
Dynamic Minimization of Word-Level Decision Diagrams �

Stefan H�oreth Rolf Drechsler

Dept. of Electrical and Computer Engineering Institute of Computer Science
Darmstadt University of Technology Albert-Ludwigs-University

64283 Darmstadt, Germany 79110 Freiburg i. B., Germany
http://www.rs.e-technik.tu-darmstadt.de/~sth drechsle@informatik.uni-freiburg.de

Abstract

Word-Level Decision Diagrams (WLDDs), like

*BMDs and K*BMDs, have recently been introduced

as a data structure for veri�cation. The size of

WLDDs largely depends on the chosen variable order-

ing, i.e. the ordering in which variables are encoun-

tered, and on the decompositions carried out in each

node. In this paper we present a framework for dy-

namic minimization of WLDDs. We discuss the di�-

culties with previous techniques if applied to WLDDs

and present a new approach that e�ciently adapts both

variable ordering and decomposition type choice. Ex-

perimental results demonstrate that this method out-

performs \classical" reordering with respect to run-

time and representation size during dynamic mini-

mization of word-level functions.

1 Introduction
Most formal approaches in veri�cation nowadays

make use of function representation by Decision Dia-

grams (DDs). In this context Ordered Binary Decision
Diagrams (OBDDs) [5] have intensively been studied
and frequently applied. Unfortunately, OBDDs fail
for some functions with high practical relevance, like
multipliers [6]. For this, several extensions of the basic
OBDD concept have been proposed over the last few
years (see e.g. [22, 17]).

Graph types that allow to represent word-level
functions, i.e. functions with a Boolean range and an
integer domain, have gained large attention. These
DDs are addressed as Word-Level DDs (WLDDs) in
the following. Examples of WLDDs are e.g. EVBDDs
[22], MTBDDs [11, 2], *BMDs [7], HDDs [12], and

�Copyright 1998 EDAA. Published in the Proceedings of

DATE'98, February 23-25, 1998 in Paris, France. Personal

use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional

purposes or for creating new collective works for resale or redis-

tribution to servers or lists, or to reuse any copyrighted compo-

nent of this work in other works, must be obtained from EDAA.

K*BMDs [15]. In the meantime WLDDs have been in-
tegrated in veri�cations tools [1, 8] and are also used
for symbolic model checking [13, 10]. In [21] HDDs
have been applied to veri�cation of circuits at the reg-
ister transfer level. One of the major problems in this
setting is decomposition type choice for variables in
the circuit, i.e. the decision how to partition the HDD
into MTBDDs and BMDs. Unlike bit-level DDs, good
decomposition type choice in WLDDs is often essential
for veri�cation of HDL constructs.

In this paper we give a framework for dynamic min-
imization of WLDDs. We address the problems of
dynamic variable reordering [18, 24] and dynamic de-
composition type choice [14]. A direct extension of the
reordering idea used in OBDDs is not possible in all
cases (see e.g. [20] for *BMDs or [15] for K*BMDs).
The main problem is that an exchange of neighbour-
ing variables is not a local operation. In [20, 16] a �rst
step in this direction has been done, i.e. for *BMDs a
restriction has been proposed that allows exchange of
variables as a local operation. But, by this restriction
graph-size may increase by up to a factor of two. In
the following, we show that this drawback is avoided
if we loose canonicity during dynamic minimization.
Nodes that have to be \repaired" are marked only and
the repair run is fully integrated in the reordering al-
gorithm. By this we get signi�cant run-time improve-
ments in comparison to the straightforward approach
and larger size reductions than [16]. Another advan-
tage of our method is that it can be generalized to
other WLDDs, like K*BMDs. (Notice that our ap-
proach can also be applied to *PHDDs [9].)

Furthermore, we present an e�cient method to au-
tomatically adapt the decomposition type in a WLDD
(where this is allowed). The choice of a good decom-
position formula is completely integrated in dynamic
reordering. Thus, our approach can be seen as an
automated tool for veri�cation of arithmetic circuits,

1



i.e. integer and 
oating point, on the word-level.
The algorithms proposed in this work have been

implemented on the basis of a hybrid graph manipula-
tion package [20]. Dynamic reordering techniques are
supported for 18 di�erent graph types in the package
and are applied even if multiple graph types are used
together in hybrid operations.

The paper is structured as follows: We review basic
notations and de�nitions in Section 2. The problems
with dynamic minimization of WLDDs are discussed
in Section 3. In Section 4 we show how these problems
are avoided and we propose our new algorithms. Our
experiments are described in Section 5. Finally, the
results are summarized.

2 Preliminaries
In this section notations and de�nitions are given

that are important for understanding the paper. We
give a brief overview on DDs.

