
An Efficient Divide and Conquer Algorithm for Exact Hazard Free Logic
Minimization

J.W.J.M. Rutten, M.R.C.M. Berkelaar, C.A.J. van Eijk, M.A.J. Kolsteren
Eindhoven University of Technology

Information and Communication Systems Group
e–mail: jeroen@ics.ele.tue.nl

Abstract
In this paper we introduce the first divide and conquer algo-
rithm that is capable of exact hazard–free logic minimiza-
tion in a constructive way. We compare our algorithm with
the method of Dill/Nowick, which was the only known meth-
od for exact hazard–free minimization. We show that our al-
gorithm is much faster than the method proposed by Dill/No-
wick by avoiding a significant part of the search space. We
argue that the proposed algorithm is a promising framework
for the development of efficient heuristic algorithms.

1 Introduction

One of the bottlenecks of asynchronous design is the logic
synthesis step. During this step it is often required that the
logic expressions to be generated are free of hazards for a
given set of transitions under the unbounded wire delay
model [1]. This is e.g. the case during the synthesis of
Asynchronous Burst Mode Machines. It has been shown
that these machines can successfully be used to implement
large asynchronous designs [4]. Until recently hazard–free
logic expressions had to be designed by hand, since no algo-
rithm was known to generate them. The first algorithm capa-
ble of generating hazard–free logic expressions was pro-
posed by Dill/Nowick [1]. This algorithm is capable of
generating an exact pla–based solution. It uses an exact two–
level minimizer, like espresso [5], to generate all prime im-
plicants. A filter is applied to all these prime implicants to
render them dynamic hazard–free (dhf). A minimal selec-
tion is made of the fittest implicants to generate an exact
minimal solution in terms of the number of prime impli-
cants. Since there can be an exponential number of prime
implicants, this method is only applicable to relatively small
examples.

In this paper we propose a new exact divide and con-
quer algorithm, similar to the one used in espresso, that is ca-
pable of generating hazard–free logic expressions in a
constructive way. That is, we directly generate hazard–free
logic without the need of a–posteriori fixing. Not only is this
very important from a theoretical point of view, since we be-
lieve it is the first in its kind, it is also important from a prac-

tical point of view since by some modifications the algo-
rithm is capable of generating both exact and heuristic
solutions. We show that this algorithm can avoid part of the
search space and therefore is much faster than Dill/No-
wick’s method for larger examples. In this paper we focus
on single output functions. Single output minimization is an
important operation during multi–level logic synthesis and
the described algorithms can be applied in that field. We also
outline the modifications necessary to allow the described
algorithms to operate on multiple output functions; due to
lack of space details are omitted.

2 Background
A binary–valued input, binary–valued output function can
be described by f : Bn B {*} where B {0, 1}. Here,
a star indicates the part of the function belonging to the don’t
care set. The offset of f is denoted as R.

A cube S is a non empty Cartesian product space
S1 S2 Sn, where Si B. A minterm is a cube
where |Si| 1. An implicant is a cube that has no intersec-
tion with the offset. A prime implicant is an implicant that
is not covered by any other implicant. Given a function f, the
goal of 2–level minimization is to find a minimal selection
of prime implicants such that the on–set of this function is
completely covered.

Let a function f be expressed over the input variables
x1 xn. f |xi

 is called a cofactor of function f with respect to
input variable xi. It is defined as:
f |xi

f (x1, . . . , xi 1, . . . , xn). The negative cofactor, f |xi
 is

defined as: f |xi
f (x1, . . . , xi 0, . . . , xn).

A function is said to be unate in a variable xi if
f |xi

f |xi
 or f |xi

f |xi
. In the first case the function is posi-

tive unate in xi, in the latter case, the function is said to be
negative unate in xi. A function is unate if it is unate in each
variable.

3 A new divide and conquer technique
In this section we introduce a new divide and conquer algo-
rithm, the threeway method, that is capable of calculating all
prime implicants. We introduce this algorithm because it can
be converted to generate the set of all dhf–prime implicants,

which, to the best knowledge of the authors, is not possible
with e.g. the algorithm used by espresso. Furthermore, we
show that this algorithm is capable of avoiding a significant
part of the search space by only generating contributing dhf–
prime implicants. We start by introducing the problem of
hazard–free logic minimization.

