
Synthesis of Wiring Signature-Invariant Equivalence Class Circuit Mutants

and Applications to Benchmarking

Debabrata Ghosh1 Nevin Kapur1 Justin Harlow III2 Franc Brglez1

1CBL (Collaborative Benchmarking Lab), Dept. of Comp. Science, Box 7550, NC State U., Raleigh, NC 27695, USA
2National Semiconductor Corporation, Santa Clara, CA 95052

http://www.cbl.ncsu.edu/

Abstract { This paper formalizes the synthesis process of
wiring signature-invariant (WSI) combinational circuit mu-
tants. The signature �0 is de�ned by a reference circuit �0,
which itself is modeled as a canonical form of a directed bi-
partite graph. A wiring perturbation
 induces a perturbed
reference circuit �
 . A number of mutant circuits �
i can
be resynthesized from the perturbed circuit �
 . The mutants
of interest are the ones that belong to the wiring-signature-
invariant equivalence class N�0, i.e. the mutants �
i 2 N�0.

Circuit mutants �
i 2 N�0 have a number of useful prop-
erties. For any wiring perturbation
, the size of the wiring-
signature-invariant equivalence class is huge. Notably, cir-
cuits in this class are not random, although for unbiased test-
ing and benchmarking purposes, mutant selections from this
class are typically random.

For each reference circuit, we synthesized eight equivalence
subclasses of circuit mutants, based on 0 to 100% perturba-
tion. Each subclass contains 100 randomly chosen mutant
circuits, each listed in a di�erent random order. The 14,400
benchmarking experiments with 3200 mutants in 4 equivalence
classes, covering 13 typical EDA algorithms, demonstrate that
an unbiased random selection of such circuits can lead to sta-
tistically meaningful di�erentiation and improvements of ex-
isting and new algorithms.
Keywords: signature-invariance, equivalence class, circuit
mutants, benchmarking.

I. Introduction

Today, we conduct experiments and report on `performance'
of EDA algorithms on the basis of unrelated instances of cir-
cuit benchmarks. In this paper, we argue that benchmark-
ing EDA tools and algorithms for designing VLSI circuits in
submicron-technology requires a new approach. Case-by-case
evaluations, however detailed, of a few unrelated benchmark
circuits are not likely to reveal a set of statistically consistent
results that can drive and support important improvements
for the new generation of algorithms and tools. However, by
making a case for

(1) a near-in�nite supply of equivalence classes of circuits,
with properties of each class such as

� the same number of I/Os,
� the same number of cell nodes and cell types,
� the same number of cell node pins distributed across

the same number of cell node levels,
and

(2) unbiased random selection of su�ciently large subsets
of circuits from each of the equivalence classes,

we argue that selection of such circuits can and shall lead to
statistically meaningful di�erentiation and improvements of
existing and new algorithms.

Authors from NC State U. were supported by contracts from the Semicon-

ductor Research Corporation (94{DJ{553), SEMATECH (94{DJ{800), and

DARPA/ARO (P{3316{EL/DAAH04{94{G{2080).

Random graphs, a potentially unlimited source of circuit
benchmarks, have not been accepted as realistic { until re-
cently. New approaches to random circuit generation that
take into consideration constraints of digital circuits have
been reported [1, 2]. Both approaches have been motivated by
the need to generate a large number of circuits to test FPGA
architectures. The approach in [3] introduces logic-invariant
transformations to generate a number of logically equivalent
circuits. However, sizes of circuits in the same class can vary
widely, e.g., from 21 to 1894 nodes.
In this paper, we introduce the following concepts:
(1) A reference circuit �0 and its wiring signature �0. The

reference circuit may represent a case of a real design.
(2) A wiring signature and the equivalence class N�0 in-

duced by it.
(3) A wiring perturbation
 resulting in a perturbed refer-

ence circuit �
 .
(4) A synthesis procedure for any number of circuits in the

same equivalence class, i.e. the mutants �
i 2 N�0.
The paper is organized into the following sections: (2)

reference circuit canonical form and wiring perturbations;
(3) reference circuit wiring signature; (4) synthesis of wiring
signature-invariant (WSI) circuits; (5) proposal for design of
experiments; (6) summary of 14,400 benchmarking experi-
ments with 3200 circuits; (7) conclusions.

II. Canonical Form

A graph-based model of a netlist is not e�ective for the prob-
lems we consider. On the other hand, a model of a netlist as
a directed hypergraph is not unique. A `star model' or `Steiner
point model', representing multi-terminal nets, such as illus-
trated in Figure 1(a), is typical only when rendering a netlist
schematic. The example shown is from [4]. To improve legi-
bility of the schematic, a single net with high cardinality may
be rendered with a variable number of `Steiner points'. As
to netlist labeling, the lower case labels in Figure 1 refer to
nets; since all cells have a single output pin, we can infer the
label of the cell from its net label. For example, the three-pin
net r is driven by the cell node R, without labeling the cell
explicitly.
The nature of our problem is such that it can be readily

overloaded with formal notation and detract from the mes-
sage. When discussing a netlist as a directed hypergraph,
we refer to cells (or cell nodes) and nets in topological or-
der. We use the notion of cell level, levels of net pins, and
netspan1. The canonical form of a bipartite directed graph,
a multi-level graph structure of alternating sets of net nodes
and cell nodes, is a simple transformation of the underlying
netlist: levels of some of its pins are rede�ned, and a new
type of cell node, a feedthrough cell is introduced. The salient
property of this form is that the netspan of all edges in this
graph is well-de�ned: edges connecting net nodes and cell

1For each net, netspan = pmax�pmin, where the two numbers denote the

maximum and the minimum pin level of the net.

a

c

b

d

1 2 4 5 63

e

f

g

k

n

m

p

r

q

s

t

u v
w

h

(a) reference circuit netlist

a

c

b

d

1 2 4 5 631 2 40 5 63

e

f

g

k

f.1

n

m

p

r

q

s

r.1

t

u

t.1

v
w

h

(b) reference circuit canonical form

A

AAA

a

c

b

d

1 2 4 5 631 2 40 5 63

e

f

g

k

f.1

n

m

p

r

q

s

r.1

t

u

t.1

v
w

h

(d) circuit mutant canonical form

A

AAA

(c) perturbed reference circuit canonical form

a

c

b

d

1 2 4 5 631 2 40 5 63

e

f

g

k

f.1

n

m

p

r

q

s

r.1

t

u

t.1

v
w

h

perturbed wire

AAA

A

Fig. 1. Representations of a reference circuit and its mutant.

nodes have netspan = 1, edges connecting cell nodes and net
nodes have netspan = 0. Interchangeably, we may refer to
these edges as wires or two-pin nets. Also, we will refer to the
set of all edges with netspan = 1 at level i and nodes incident
at these edges as the mutation channel at level i. Similarly,
we will refer to the set of all edges with netspan = 0 at level i
and nodes incident at these edges as the permutation channel
at level i. The motivation for these de�nitions will become
clear later in this section.
Acyclic Netlist Model. In this paper, we only consider
netlists that are acyclic, where each cell drives only one net,
and is driven by one or more nets. The unique characteristics
of a netlist that we capture before its transformation into a
canonical bipartite directed graph model are the following:

(1) all nets not driven by a cell are assigned a level = 0 and
designated as primary inputs (PIs);

(2) all cells are assigned a level > 0, determined uniquely
by the topological sort of the netlist;

(3) each pin of the net inherits the level of the incident cell;
(4) for each net, netspan > 0, always;
(5) a pin of the net not driving a cell is designated as a

primary output (PO).
An extension of the characterization for netlists with cycles

and its canonical form will be presented elsewhere.
C-BIDAG Model. The canonical bipartite directed graph
model (C-BIDAG) is a transformation of an acyclic netlist.
The order of this transformation is important.

