It turns out that the offset for
thedon't care—edgeisequal to the combined sets of both co-
factors of the offset, where the origina multiple-valued
variable is split into two new multiple-valued variables.
Each new multiple-valued variable corresponds to one of

the partitions of the original multiple-valued variable. Due
to lack of space we will not discuss the specific details nor
the modifications necessary to modify this method to allow
it to generate the set of al dhf—prime implicants. It will be
the subject of afuture paper.

4 Results and Conclusions

We have implemented the described threeway method and
compared it with Dill/Nowick’s method [1]. In order to do
so, we used the two-evel minimizer espresso to generate
the set of all prime implicants. These primes are then ren-
dered free from hazards by Dill/Nowick’s hazard removal
algorithm. In Table 1 theresultsaredepicted. All benchmark
circuits in the first column are derived from well known
AsynchronousBurst Mode M achines and represent the big-
gest single output examplesavailable. The number of inputs
and the number of cubes of each circuit are shownin the se-
cond column. Inthethird columnthe number of primesgen-
erated by espresso and the runtime in seconds are given. A
dash (-) indicatesthat the runtime was too small to measure
with much accuracy (less than 0.1 [s]). The fourth column
shows the number of dhf—prime implicants generated by
Dill/Nowick’s algorithm, which uses the results generated
by espresso, and the runtimes. The fifth column represents
theresultsby our threeway method whenitisused to gener-
ate all dhf—prime implicants. The number of primesin the
fifth columnthereforemust beequal tothe number of primes
in the fourth column. Again, the runtimes are also repre-
sented. The sixth column represents the number of primes
and the runtime by the threeway method when it only pro-
ducesthe set of contributing dhf—primeimplicants. Thelast
column represents the smallest solution, in terms of dhf—
primes, possible. This solution was obtained by solving a
unate covering problem, where the minimum number of
dhf—primes was selected that covers all required cubes.

All benchmark runs were performed on a

prototype were both compiled with the same compiler op-
tions.

Fromtable 1it can be observed that the runtimes of the
threeway method are comparable with the runtimes of
espresso, when the times spend in the column hazard filter
are added. However, the runtimes of the threeway method
aresignificantly reducedwhenitisallowedto only generate
the set of contributing prime implicants. Thisis caused by
thesignificant reduction of the search space and of the num-
ber of primes calculated.

In this paper we have presented what we believe isthe
first constructive exact method that i s capable of calculating
the set of all dhf—primeimplicants. We have shown that this
method can easily be enhanced to generate only the set of
useful primes. Thissignificantly reducesthe solution search
space and hence the runtimes necessary. The proposed
method can also be extended to deal with multiple output
functions. To cope with larger practical problem instances,
it isalso important to search for efficient heuristic methods
[2], especially when dealing with multiple—output func-
tions. Inafuture paper wewill show that thethreeway meth-
od also provides agood basis for devel oping efficient heu-
ristic methods.

References

[1] Steven M. Nowick, Davil L. Dill, " Exact Two—Level Mini-
mization of HazardFree Logic with Multiple-Input
Changes’, ICCAD’ 92, pp. 626—630

[2] Michael Theobald, Steven M. Nowick, Tao Wu, ” Espresso—
HF: A Heuristic Hazard—Free Minimizer for Two-Level
Logic”, DAC' 96, pp. 71-76

[3] Olivier Coudert, " Two-level logic minimization: an over-
view”, Integrationthe VLSI journal, Vol. 17 No. 2, 1994, pp.
97-140

[4] K.Y.Yun,”Synthesisof Asynchronous Controllers For Het-
erogeneous systems’, Stanford University, 1994, Ph.D. The-
sis

[5] R. Rudell, A Sangiovanni—vincentelli, "Multiple-Valued
Minimization for PLA Optimization”, |EEE Transactionson
computer—aided design, Vol. CAD-6, No. 5, September

HP9000/K 260 system. Espresso and the threeway method 1987
Table 1: results
Name I/IC Espresso | Hazard Filter | dhf-threeway Contrib Minimize
shuf-send—ctl.s.pla 6/50 8/- 10/- 10/- 4/—
isend-bm.s.pla 9/91 10/~ 10/- 10/~ 10/- 3
pe-send-ifc.s.pla 8/59 17/- 17/- 17/- 12/— 6
isend.s.pla 8/67 27/- 27/- 27/- 7/- 4
p2.s.pla 13/159 40/- 40/- 40/- 20/- 4
pscsi.s.pla 14/411 173/0.10 179/- 179/0.40 71/0.22 18
pls.pla 20/396 473/0.69 527/0.11 527/1.13 169/0.40 12
cache—ctrl.s.pla 21/1334 469/1.12 543/0.16 543/1.40 95/0.63 16
scsi.s.pla 18/912 1958/4.55 2001/0.26 2001/3.17 414/0.6 14

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