3.1 Hazard free logic minimization

Hazard–free logic is based on the dynamic hazard–free (dhf)
implementation of a set of transitions. A transition is a tuple
defined as: I, O where I Dn and O Dm. D is giv-
en by: D {0, 1, , }. A transition cube [1] is a cube no-
tated as [A, B], where A and B are minterms that indicate the
starting–point and end–point of a transition in the input
space. The transition cube is the smallest cube that covers
both A and B. Hazard–free logic considers each transition
individually: each transition is implemented free from haz-
ards. At the start of each transition, the logic implementing
the behavior of the transition is assumed to be stable.

Hazards can be static or dynamic [1]. Static hazards can
be avoided by demanding that the transition cube is covered
by an implicant in the solution. Such a transition cube is
called a required cube. Dynamic hazards are taken care off
by so–called privileged cubes. A privileged cube is a transi-
tion cube with an annotated starting–point. It is formally de-
noted as: p (pc, ps), where pc is called the body of the
privileged cube and ps is called the starting–point. All impli-
cants in a dhf–solution are only allowed to intersect a privi-
leged cube when the starting–point is also included. Other-
wise the intersection is said to be illegal. An implicant that
does not illegally intersect any privileged cube is called a
dhf–implicant. A dhf–prime implicant is not covered by any
other dhf–implicant. A minimal dhf–solution consists of a
minimal selection of dhf–prime implicants that covers all re-
quired cubes [1].

Example 1 Consider a circuit with 4 inputs and 1 output that
is supposed to implement the following transitions free from
dynamic hazards: {< 000,1>, <1 0 , >, <11 1,0>,
<111 , >, <1 10, >, < 010,0>, <00 0, >}. The order of
the input variables in these transitions is abcd. Furthermore
we assume that the circuit implementing all transitions is
stable at the start of each transition. In figure 1 a Karnaugh
map is depicted showing all the transitions and the on/offset
that can be derived from this set of transitions. An empty
entry corresponds with a don’t care entry.

If we use a 2–level minimizer, like espresso, to generate
a minimal set of prime implicants that covers the depicted
onset, the solution would be: –1–0, –00–. This solution is
hazardous, which can be shown by examining transition
<1 0 , >. In this transition, input variables b and d turn on.
Suppose input variable b turns on before input variable d.

b

c

d

1 1

1 1

1

0

0 0

a

0

Figure 1: Karnaugh map for a given set of transitions

We can observe that cube –00– will turn off. Cube –1–0 will
turn on, so we have a term takeover that can give rise to a
static hazard: the output might temporarily turn off. This
hazard can be avoided by demanding that the solution covers
the smallest cube that covers both the starting–point of the
transition and the minterm entered by turning b on. Since a
solution must cover this cube, it is called a required cube.
Here, the required cube is: 1–00. Let us add this required
cube to the solution.

Now let us examine if we have successfully removed
all hazardous situations for the given transition. Again, we
assume that input variable b is the first to turn on. Because
of the added required cube, the output will remain at one.
Now input variable d switches on. Both the added required
cube and cube –1–0 1 will turn off in that case. However the
behavior of this cube might be observed after the required
cube itself has turned off. In fact, the behavior of cube –1–0
going on might be observed after the required cube has
turned off, due to our unbounded wire delay model. This
might lead to a dynamic hazard: after the output has turned
off, a glitch representing the behavior of cube –1–0 might
be observed. This dynamic hazard can be avoided by de-
manding that during a transition after which the output will
turn off, no cube can temporarily turn on. A cube may turn
on, or it may turn off, but not both. This constraint is met by
taking into account a set of privileged cubes. The body of
a privileged cube is equal to the transition cube that covers
the transition. A privileged cube also has an annotated start-
ing–point, corresponding to the starting–point of the transi-
tion. A set of implicants is said to be dhf if the intersection
of each implicant with the body of a privileged cube also
contains the starting–point of that privileged cube. If this is
not the case, the implicant is said to intersect a privileged
cube illegally. This can lead to a dynamic hazard.