T1: For each PI net, initially at level = 0, and driving
cells at level = ki, re-assign level = minfkig � 1 since
such a PI net does not determine the level of any of the
cells it drives. This is due to the cell level topological
order assignments.
T2: For each net, driven by pin i (at level j) and
netspan = k+1; k > 1, (a) connect net i to input pins of
all incident cells at level j + 1, (b) place a single-input,
single-output feedthrough cell at level j + 1, connect its
input pin to pin i, and connect its output pin to input
pins of all incident cells at level j+2, (c) repeat step (b)
x-times until j + x = k + 1.
T3: Replace each net with a net node (a net node mirrors
the cell node: its fanin is 1 and fanout is variable).

A canonical form of the netlist in Figure 1(a) is shown in
Figure 1(b). For example, the PI net e has been moved from
level 0 to level 1, and the 3-pin net r with netspan of 2 has
been transformed into a net node r driving a feedthrough
node R.1 which in turn drives a net node r.1. With respect

to Figure 1(b), it can be readily veri�ed that edges connecting
net nodes to cell nodes span levels i � 1 and i, while edges
connecting cell nodes to net nodes remain at level i.
Wiring Perturbation Model of C-BIDAG. A wiring per-
turbation is de�ned for both the mutation channel and the
permutation channel at level i as de�ned earlier. Basically,
it amounts to the removal of p wires or q% wires from ei-
ther or both of the channels at level i; starting at level 1 and
completing at the highest level.
An example of 60% wiring perturbation is shown in Figure

1(c). For example, at level 1, there are a total of 8 wires in
the mutation channel. A 60% perturbation implies a removal
of 5 wires. A level-wise distribution of all 60% wiring per-
turbations in the mutation channels for this circuit is thus
f5; 4; 4; 3; 1; 1g. The upper bound on the number of mutants
for this perturbation is 288x18x6x9x1x1 = 279,936. Results
using 100 randomly selected mutants show a surprising range
of variations of optimizing objectives for the algorithms con-
sidered { even for such a small reference circuit.
Reference Circuit Mutation. A reference circuit muta-
tion is induced by the p-wire or q%-wire perturbation of the
reference circuit in C-BIDAG form. The wiring perturbation
leaves some of the nodes in the circuit
oating and the mu-
tation process consists of restoring, as a random process, all
connections that have been removed by the wiring perturba-
tions. An example of a circuit mutant induced by the 60%
wiring perturbations in Figure 1(c) is shown in Figure 1(d).
The circuit mutant does not look isomorphic to its reference
circuit in Figure 1(b). However, it has a number of properties
that make it belong to the mutant equivalence class as de�ned
next.

III. Wiring Signature Invariance

As demonstrated, introducing edge perturbations and recon-
necting the nodes can change the structure of the graph dra-
matically . The question arises what properties about the
graph can be maintained as invariant during this process while
still creating a diversity of useful graph mutations. The wiring
signature, illustrated in Figure 2, is subject to conditional in-
cidence relationships and bounds on the net node fanout and
has the required properties.
Wiring Signature. The reference circuit representation in
the canonical form as de�ned in this paper suggests a circuit
signature as a distribution of characteristic cuts in a level-
order.
Each characteristic cut is de�ned for level i as follows:
Li;I : total number of PI net nodes;
Li;O: total number of PO net nodes;
Li;A: total number of net nodes driven by feedthrough cells;
Li;1: total number of net nodes driven by 1-input combi-

national cells;
Li;2: total number of net nodes driven by 2-input combi-

national cells;
�xi;X : upper (x = max) and lower (x = min) bounds on

the total fanout for net nodes of type X, where X = I is the

Level i : 0 1 2 3 4 5 6 Level i : 0 1 2 3 4 5 6 Level i : 0 1 2 3 4 5 6

--------- -------------- --------- -------------- --------- --------------

Li;I : 4 1 0 0 0 0 0 �min
i;C

: 0 3 3 2 2 1 1 �max
i;C

: 0 6 5 5 2 1 1

Li;O : 0 0 0 0 0 0 1 �min
i;I

: 8 1 0 0 0 0 0 �max
i;I

: 8 3 0 0 0 0 0

Li;A : 0 0 1 0 1 1 0 �min
i;A

: 0 0 1 0 1 1 0 �max
i;A

: 0 0 3 0 1 1 0

Li;1 : 0 0 0 0 0 0 0 'min
i;C

: 0 1 1 1 1 1 1 'max
i;C

: 0 3 3 3 1 1 1

Li;2 : 0 4 3 3 2 1 1 'min
i;I

: 1 1 0 0 0 0 0 'max
i;I

: 4 3 0 0 0 0 0

'min
i;A

: 0 0 1 0 1 1 0 'max
i;A

: 0 0 3 0 1 1 0

qi+1 : 0 8 7 6 5 3 2

BASIC SIGNATURE SIGNATURE EXTENSION

Fig. 2. An example of a circuit signature and its extension.

case of a PI net node, X = A is the case of a net node driven
by a feedthrough cell, X = C is the case of a net node driven
by a combinational cell;
'
x
i;X : upper (x = max) and lower (x = min) bounds on

any single node fanout for net nodes of type X, where X = I

is the case of a PI net node, X = A is the case of a net node
driven by a feedthrough cell, X = C is the case of a net node
driven by a combinational cell;
qi+1: total number of cell input pins at level i + 1 to be

driven by net nodes at level i.
To keep the size of the signature manageable, we have re-

stricted it to 1- and 2-input combinational cells only. The
signature for a general sequential circuit is more complex and
will be presented elsewhere. Speci�cally, the wiring signature
for the reference circuit in Figure 1(b) is shown in Figure 2.
We refer to the �rst 5 rows on the leftmost column as the `ba-
sic signature', and the remainder as the `extended signature'.
For example, note that at level 2, the basic signature records
the presence of 3 net nodes driven by 2-input cell nodes, and
1 net node driven by a feedthrough cell. While the statis-
tics contained in the `basic signature' may appear trivial at
�rst glance, they give rise to unique bounds on the fanout of
the net nodes shown as a part of the `extended signature'. An
example of these bounds will be discussed later in the section.
Conditional Incidence Relationships. Restoring the con-
nections after any perturbation of the reference circuit canon-
ical form, including the removal of all wires, may result in a
circuit whose wiring signature will be di�erent from the one
generated for the reference circuit. The canonical form graph
imposes a set of unique conditions on how net nodes may
drive the cell nodes such that the wiring signature is main-
tained when reconnecting the edges that have been removed
between the net nodes and cell nodes. Table I summarizes all
of the conditional incidence relationships of net nodes at level
i�1 to cell nodes at level i that must be maintained to restore
a mutant circuit whose signature will match the signature of
the reference circuit under any perturbation.
Net Node Fanout Bounds. Given the basic signature,
the bounds on the fanouts of each net node are invariant.
These are included as a signature extension in Figure 2. For
example, at level 2, the minimum fanout on the net nodes of
type C is 3 and the maximum is 5. The corresponding values
for fanouts on individual net nodes of type C are 1 and 3
respectively.
During mutation, the signature is maintained for any choice

of �i;X('i;X) provided that �i;X 2 [�mini;X ;�maxi;X] and 'i;X 2

['mini;X ; '
max
i;X], X 2 fC;A; Ig.

As an example, �mini;C is given by

�mini;C = max(Li;1 + Li;2; Li+1;2 + Li+1;1) (1)

The formulation of �mini;C is dictated by the fact that the level
of each combinational gate at level i + 1 has to be asserted
by an edge from a net node of type C at level i (condition
B1 in Table I), and, each net node must drive at least one
edge. Maximum number of edges driven by C-type net nodes
is given by:

�maxi;C = min
�
�1;max
i;C ; �2;max

i;C

�
(2)

where �1;max
i;C = qi+1�Li;I �Li;A and �2;max

i;C = 2�Li+1;2�
Li;I+min (Li;2 + Li;1; Li+1;1)+min (Li;2 + Li;1; Li+1;A). The
complete set of bounds (a total of 12), required to preserve
the signature, is omitted. Note that, within the bounds, the
reference circuit and the mutant may have a di�erent distri-
bution across the di�erent types of net nodes. However, all

TABLE I

Conditional incidence relationships for the canonical form.

Cell nodes
Net nodes at level i Conditions

at level i�1 fta lgb

lg-driven 0 1 A1: cannot drive the same node twice

lg-driven 1 0 A2: cannot drive more than 1 feedthrough
lg-driven 1 1 A3: must satisfy A1 and A2
ft-driven 0 1 B1: level of cell at level i must be asserted

by a lg-driven net node at level i�1
ft-driven 1 0 B2: cannot drive more than 1 feedthrough
ft-driven 1 1 B3: must satisfy B1 and B2
PO(term.) 0 0 C0: must be lg{driven at level i�1

PO(driving) 0 1 C1: must satisfy C0
PO(driving) 1 0 C2: must satisfy C0 and A2

PO(driving) 1 1 C3: must satisfy C0 and A3

PIc 0 1 D1: must satisfy B1
PI 1 0 D2: must not be allowed

PI 1 1 D3: must satisfy B1 and B2

afeedthrough cell nodes

blogic cell node

cAt least one PI node is at level 0

mutants share the same signature extension, i.e. the same
fanout bounds, with the reference circuit.
Wiring Signature-Invariant Class. Given a topologi-
cally sorted acyclic netlist model as de�ned in this paper,
the wiring signature of its C-BIDAG model is unique. Con-
sider a reference circuit �0 and its wiring signature �0. A
wiring-signature-invariant equivalence class N�0 is the set of
all circuits whose wiring signature is �0. We say that these
circuits are mutants of the reference circuit �0. Speci�cally,
the mutants are induced by a wiring perturbation
 and are
denoted as �
i 2 N�0. In Section 5, we introduce 8 speci�c
subclasses (A{H) of the wiring signature invariant mutants.
The subclasses are di�erentiated by di�erent degrees of per-
turbation (
).

IV. Synthesis of Mutants

This section presents a synthesis procedure for any number
of circuit mutants. The goal of the synthesis process is to
reconnect the removed wires in a perturbed circuit such that
the signature of the reference circuit is restored.
The synthesis algorithm MUTATE, outlined in this section,

relies on the following theorem (proof omitted for brevity).
Theorem: Given the basic signature of the reference circuit,
any circuit mutant satisfying the fanout bounds of the ex-
tended signature will remain in the same equivalence class.
Connection Assignments. We consider three connection
assignments at level i; i > 0:

(A1): bounded net node edge connection (mutation chan-
nel). Here, pi net nodes at level i are assigned a bounded
distribution of qi+1 edges that are to be connected to qi+1

input pins of cell nodes at level i+ 1;
(A2): restricted cell node edge connection (mutation chan-

nel). Here, qi+1 edges driven by net nodes at level i are con-
nected to qi+1 input pins of cell node at level i + 1, subject
to forbidden permutation positions;

(A3): unrestricted permutation connection (permutation
channel). Here, pi+1 edges driven by cell nodes at level i+ 1
drive pi+1 net nodes at level i + 1. This step is well under-
stood.
Illustrative Example. We make use of the single mutation
channel i in Figure 3 to illustrates the process.

(a) The complete signature for the reference channel
is f(1; 0; 1; 1; 1); ([3; 5]; [1; 3]; [1; 2]); ([1; 4]; [1; 3]; [1; 2]); 7g. For
readability, the signature is shown in four parts:

� basic signature;

(d) Step 1 of Assignment A2 (e) Step 2 of Assignment A2 ((f) Step 3 of Assignment A2

AA

AA

AA AAA
AAA

AAA
AAAAAAAA

AA
AAA
AAA
A
A

AA
AA

AA
AAAAAA
AA
AA
AA
A
A
A

AAA
AAA
AA
AA
AA
AAAA
A
A

C

C

I

A

A

A

A AA
AA

AA
AAAAAAAA

AAA
AAAA
AAAAA
AA
AA

AA
AA

AA
AAAAAA
AA
AA
AA
A
A
AA

AAA
AAA
AA
AA
AA
AAAA
A
A

C

C

I

A

(a) Reference channel “i” (b) 100% perturbed channel “i” (c) channel “i” after assignment A1

AA

AA

AA AA
AA

AA
AAAAAAA

AA
AAAA
AAAA
A
A

AA
AA

AA
AAAAA
A
AA
AA
A
A
AA

AAAA
AAAA
AA
AA
A
AAA
A
A

C

C

I

A

AA
AA

AA AAA
AAA

AAA
AAA

AAA
AA
AA
AA
AA
A
AAAA

AA
AAAA
AA
AA
AAAA
A
A
A
A

AAA
AA
AA
AA
AAAAA

C

C

I

A

A
A

A AA
AA

AA
AA

AAA
AAA
AAA
AA
AA
AA
AAAAAAA

AA
AAAA
AA
AA
AAAA
A
A
AA
AA

AAA
AA
AA
AA
AAAAA

C

C

I

A

AA
AA

AA AA
AA

AA
AA

AAA
AA
AA
AA
AA
AA
AAAAA

AA
AAAA
AA
A
AAA
A
A
AA
AA

AAAA
AA
AA
A
AAAA

C

C

I

A

Fig. 3. Single channel mutation sequences.