In this example, the privileged cube necessary to avoid
a dynamic hazard during transition <1 0 , > is
(pc = 1–0–, ps = 1000). Observe that prime implicant –1–0
intersects the body of this privileged cube, but does not cov-
er the starting–point. Therefore this prime is not dynamic
hazard free. For this example a correct minimal hazard free

a

b

c

d

1 1

1

1

1

1

0 0 0 0

1

0

00

0

0

a
R bd ad acd

bd cd bd cd d d bd

0 – 1

a

d bc bcd bd

0 – 1

F ad bcd abd abc

Ra RaRa Ra

Figure 2: Example of the threeway method

solution consists of three dhf–prime implicants namely:
–110, ––00, –00–.

3.2 The threeway method

In the threeway method for binary–valued functions, the set
of all prime implicants is calculated by supplying the meth-
od the offset of a function f. Searching the set of all prime
implicants becomes equal to searching all maximal cubes
that do not intersect the offset.

If we consider a variable with respect to a cube, we can
discern three cases: the variable is 0, 1 or – (don’t care). The
main idea behind the threeway method is to divide the origi-
nal problem of calculating all prime implicants into the three
sub–problems of calculating the set of prime implicants in
which a selected variable has one of these values. Hence the
name threeway method. For example, one of the sub–prob-
lems is to generate the set of prime implicants for which the
selected variable is equal to 1. The basic idea of the method
is depicted in figure 2. The idea to partition the problem of
calculating the set of all prime implicants into three sub–
problems is not new, it was also used by Coudert to imple-
ment an efficient implicit 2–level minimizer [3].

In the example in figure 2, variable a is used to reduce
the original problem of finding all prime implicants into the
three sub–problems of finding the prime implicants for
which variable a has one of the three possible values.

These three values are represented by three edges. The
set of primes for which a is equal to 0 can never intersect
with that part of the offset where a is equal to 1. Therefore
in order to calculate the set of primes for which a is 0, the
zero–edge for future references, we only need to calculate
the set of maximal cubes that have no intersection with the
negative cofactored offset, since we abstract from variable
a. This is expressed as R|a. For the one edge, the offset be-
comes R|a. For the don’t care–edge, the offset becomes
R|a R|a. This is because for any prime for which variable
a is a don’t care, an intersection with R|a or R|a implies an
intersection with R itself and viceversa. The new sub–prob-
lems are reduced: the cardinality of the support set is de-
creased.

The original problem can be divided into new sub–
problems repeatedly until the offset becomes empty or equal
to the universe cube. In the first case, the set of primes be-
comes equal to the universe cube, since this is the maximal
cube that does not intersect the empty offset. In the second
case the set of primes is empty. The selection of edges taken,
i.e. the path, determines the assignment of the variables of
the prime.

For the given example in figure 2, the offset is given by
R bd ad acd , the cofactors are R|a bd d and
R|a bd cd. By repeating the splitting process, the set
of primes not intersecting R|a can be calculated. This set
turns out to be equal to Primesa bd. Similarly the set of
primes not intersecting R|a is equal to Primesa d bc.
Also it turns out that the set of primes not intersecting
R|a R|a is equal to Primesa a bcd. Combining these
primes results in:

Primes a Primesa a Primesa Primesa a =
abd ad abc bcd.

Figure 3 gives a general overview of the proposed threeway
method:

R
a

R|a R|a R|a R|a

0 1–

Figure 3: General threeway model

The primes generated by the zero– or one–edge can be cov-
ered by the primes generated by the don’t care–edge. There-
fore a single cube containment (SCC) filtering has to be per-
formed, to remove all covered cubes, while merging the
solutions of the sub–problems into the solution of the origi-
nal problem. This is expressed as:

Primes SCC(a Primesa a Primesa Primesa a)

We will now prove that the proposed method generates all
prime implicants. In order to do so, we need the following
lemma:
Lemma 1 Each cube has an unique path in the search tree.
No two different cubes follow the same path in the search
tree since this would imply that for each input variable they
are assigned the same values.

Theorem 1 Each cube generated by the threeway method is
an implicant.
Proof: We only generate a cube when the offset becomes
empty. Certain paths exist in the search tree after which the
offset becomes empty. By lemma 1 each path corresponds
to a unique cube. Following a path is equal to calculating the
cofactor of the offset with respect to this cube. Since this co-
factor is empty, the cube must be an implicant.