� extended part of the signature relating to bounds on total
fanout of net nodes of type C, I, A;

� extended part of the signature relating to bounds on in-
dividual fanout of net nodes of type C, I, A;

� number of cell input pins to be driven by net nodes at
level i.

(b) Here we show the case of 100% wiring perturbation.
The case of partial perturbation can be presented similarly.

(c) This is an illustration of the bounded net node edge
connection (Assignment (A1)). According to the signature,
the bound on C-type net nodes is [3; 5]. Here, the random
choice returns 4 edges. Similarly, the bound on I-type net
nodes is [1; 3], and the bound on A-type net nodes is [1; 2].
The random choice returns 2 edges and 1 edge, respectively.
Since there are 2 C-type nodes, we need to distribute the 4
C-type edges to individual net nodes such that the fanout on
either net node does not exceed the individual fanout bound
[1; 4]. Formally, the assignment is always done in the following
order : �i;C ;�i;I ;�i;A; 'i;C ; 'i;I ; 'i;A.

(d, e, f) This is an illustration of the restricted cell node
edge connection (Assignment (A2)). The following three
steps, in the strict order shown, complete all of the perturbed
circuit connections.

� connect any edge driven by C-type net node to an input
pin of a logic node such that condition B1 in Table I is
satis�ed;

� connect any edge driven by I-type net node to an input
pin of a logic node whose level has already been asserted
by a C-type net node (this step satis�es conditions D1,
D2, D3 in Table I);

� connect all remaining edges driven by any net node type
to an input pin of a logic or feedthrough cell node under
the constraints of Table I.

Pseudo{code of MUTATE. In Figure 4, we show a section
of pseudo-code of the MUTATE algorithm, notably the connec-
tion assignments A1{A2. Essentially, the mutation process
consists of a sequence of connections from net nodes to cell
nodes and vice versa. To generate each mutant, the process
progresses from level 0 to the highest level. Selection of a
speci�c pair of fnet nodes, cell nodeg is done by a random
choice out of a feasible set that conforms to the constraints
in Table I and the fanout bounds such as Eqs. (1{2).
Time and Memory Complexity of the Algorithm. The
algorithm always works on two adjacent levels and the com-
putations at level i does not depend on any of the results of
levels � i� 2. Hence the process may be described as mem-
oryless. The storage complexity is O(m) where m is the
maximum size of all the levels. The time complexity of the

for # of mutants to be generated f
for each level i from 0 to max level f
do assgn A1; do assgn A2; do assgn A3; g g
function do assgn A1() f
�i;C =rand assgn(�mini;C ;�maxi;C); remainder = qi+1 � �i;C ;

�i;I =rand assgn
�
�mini;I ; min

�
�maxi;I ; remainder

� �
;

remainder = remainder� �i;C ; �i;A = remainder;
for each net node of type C f
remainder = fanouts left in �i;C;

'i;C =rand assgn
�
'
min
i;C ; min

�
'
max
i;C ; remainder

� �
; g

for each net node of type I f
remainder = fanouts left in �i;I;

'i;I =rand assgn
�
'
min
i;I ; min

�
'
max
i;I ; remainder

� �
; g

for each net node of type A f
remainder = fanouts left in �i;A;

'i;A =rand assgn
�
'
min
i;A ; min

�
'
max
i;A ; remainder

� �
; gg

function do assgn A2() f
for each cell node y at i+1 f pick x at random from

�i;C and connect it to y g
for each net node y of type I at level i f
pick x at random from Li+1;2 and connect y to x g
for each 'i which is not yet connected f
calculate feasible set of cell nodes;

pick x at random from the feasible set and connect

to the net node gg

Fig. 4. A section of MUTATE pseudo{code

algorithm can be stated as O(j V j + j E j)k, where j V j is
the number of cell nodes in the circuit and j E j is the number
of nets and 1 � k � 2.

V. Design of Experiments

The capability to synthesize a large number of WSI circuit
mutants, based on wire perturbation classes, motivates us to
examine the sampling methods that arise in the design of ex-
periments. Such methods, �rst formalized in [5], have been
adopted widely in many �elds of science. In this paper, we
adapt them to analyze the performance of important graph-
based algorithms in the context of EDA. For each reference
circuit, we propose to synthesize equivalence subclasses of cir-
cuit mutants, based on 0 to 100% perturbation. Each subclass
contains 100 randomly chosen mutant circuits, each listed in
a di�erent random order. This sample size is large enough for
the sampling distributions to be considered normal or nearly
normal; the population parameters may be estimated closely
by their corresponding sample statistics. The eight equiva-
lence subclasses, labeled from A to H, are de�ned in terms of
the perturbations we use to generate each class. In order to
encourage unbiased experiments with these classes, we have
permuted the perturbations relative to the label assignments:

fA;B;C;D; E; F;G;Hg =

permutationf0w; 1w; 2w; 5%; 10%; 20%; 40%; 100%g (3)

In (3), WSI classes A-H are de�ned either in terms of q-
% wire perturbations or 0-wire, 1-wire, 2-wire (0w; 1w; 2w)
perturbations. We plan to identify the labels A-H in terms of
the respective perturbation classes in (3) later, once there are
additional experiments reported by others and participants
have the opportunity to meet and present their results at a
joint session of a conference. More details about such plans
can be found under http://www.cbl.ncsu.edu/experiments/.
A case study tutorial of average-case performance of two

algorithms and their di�erences has demonstrated that up
to six distinct equivalence classes of data are useful to render
an unbiased comparison of two well-known sorting algorithms

[6]. The long-term goal of this series of experiments, presently
starting with eight equivalence classes, is to facilitate genera-
tion of similar comparisons for the more complex and diverse
algorithms in EDA. Whatever may be decided about the most
suitable number of equivalence classes through wider partici-
pation later on, the class of 0-wire perturbations will remain
important. As demonstrated in this paper as well as earlier
[7], the objective functions used in a number of graph-based
algorithms can be very sensitive to the order of nodes in the
graph, even when graphs are isomorphic. In our experiments,
the 100 netlists in the 0-wire perturbation class are simply
isomorphic instances of the reference netlist in a randomized
order.
Paraphrasing the context of the traditional treatments and

blocks [8], we propose to archive data in the context of al-
gorithms and equivalence class mutants as shown in Figure
5(a). For each of the `a' algorithms we consider `b' mutants
in one of the equivalence classes in (3). For each algorithm
Alg_j and mutant M-X_k, X 2 fA; : : : ; Hg, we record two
observations: the initial value of the objective function tuple
X_jk-I, and the �nal value of the objective function tuple
X_jk-F. The initial value corresponds to a placebo treatment
of the mutant M-X_k: it is the value of the objective function
before engaging the algorithm to optimize it. The �nal value
corresponds to the optimized value of the objective function
after engaging the algorithm to optimize it.
A number of analyses can be performed once data is

archived as shown in Figure 5(a) and only a few are dis-
cussed in this paper. For the most part, we shall concentrate
on analyzing data as presented in Figure 5(b). In particu-
lar, for samples associated with each algorithm Alg_j and
mutant class M-X, X 2 fA; : : : ; Hg, we evaluate the 95%
con�dence interval of the sample mean, the sample mean,
and the sample variances as tuples {M-X_j-I} and {M-X_j-F}

respectively. We summarize such evaluations in the form
shown in Figure 5(c). The next section provides represen-
tative summaries of data samples we generated and archived
under http://www.cbl.ncsu.edu/experiments/.