Theorem 2 Each implicant generated by the threeway meth-
od is prime.
Proof: Suppose prime implicant d covers an implicant c gen-
erated by the threeway method. Since d does not intersect the
offset, the cofactor of the offset w.r.t. d is empty. Therefore,
following the path that belongs to d leads us to a leaf–node
where the offset is empty. So d is created. Implicant c might
also be created, but due to the SCC–filter, it is removed.

Theorem 3 The threeway method will generate all prime im-
plicants.
Proof: Suppose a prime d is missing. Again we can follow
its path and observe that the offset again will be empty.
Therefore d will be generated.

Theorem 4 If the offset is unate in variable a, then the three-
way method can be reduced to a twoway method.
Proof: The primes generated by Primesa or Primesa can be
covered completely by the primes of Primesa a. This hap-
pens when the offset, and therefore also the onset is unate in
a certain variable. If the offset is unate in variable a then
Ra Ra or Ra Ra. In that case Ra Ra Ra or
Ra Ra Ra. Therefore the primes generated by the zero–
(one–) edge will be covered completely by the primes gener-
ated by the don’t care–edge. Therefore the threeway method
becomes a twoway method.
We can use this observation to significantly reduce the
search space by selecting unate variables as soon as possible.

3.3 Generating all dhf–prime implicants with the
dhf–threeway method

Here, we propose modifications that will allow the threeway
method to generate the set of all dhf–prime implicants. This
is accomplished by keeping track of the set of privileged
cubes during the process of splitting the original problem of
calculating all dhf–primes.

The problem of calculating the set of all prime impli-
cants is transformed into one of calculating all dhf–prime
implicants. For the sub–problems we now want to calculate

the set of all dhf–primes for which the splitting variable a as-
sumes values zero, one or don’t care.
Let us examine the set of dhf–prime implicants for which
variable a is equal to 1. Since variable a is equal to 1 for any
prime calculated by the 1–edge, any privileged cube that has
a starting–point for which a is equal to 0, will be intersected
illegally when its body is intersected. To avoid this intersec-
tion we must add the cofactored body, pc

a of each of these
privileged cubes to the offset of the 1–edge. This way, we
can guarantee that the set of primes generated by the 1–edge
will not intersect these privileged cubes illegally. However,
the primes still might intersect those privileged cubes that
have a starting–point for which variable a is equal to one or
don’t care. Therefore, we must keep track of these privileged
cubes by passing them on. Resuming, the offset and set of
privileged cubes that are passed on to the 1–edge are ex-
pressed as:

P1 p|a | p|sa
R1 R|a p|ca | p|sa
We represent the set of privileged cubes and the Offset
passed on to the 1–edge by adding a subscript 1.

We now consider the case where the splitting variable
a is equal to don’t care: we follow the don’t care–edge. We
can not determine which subset of the set of privileged cubes
will always be intersected illegally. Therefore we must con-
sider the set of all co–factored privileged cubes. This is ex-
pressed as:

P2 P|a P|a
The offset is expressed as:

R2 R|a R|a
A subscript of 2 represents the sets that are passed on to the
don’t care–edge. Note that P2 is not equal to P0 P1. In fig-
ure 4 the general model of the dhf–threeway method is de-
picted.

(R, P)
a

0 1–

(R0, P0) (R2, P2) (R1, P1)

Figure 4: General model of the dhf–threeway method

Theorem 5 The set of implicants generated by the dhf–
threeway method is dynamic hazard free.
Proof: By contradiction. Suppose the method generates an
implicant c that illegally intersects a privileged cube p. We
now start to follow the path belonging to c. After an edge,
p can still be available, in a cofactored form, or it is removed
during the process of calculating the set of privileged cubes
that must be passed on. In the latter case, the cofactored form

of ps is empty in which case the cofactored body of p, pc is
added to the offset. This would make an illegal intersection
of c with p impossible. Since c is supposed to intersect privi-
leged cube p illegally, p must remain in the transported set
of privileged cubes. We can apply this story in a recursive
way until the offset becomes empty. Here c is being created
and it is equal to the universe cube. However, since c is equal
to the universe cube, it cannot intersect p illegally, because
the starting–point is included in the intersection. Therefore
c is a dhf–implicant.