VI. Experiments

This section summarizes experiments based on four classes of
WSI circuit mutants, based on reference circuits V65E3-64,
V65E1-66, C499, and C1355. The �rst two reference circuits
belong to a family of 2-layer graphs introduced in this paper,
the other reference circuits belong to the ISCAS85 set [9]
and are also documented in [10]. With eight subclasses A-
H and 100 mutant circuits in each class, we summarize a
total of 14,400 experiments covering representative cases of
13 algorithms.
Complete tables of all data samples summarized

in this paper have been archived on our web site
(http://www.cbl.ncsu.edu/experiments/). The archives are
being updated periodically with additional experiments and
cases of more detailed statistical analyses [11]. The web site
provides an open forum to interested researchers for further
sampling, tests of signi�cance and hypotheses, and statistical
inference of existing data and benchmarks, as well as for con-
tributing new cases of benchmarks, new data of experiments,
and new cases of statistical analysis. The site will maintain
contributions of participants either as hyperlinks to data and
documents on participant's web site, or new archives will be
created under http://www.cbl.ncsu.edu/experiments/.
In this section we describe brie
y the context of the ex-

periments and provide a `textbook' statistical summary of
uncorrelated 95% con�dence interval of the sample mean, the
sample mean and the sample standard deviation. We only
brie
y allude to some fundamental issues, such as

==

(a) algorithms-vs-mutants-vs-classes

==

M-H_1 M-H_k M-H_b |

---------------------------------|

................................. |

M-B_1 M-B_k M-B_b | |

-----------------------------------| |

M-A_1 M-A_k M-A_b | | |

-----------------------------------| | |

Alg_1-I A_11-I A_1k-I A_1b-I | | |

Alg_1-F A_11-F A_1k-F A_1b-F | | |

..... | | |

Alg_j-I A_j1-I A_jk-I A_jb-I | |

Alg_j-F A_j1-I A_jk-F A_jb-F | |

..... | |

Alg_a-I A_a1-I A_ak-I A_ab-I |

Alg_a-F A_a1-F A_ak-F A_ab-F |

==

(b) classes-vs-mutants (for a given algorithm Alg_j)

==

Alg_j-F M-._1 M-._k M-._b

M-A A_j1-F A_jk-F A_jb-F {M-A_j-F}

M-B B_j1-F B_jk-F B_jb-F {M-A_j-F}

....

M-H H_j1-F H_jk-F H_jb-F {M-H_j-F}

{M-._j1-F} ..{M-._jk-F} ..{M-._jb-F}

==

(c) statistics of algorithms-vs-mutant classes

==

M-A M-B M-H

Alg_1-I {M-A_1-I} {M-B_1-I} ... {M-H_1-I}

Alg_1-F {M-A_1-F} {M-B_1-F} ... {M-H_1-F}

.....

Alg_j-I {M-A_j-I} {M-B_j-I} ... {M-H_j-I}

Alg_j-F {M-A_j-F} {M-B_j-F} ... {M-H_j-F}

.....

Alg_a-I {M-A_a-I} {M-B_a-I} ... {M-H_a-I}

Alg_a-F {M-A_a-F} {M-B_a-F} ... {M-H_a-F}

Fig. 5. Data structures and classes for the proposed experiments.

� Consider, for a given mutant class, (1) sample mean and
standard deviation of the unoptimized objective function,
and (2) sample mean and standard deviation of the ob-
jective function optimized via algorithm Alg_j. We have
to decide: (H0) is the di�erence in the means due to
chance, or (H1) is it due to the e�ect of algorithm Alg_j?

� Consider, for a given algorithm Alg_j, (1) sample mean
and standard deviation of the optimized objective func-
tion in terms of mutant class A, and (2) sample mean
and standard deviation of the optimized objective func-
tion in terms of mutant class B. We have to decide: (H0)
is the di�erence in the means due to chance, or (H1) is
it due to di�erences of the two mutant classes?

� Consider, for a given mutant class (1) sample mean and
standard deviation of the objective function optimized by
algorithm Alg_j1, and (2) sample mean and standard de-
viation of the objective function optimized by algorithm
Alg_j2. We have to decide: (H0) is the di�erence in
the means due to chance, or (H1) is it due to di�erent
performances of the algorithms Alg_j1 and Alg_j2?

For example:

� Upon inspection of initial (DOT I) and �nal (DOT F)
wire-crossing results in Figure 6, we do not need a t-test
to declare that the wire crossing minimization algorithm
implemented in DOT [12] is highly e�ective.

<-10 5 25 45 65 85 105
0

5

10

15

20

25

V
65

E
3-

64
 M

ut
an

ts
 (

C
la

ss
D

)

Minimized wire crossing
<50 125 225 325 ≥400

0

5

10

15

20

25

30

V
65

E
3-

64
 M

ut
an

ts
 (

C
la

ss
B

)

Minimized wire crossing
<150 225 325 425 525 ≥600

0

5

10

15

20

25

R
an

do
m

 g
ra

ph
s

(V
=6

5,
E

=1
31

)

Minimized wire crossing

W ClassA W ClassB W ClassC W ClassD W ClassE W ClassF W ClassG W ClassH ClassRND

DOT I(V65E3-64) [4177, 4270] [4151, 4245] [4129, 4230] [4159, 4254] [4149, 4242] [4126, 4224] [4098, 4197] [4167, 4252] [2019, 2107]
4223, 234 4198, 237 4179, 253 4207, 239 4196, 234 4175, 247 4147, 250 4209, 215 2063, 222

DOT F(V65E3-64) [51.3, 63.9] [205, 231] [200, 223] [24.8, 32.5] [175, 200] [136, 158] [42.5, 53.6] [112, 128] [343, 377]
57.6, 31.9 218, 65.6 212, 59.6 28.7, 19.3 188, 63.2 147, 56.2 48.0, 27.9 120, 39.5 360, 84.3

DOT I(V65E1-66) [4261, 4360] [4263, 4367] [4230, 4335] [4270, 4372] [4263, 4359] [4205, 4319] [4276, 4377] [4248, 4348] [1996, 2087]

4310, 247 4315, 261 4282, 264 4321, 255 4311, 240 4262, 286 4327, 255 4298, 251 2041, 230
DOT F(V65E1-66) [156, 174] [295, 324] [287, 315] [160, 174] [235, 265] [209, 238] [159, 174] [180, 205] [379, 420]

165, 45.7 309, 74.2 301, 72.0 167, 35.4 250, 74.2 224, 72.0 167, 38.8 192.6, 63.6 399, 101

Fig. 6. Statistical summary for 16 mutant classes and 2 random classes of 2-level graphs V65E1-66, V65E3-64.

� Upon inspection of data in Figure 7, we want to deter-
mine whether, for the algorithm that optimizes mincut,
the di�erence in reported means for Class A and Class G

is due to chance or due to di�erences in mutant classes.
For the values shown in the table, we �nd t = 10:79.
Hence, we accept the hypothesis that there is a signi�-
cant di�erence between the mutant classes A and G for
this algorithm.

� Upon inspection of data in Table II, we want to de-
termine, for the mutant Class A, whether the di�er-
ence in reported means for the algorithm MIS that opti-
mizes alg-nodes and the algorithm SIS that optimizes
alg-nodes is due to chance or due to di�erent perfor-
mances of the algorithms. For the values shown in the
table, we �nd t = 5:17. Hence, we accept the hypothe-
sis that there is a signi�cant di�erence between the two
algorithms for the mutant Class A.

A comprehensive multiple comparison analysis is beyond the
scope of this paper and will be presented elsewhere. The sub-
ject of multiple comparisons, even when enough data has been
collected, requires careful data interpretation and application
of tools2.
Signi�cantly, reader should observe the sensitivity of sev-

eral algorithms when evaluating the 0-wire perturbation class
(ClassD). For ClassD, the distribution should ideally be a
delta-function { however we do observe noticeable spreads of
distributions! Given that the netlists in this class are isomor-
phic, the observations demonstrate the fallacy of relying on a
single measurement of any benchmark circuit { variations for
many of the `improvements' published to date may well be
attributed to chance rather than any intrinsic improvement
of the algorithm.

Figure 6 and classes of V65E3-64, V65E1-66. Here,
we report results of wire crossings, using DOT [12]. Circuits
V65E3-64, V65E1-66 belong to two families of parameterized
2-layer directed sparse graphs: Vn+1E3-n (E3-graphs) and
Vn-1E1-n (E1-graphs) [11]. In each case, the numbers corre-
spond to the net-node signatures at level 0 and level 1, de�ned

2According to [13], page 175: `If multiple comparison methods rank second

in frequency of use, they perhaps rank �rst in the frequency of abuse'.

in Figure 2. Properties of E3-graphs are: number of nodes at
level 0 = n+1, number of 1-input nodes at level 1 = 3, number
of 2-input nodes at level 1 = n, number of edges = 2*n + 3,
number of wire crossings = 0. Properties of E1-graphs are:
number of nodes at level 0 = n-1, number of 1-input nodes at
level 1 = 1, number of 2-input nodes at level 1 = n, number
of edges = 2*n + 1, number of wire crossings = n - 2.
The expected number of wire crossings in 2-layer graph

structures with randomly placed nodes, such that the likeli-
hood of connecting node node pairs (i; j) or (j; i) is the same,
is given by a formula in [14]. For graphs with parameters such
as V65E3-64 the expected crossing number is 4258, and for
V65E1-66 the expected crossing number is 4324. Remarkably,
this number is approached for all of the eight randomly placed
mutant subclasses in both circuits as tabulated in Figure 6.
On the other hand, reported means of the wire crossings for
the instances of the randomly placed random circuit classes
(class RND) are 2019 and 2041 respectively [11]. We attribute
the signi�cant reduction in the expected wire crossing to clus-
tering of edges at some of the nodes, so the formula in [14]
does not apply to the case of randomly generated graphs.
Using DOT, the wire crossing is reduced signi�cantly for all

mutant classes { less so for the random class. We observe a
distinct value of the minimized mean wire crossing for each
of the eight mutant classes. Note however, that there are rel-
atively few optimal solutions returned for mutants in ClassD

where known minimum crossing numbers are 0 and 64! Mul-
tiple comparison of the means will be performed later.
Crossing theory has been developed to introduce technique

which enhance the readability of hierarchical structures [14].
The problem for placing the nodes for minimum wire crossing
is NP-complete [15], even for the 2-layer graphs. The cross-
ing number and wire area have been investigated for e�ective
wire lower bounds and e�ective edge length for a variety of
computational VLSI circuits in [16]. An extensive analysis of
wire-crossing minimization algorithms is available in [17].

Figure 7 and classes of C1355. Here, we report result
of wire crossings, balanced bi-partition mincut, and placed
& routed layout: using DOT [12], PROP [18], and OASIS [19].
Again, we notice a dramatic reduction in wire crossing after

<8750 9450 10250
0

5

10

15

20

25

30

C
13

55
 M

ut
an

ts
 (

C
la

ss
B

)

Mninimized wire crossing (DOT)
<45 49.5 55.5 61.5 67.5 ≥72

0

5

10

15

20

25

30

C
13

55
 M

ut
an

ts
 (

C
la

ss
B

)

Mincut for bipartition (PROP)
<245 260 280 300 320

0

5

10

15

20

25

30

35

C
13

55
 M

ut
an

ts
 (

C
la

ss
B

)

Layout area (OASIS)

W ClassA W ClassB W ClassC W ClassD W ClassE W ClassF W ClassG W ClassH

Wire Xing-I [24083, 24261] [30950, 31209] [29461, 29693] [23583, 23706] [27729, 27944] [26280, 26470] [23746, 23884] [24938, 25111]
24172, 446 31080, 652 29577, 583 23645, 309 27836, 539 26375, 477 23815, 346 25025, 434

Wire Xing-F [4736, 4882] [9578, 9701] [8898, 9028] [4066, 4210] [7391, 7522] [6101, 6233] [4381, 4525] [5374, 5505]

4809, 366.5 9640, 307.9 8963, 327.5 4138, 363.0 7457, 329.8 6167, 333.1 4453, 361.7 5440, 327.3

Mincut [34.7, 36.2] [55.3, 57.2] [55.7, 57.6] [26.4, 28.0] [58.5, 60.5] [53.4, 54.8] [29.1, 30.6] [45.3, 46.3]
35.4, 3.6 56.2, 4.8 56.7, 4.8 27.2, 4.0 59.5, 5.0 54.1, 3.5 29.8, 3.7 45.8, 2.6

Lay. area [2.12M, 2.14M] [2.83M, 2.88M] [2.68M, 2.72M] [2.11M, 2.13M] [2.42M, 2.46M] [2.27M, 2.29M] [2.12M, 2.14M] [2.18M, 2.20M]

2.13M, 53.6k 2.85M, 125K 2.70M, 110k 2.12M, 47.9k 2.44M, 88k 2.28M, 65.9k 2.13M, 48.6k 2.19M, 68.3k
Lay. wirelen [304k, 308k] [495k, 505k] [462k, 470k] [300k, 305k] [395k, 403k] [346k, 352k] [303k, 308k] [320k, 325k]

306k, 11k 500k, 25k 466k, 21k 303k, 10k 399k, 19k 349k, 15k 306k, 12k 322k, 14k

Fig. 7. Wire crossing, mincut and layout results for mutant classes of circuit C1355.