Theorem 6 The set of implicants generated by the dhf–
threeway method is dhf–prime.
Proof: Suppose d is a dhf–implicant that covers dhf–impli-
cant c generated by the threeway method. Now let’s follow
the path belonging to d. The threeway method didn’t gener-
ate d, meaning that when we trace d we end up at a leaf–node
where the offset is not empty. We assume that d does not in-
tersect the original offset. The offset, intersected by d, there-
fore is due to the body of at least one privileged cube that has
been added to the offset. This implies that d will at least ille-
gally intersect one privileged cube. Therefore d cannot be a
dhf–prime implicant.

Theorem 7 The set of dhf–primes generated by the dhf–
threeway method is complete.
Proof: The threeway method generates all prime implicants.
The dhf–threeway method generates dhf–prime implicants.
Suppose a dhf–prime c is missing from the set generated. If
we follow the path belonging to this prime we will discover
that at the node where c should have been created, the offset
is not empty. Therefore c is not valid: it intersects the origi-
nal offset or it intersects a privileged cube illegally. The set
of dhf–primes is complete.

Again we can reduce the threeway method to at most
a twoway method if the offset is unate in at least one vari-
able. However, in the dhf–threeway method this constraint
is not enough. The set of privileged cubes must also be taken
into account since these privileged cubes can eventually
contribute to the offset in the process of calculating the set
of dhf–primes for one of the sub–problems. Therefore, we
can only skip the 0 (1) edge if P2 is equal to P0 (P1) and
R2 R0 (R2 R1).

3.4 Generating contributing (useful) dhf–prime
implicants

The dhf–threeway method is capable of generating all dhf–
prime implicants. However, many of these dhf–primes will
never contribute to a valid solution because they only cover
the don’t care set or because they only partially cover some
required cubes. The threeway method for binary functions
can be modified to avoid the generation of these primes. This
is possible because the solutions of sub–problems do not in-
teract to generate the solution of the original problem, as is

the case in the unate recursive paradigm used in espresso.
This means that if we know that an edge will not generate a
set of contributing/useful primes, we can just discard that
edge. It will have no influence on the other primes being
generated.

In order to detect edges that will not generate contribut-
ing primes we also must keep track of the set of required
cubes. The idea is to refrain from calculating the primes be-
longing to a certain edge when the set of required cubes is
empty. In figure 5 the modifications necessary to the dhf–
threeway method are depicted.

(R, P, Q)
a

0 1–

(R0, P0, Q0) (R2, P2, Q2) (R1, P1, Q1)

Figure 5: General model to generate contributing dhf–
primes

Here Q is used to represent the set of required cubes. We al-
ready know how to calculate sets Rk and Pk. What remains
to be answered is how to determine sets Qk. Let us start by
examining the 1–edge. We only want to propagate those re-
quired cubes in Q for which variable a also is equal to 1. All
other required cubes are only partially covered, or not cov-
ered at all. So we can express Q1 as:

Q1 q|a | a q q
A similar expression exists for Q0. For the don’t care–edge
we must propagate all, cofactored, required cubes. So we
can express Q2 as:

Q2 Q|a Q|a
3.5 Multiple output functions

In this section we will discuss in an outline how the de-
scribed threeway method can be modified to take into ac-
count multiple output functions. In order to do so, we have
extended the threeway method to be able to deal with multi-
ple–valued functions. All output variables can be combined
into one multi–valued variable with a cardinality equal to the
number of outputs [5]. This multi–valued variable can be
used to split the original problem into three new sub–prob-
lems, just like a binary variable. This is done by partitioning
this multi–valued variable into two partitions. For the 0 and
1–edge the offset simply become equal to the offset cofac-
tored to the appropriate partition. This, however, is not the
case for the don’t care–edge. It turns out that the offset for
the don’t care–edge is equal to the combined sets of both co-
factors of the offset, where the original multiple–valued
variable is split into two new multiple–valued variables.
Each new multiple–valued variable corresponds to one of

the partitions of the original multiple–valued variable. Due
to lack of space we will not discuss the specific details nor
the modifications necessary to modify this method to allow
it to generate the set of all dhf–prime implicants. It will be
the subject of a future paper.