TABLE II

Fault coverage, mapping and logic optimization results for mutant classes of circuit c1355.

W ClassA W ClassB W ClassC W ClassD W ClassE W ClassF W ClassG W ClassH

nodes-I 518 518 518 518 518 518 518 518

levels-I 25 25 25 25 25 25 25 25

Fault Coverage [96.2, 97.2] [90.5, 91.6] [92.6, 93.6] [99.3, 99.3] [92.7, 93.6] [93.2, 94.1] [98.3, 98.7] [94.6, 95.5]
(%) 96.7, 2.54 91.0, 2.69 93.1, 2.38 99.3, 0.00 93.2, 2.29 93.7, 2.32 98.5, 1.07 95.0, 2.21

Area (mapped-SIS) [706k, 709k] [651k, 655k] [643k, 647k] [714k, 714k] [658k, 662k] [683k, 687k] [710k, 711k] [700k, 703k]
707k, 7.9k 653k, 10.8k 645k, 10.4k 714k, 1.3k 660k, 9.8k 685k, 8.3k 710k, 4.2k 701k, 7.9k

Delay (mapped-SIS) [31.47, 31.81] [33.91, 34.53] [33.30, 33.88] [30.42, 30.56] [32.99, 33.47] [32.31, 32.79] [30.93, 31.19] [31.93, 32.33]
31.64, 0.87 34.22, 1.57 33.59, 1.47 30.49, 0.35 33.23, 1.20 32.55, 1.20 31.06, 0.67 32.13, 1.03

alg-nodes (MIS) [233, 239] [581, 595] [568, 579] [184, 184] [496, 506] [394, 403] [201, 204] [394, 403]

236, 14 588, 35.7 573, 27.7 184, 0.0 501, 23.7 398, 20.8 203, 8.49 398, 20.8
alg-level (MIS) [21.5, 22.4] [29.7, 30.5] [29.5, 30.2] [17.1, 17.3] [28.3, 29.1] [25.9, 26.8] [19.5, 20.2] [25.9, 26.8]

21.9, 2.07 30.1, 2.03 29.9, 1.92 17.2, 0.66 28.7, 1.97 26.3, 2.22 19.8, 1.62 26.3, 2.22
alg-nodes (SIS) [244, 249] [557, 569] [542, 552] [205, 210] [485, 493] [393, 400] [219, 223] [310, 316]

246, 13.2 563, 30.7 547, 25.5 208, 11.6 489, 21.9 396, 18.6 221, 11.1 313, 15.4
alg-level (SIS) [20.6, 21.3] [28.2, 28.7] [27.9, 28.4] [16.9, 17.2] [27.4, 27.9] [25.4, 26.0] [18.9, 19.5] [23.1, 23.6]

21.0, 1.64 28.5, 1.26 28.2, 1.37 17.0, 0.8 27.7, 1.42 25.7, 1.35 19.2, 1.46 23.3, 1.41

TABLE III

ROBDD-size summary for 8 mutant classes of reference circuit c499.

W ClassA W ClassB W ClassC W ClassD W ClassE W ClassF W ClassG W ClassH

Initial order [58064, 66164] [175211, 302499] [123919, 178438] [25894, 25894] [123730, 170007] [110372, 156884] [40234, 45874] [85695, 101887]
62114, 20251 238855, 318217 151178, 136297 25894, 0 146869, 115693 133628, 116279 43054, 14100 93791, 40479

CAL-good sift [32000, 35911] [10989, 13660] [13431, 16915] [26118, 26118] [19539, 23156] [28347, 32790] [30550, 32641] [33770, 38035]

33955, 9777 12325, 6675 15173, 8709 26118, 0 21348, 9041 30569, 11109 31595, 5225 35903, 10660
CU-good sift [36106, 40107] [10590, 13075] [12357, 15977] [26294, 26294] [19019, 22436] [28331, 33211] [33213, 36310] [34999, 39488]

38106, 10004 11832, 6213 14167, 9051 26294, 0 20727, 8541 30771, 12200 34762, 7745 37244, 11224
CMU-good sift [34922, 38825] [11889, 14535] [14604, 17799] [26054, 26054] [20575, 24641] [30465, 35088] [31905, 34299] [35347, 39441]

36873, 9756 13212, 6616 16202, 7988 26054, 0 22608, 10165 32776, 11559 33102, 5984 37394, 10234

CAL-free sift [33117, 37144] [11217, 13858] [13048, 16470] [26958, 26958] [18289, 22297] [27512, 32224] [32227, 34775] [33960, 38165]

35130, 10067 12537, 6603 14759, 8557 26958, 0 20293, 10021 29868, 11778 33501, 6370 36062, 10514
CU-free sift [29454, 44141] [10535, 13327] [13047, 16018] [38346, 38346] [18898, 22321] [27356, 31766] [39726, 42447] [34287, 38682]

36798, 29291 11931, 6981 14532, 7428 38346, 0 20609, 8559 29561, 11024 41086, 6803 36484, 10987

CMU-free sift [36978, 41388] [12670, 15683] [13799, 17976] [31494, 31494] [19595, 23077] [29429, 34553] [35379, 38060] [36724, 41492]

39183, 11025 14177, 7532 15888, 10443 31494, 0 21336, 8706 31991, 12810 36719, 6704 39108, 11920

optimization. Since we have no access to report initial values
of mincut and layout, only optimized values are reported.
Here, we can analyze the e�ectiveness of the mutant classes
to distinguish the performance of the algorithms.

Table II and classes of C1355. Here, we report results of
fault coverage, technology mapping, and logic optimization
using the algorithms in MIS [20] and SIS [21]. Note that all
mutant classes have the same number of 2-input nodes and
levels! Consistent with experience with other WSI mutants,
fault coverage remains high for all mutant classes, indicating
that wiring mutations have introduced relatively few redun-
dancies. Technology mapping is reported for the lib2.genlib
[10] only, since the di�erences with a smaller library were neg-
ligible. As discussed earlier, logic optimization algorithms in
MIS and SIS exhibit signi�cantly di�erent performance for
Class A, favoring MIS. Note however that this behavior is not
consistent for all classes. In fact, both algorithms can return
an `optimized circuit' that has more 2-input nodes than the
initial mutant circuit! A comprehensive multiple comparison
of the means, for mutant classes of several reference circuits,
will be performed later.

Table III and classes of C499. Here, we report results
of BDD-node sizes for di�erent variable ordering algorithms.
The VIS 1.1 environment was used throughout the exper-
iments [22]. Result for initial refer to the `best' known
static order (`best' for nominal circuit C499 only, courtesy of
Fabio Somenzi). Three algorithms CAL [23], CU [24], CMU [25],
were executed on all mutants in two modes: good sift and
free sift. Here, good sift starts with a known good order
[24], followed by the sifting method of dynamic ordering [26].
In contrast, free sift computes its own static order with no
hints, then uses sifting dynamic reordering.
Data in this table needs to be analyzed globally due to

apparent overlap of con�dence intervals of reported sample
means. Locally, looking at means alone for W Class A and
free sift cases, one could conclude that CAL<CU<CMU. How-
ever, t-test of di�erence reveals that the di�erences between
CAL and CU, and CU and CMU, are due to chance only, while
there is still signi�cant di�erence between CAL and CMU. Over-
all, data shows that variable ordering algorithms for BDDs
are intrinsically unstable. We could not build BDDs for all
mutants of the C1355 class, yet none of the mutants in this
class present any problems for redundancy identi�cation al-
gorithms in SIS!!
One may argue that WSI mutants are not the most appro-

priate test cases for BDD algorithms. Alternatives to be con-
sidered include the entropy-signature invariant (ESI) classes
as reported in [27].

VII. Conclusions

We have demonstrated the �rst-generation capability to syn-
thesize a large number of equivalence classes and a large num-
ber of circuit samples in each class. The availability of such
circuits provides the opportunity to introduce design of exper-
iments techniques and sampling methods, to benchmark the
performance of a number of EDA algorithms.
Collaborative web-based experiments, initiated under

http://www.cbl.ncsu.edu/experiments/, with mutants based
on a range of reference circuits, may well change the paradigm
of benchmarking EDA algorithms as we know it today.

Acknowledgments. We appreciate the access to tools used
in this research: SIS and VIS from the team at UC Berkeley,
PROP from Roman Ku�znar from U. of Ljubljana (Slovenia),
and DOT from AT&T Research. Fabio Somenzi deserves spe-
cial mention for his collection of BDD orders.

References

[1] J. Darnauer and W. Dai. A Method for Generating Random Cir-

cuits and its Application to Routability Measurement. In 4th

ACM/SIGDA Int'l Symp. on FPGAs, FPGA96, pages 66{72,

February 1996.

[2] M. Hutton, J.P. Grossman, J. Rose and D. Corneil. Characteri-
zation and Parametrized Random Generation of Digital Circuits.

In Design Automation Conference, June 1996.

[3] K. Iwama and K. Hino. Random Generation of Instances for Logic
Optimizers. In Design Automation Conference, pages 430{434,

June 1994.

[4] J. P. Roth and R. M. Karp. Minimization over Boolean Graphs.
IBM Jl. of Res. and Dev., pages 227{238, April 1962.

[5] R. A. Fisher. Statistical Methods, Experimental Design, and

Scienti�c Inference. Oxford University Press, 1993. Reprinted,
with corrections, from earlier versions, 1925-1973.

[6] F. Brglez. A Tutorial on Design of Experiments to Benchmark

Algorithms in EDA. Technical report, 1997. Also available at
http://www.cbl.ncsu.edu/publications/.

[7] M. R. Hartoog. Analysis of Placement Procedures for VLSI Stan-

dard Cell Layout. In Design Automation Conference, pages 314{
319, July 1986.

[8] K. A. Brownlee. Statistical Theory and Methodology In Sci-

ence and Engineering. Krieger Publishing, 1984. Reprinted, with
revisons, from second edition, 1965.

[9] F. Brglez and H. Fujiwara. Special Session on ATPG (Also in-
troducing 'A Neutral Netlist of 10 Combinational Benchmark
Circuits'). In Int. Symp. On Circuits and Systems, 1985.
A basis for a benchmark directory ISCAS85, now archived at
http://www.cbl.ncsu.edu/benchmarks/.

[10] S. Yang. Logic Synthesis and Optimization Benchmarks User
Guide. Technical report, MCNC, RTP, NC, Jan. 1991. Report and
benchmarks archived at http://www.cbl.ncsu.edu/benchmarks/.

[11] F. Brglez (Ed.). Collaborative Archives of On-Going Experiments
with Algorithms in EDA: Taxonomy of Data Samples and Analysis
of Multiple Comparisons. Technical report, 1997. Also available
at http://www.cbl.ncsu.edu/publications/.

[12] E.R. Gasner et el. A Technique for Drawing Directed Graphs.
IEEE Trans. Software Engg., 19:214{230, 1993. Software avail-
able at http://www.research.att.com/sw/tools/graphviz/.

[13] Jason C. Hsu. Multiple Comparisons: Theory and Methods.
Chapman & Hall, London, 1996.

[14] J. N. War�eld. Crossing Theory and Hierarchy Mapping. IEEE

Trans. Sys., Man, and Cybernetics, pages 505{523, July 1977.
[15] M. R. Garey and D. S. Johnson. Crossing Number is NP-complete.

SIAM J. Algebraic Discrete Methods, 4:312{316, 1983.
[16] F. T. Leighton. New Lower Bound Techniques for VLSI. Math.

Systems Theory, 17:47{70, 1984.
[17] M. J�unger and P. Mutzel. 2{Layer Straightline Crossing Minimiza-

tion: Performance of Exact and Heuristic Algorithms. Journal of
Graph Algorithms and Applications (JGAA), 1(1):1{25, 1997.
Available at http://www.mpi-sb.mpg.de/~mutzel/mpireports/.

[18] R. Ku�znar and F. Brglez. PROP: A Recursive Paradigm for Area-
E�cient and Performance Oriented Partitioning of Large FPGA

Netlists . In IEEE Intl. Conf. Computer-Aided Design, November
1995.

[19] K. Kozminski, (Ed.). OASIS2.0 User's Guide. MCNC, Research

Triangle Park, N.C. 27709, 1992.
[20] R. Brayton et al. MIS: A Multiple-Level Logic Optimization Sys-

tem. IEEE Trans. Computer-Aided Design, pages 1062{1081,
November 1987.

[21] SIS { Release 1.1. UC Berkeley Software Dist., Sept. 1992.

[22] The VIS Group. VIS: A system for veri�cation and synthesis. In
R. Alur and T. Henzinger, editors, Proc. 8th Intl. Conf. on Com-

puter Aided Veri�cation, number 1102 in Lecture Notes in Comp.
Sc., pages 428{432, New Brunswick, NJ, July 1996. Springer.

[23] P. Ashar and M. Cheong. E�cient breadth{�rst manipulation
of binary decision diagrams. In Proceedings of the International

Conference on Computer Aided Design, pages 622{627, 1994.

[24] F. Somenzi et al. Colorado University Decision Dia-

gram package (CUDD), release 2.1.2, 1997. Available from
ftp://vlsi.colorado.edu/pub/cudd-2.1.2.tar.gz.

[25] D. E. Long. CMU BDD package, 1993. Available from
http://emc.cmu.edu/pub/bdd/bddlib.tar.Z.

[26] R. Rudell. Dynamic variable ordering for ordered binary decision
diagrams. In ICCAD'93, pages 42{47, 1993.

[27] J. E. Harlow III and F. Brglez. Synthesis of ESI Equivalence Class
Combinational Circuit Mutants. Technical report, 1997. Also

available at http://www.cbl.ncsu.edu/publications/.

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