4 Results and Conclusions

We have implemented the described threeway method and
compared it with Dill/Nowick’s method [1]. In order to do
so, we used the two–level minimizer espresso to generate
the set of all prime implicants. These primes are then ren-
dered free from hazards by Dill/Nowick’s hazard removal
algorithm. In Table 1 the results are depicted. All benchmark
circuits in the first column are derived from well known
Asynchronous Burst Mode Machines and represent the big-
gest single output examples available. The number of inputs
and the number of cubes of each circuit are shown in the se-
cond column. In the third column the number of primes gen-
erated by espresso and the runtime in seconds are given. A
dash (–) indicates that the runtime was too small to measure
with much accuracy (less than 0.1 [s]). The fourth column
shows the number of dhf–prime implicants generated by
Dill/Nowick’s algorithm, which uses the results generated
by espresso, and the runtimes. The fifth column represents
the results by our threeway method when it is used to gener-
ate all dhf–prime implicants. The number of primes in the
fifth column therefore must be equal to the number of primes
in the fourth column. Again, the runtimes are also repre-
sented. The sixth column represents the number of primes
and the runtime by the threeway method when it only pro-
duces the set of contributing dhf–prime implicants. The last
column represents the smallest solution, in terms of dhf–
primes, possible. This solution was obtained by solving a
unate covering problem, where the minimum number of
dhf–primes was selected that covers all required cubes.

All benchmark runs were performed on a
HP9000/K260 system. Espresso and the threeway method

prototype were both compiled with the same compiler op-
tions.

From table 1 it can be observed that the runtimes of the
threeway method are comparable with the runtimes of
espresso, when the times spend in the column hazard filter
are added. However, the runtimes of the threeway method
are significantly reduced when it is allowed to only generate
the set of contributing prime implicants. This is caused by
the significant reduction of the search space and of the num-
ber of primes calculated.

In this paper we have presented what we believe is the
first constructive exact method that is capable of calculating
the set of all dhf–prime implicants. We have shown that this
method can easily be enhanced to generate only the set of
useful primes. This significantly reduces the solution search
space and hence the runtimes necessary. The proposed
method can also be extended to deal with multiple output
functions. To cope with larger practical problem instances,
it is also important to search for efficient heuristic methods
[2], especially when dealing with multiple–output func-
tions. In a future paper we will show that the threeway meth-
od also provides a good basis for developing efficient heu-
ristic methods.

References

[1] Steven M. Nowick, Davil L. Dill, ”Exact Two–Level Mini-
mization of Hazard–Free Logic with Multiple–Input
Changes”, ICCAD’92, pp. 626–630

[2] Michael Theobald, Steven M. Nowick, Tao Wu, ”Espresso–
HF: A Heuristic Hazard–Free Minimizer for Two–Level
Logic”, DAC’96, pp. 71–76

[3] Olivier Coudert, ”Two–level logic minimization: an over-
view”, Integration the VLSI journal, Vol. 17 No. 2, 1994, pp.
97–140

[4] K.Y. Yun, ”Synthesis of Asynchronous Controllers For Het-
erogeneous systems”, Stanford University, 1994, Ph.D. The-
sis

[5] R. Rudell, A Sangiovanni–vincentelli, ”Multiple–Valued
Minimization for PLA Optimization”, IEEE Transactions on
computer–aided design, Vol. CAD–6, No. 5, September
1987

Table 1: results

Name I/C Espresso Hazard Filter dhf–threeway Contrib Minimize

sbuf–send–ctl.s.pla 6/50 8/– 10/– 10/– 4/– 3

isend–bm.s.pla 9/91 10/– 10/– 10/– 10/– 3

pe–send–ifc.s.pla 8/59 17/– 17/– 17/– 12/– 6

isend.s.pla 8/67 27/– 27/– 27/– 7/– 4

p2.s.pla 13/159 40/– 40/– 40/– 20/– 4

pscsi.s.pla 14/411 173/0.10 179/– 179/0.40 71/0.22 18

p1.s.pla 20/396 473/0.69 527/0.11 527/1.13 169/0.40 12

cache–ctrl.s.pla 21/1334 469/1.12 543/0.16 543/1.40 95/0.63 16

scsi.s.pla 18/912 1958/4.55 2001/0.26 2001/3.17 414/0.6 14

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