All DDs are graph-based representations, where at
each (non-terminal) node labeled with a variable x

a decomposition of the function represented by this
node into two subfunctions (the low-function and the
high-function) is performed. In the following, we as-
sume that the underlying graph is ordered and reduced,
i.e. variables occur in the same order on all paths in the
DD and functions represented by nodes of the graph
are unique.

For bit-level DDs the following three decomposition
have been considered:

f = x flow � x fhigh; Shannon (S)
f = flow � x fhigh; positive Davio (pD)
f = flow � x fhigh: negative Davio (nD)

Function f is represented at node v, while flow (fhigh)
denotes the function represented by the low -edge
(high-edge) of v. � is the Boolean Exclusive OR oper-
ation. The recursion stops at terminal nodes labeled
with 0 or 1. If at a node a decomposition of type S (D)
is carried out this node is called a S-node (a D-node).

In this paper, we consider the same three decom-
positions for word-level functions, i.e. functions of the
form f : Bn ! Z:

f = (1� x) � flow + x � fhigh;

f = flow + x � fhigh;

f = flow + (1� x) � fhigh:

The notation S, pD and nD is used analogously to
the bit-level. x still denotes a Boolean variable, but
the values of the functions are integer numbers and
they are combined with the usual operations (addi-
tion, subtraction, and multiplication) in the ring Z of
integers.

Which decomposition is used, i.e. bit- or word-level,
becomes clear from the context.

Decomposition types are associated to the n

Boolean variables x1; x2; : : : ; xn with the help of a De-
composition Type List (DTL) d := (d1; : : : ; dn) where
di 2 fS; pD; nDg, i.e. di provides the decomposition
type for variable xi (i = 1; : : : ; n).

Based on the notations and de�nitions above we
now introduce the functions represented by an edge in
a DD. The edge function fe is obtained from the func-
tion of the node through multiplication or addition of
integer values.

For MTBDD [11, 2], BMD [7], HDD [12], EVBDD
[22], *BMD [7], p*BMD [20], and K*BMD [15] the
corresponding functions fe are given in Table 1 (a;m
are integer numbers).

graph type edge function

MTBDD, BMD, HDD fe = f

EVBDD fe = a+ f

*BMD, p*BMD fe = m � f

K*BMD fe = a+m � f

Table 1: Functions represented by edges.

Edge-values are obtained from the node represen-
tation during the graph reduction phase. Let flow =
alow + mlow � ~flow and fhigh = ahigh + mhigh � ~fhigh.
Then the edge weights of a K*BMD are obtained from
the representation of flow, fhigh depending on the de-
composition carried out at the node:

a = alow;

jmj = gcd(mlow; ahigh � alow;mhigh); (S-node)
jmj = gcd(mlow; ahigh;mhigh): (D-node)

(Here gcd denotes the greatest common divisor.) The
sign of the multiplicative weight m is taken from the
�rst non-zero value of the arguments to gcd.

Note that all remaining DDs from Table 1 are ob-
tained by further restricting the K*BMD reduction
rules and DTL.

Of course, the size of the representation for a given
function f depends on the chosen variable ordering
and DTL. There are examples which, for a �xed func-
tion, provide exponential gaps between representa-
tions with di�ering variable order and DTL [5, 3]. On
the other hand, �nding good variable orderings and
DTLs turns out to be di�cult [4] and therefore a lot
of heuristics have been developed to �nd at least rea-
sonable orderings and DTLs, the most successful being
Dynamic Variable Ordering (DVO) [18, 24] and DVO
with DTL change [14].

2



3 Dynamic Variable Ordering for

WLDDs

Dynamic Variable Ordering (DVO) [18, 24, 17, 23]
is the state-of-the-art method for �nding good order-
ings for OBDDs and OFDDs. The basic operation is
an exchange of neighbouring variables, that is a lo-
cal operation in these cases, i.e. only pointers must
be redirected (see Figure 1). In this section we show

swap
x

y y

y

xx

f f

f1 f2 f3 f4 f1 f3 f2 f4

Figure 1: Exchange of adjacent variables.

that a direct extension of this concept to WLDDs is
not possible in all cases, since the exchange of adja-
cent variables may change edge-values in upper levels,
i.e. it is not a local operation.

3.1 WLDDs without Edge-Values

First we consider WLDDs that do not allow edge-
values, i.e. MTBDDs, BMDs, and HDDs. It can easily
be shown, that an exchange of neighbouring variables
is a local operation for these graphs. Moreover, the
exchange is even independent of decomposition types.

More precisely, this means that for an exchange of
variables only inner pointers f2 and f3 (see Figure 1)
must be redirected. Function f does not change by
this modi�cation, independent of decomposition types
for x and y.

3.2 WLDDs with Edge-Values

Augmenting WLDDs with edge-values often results
in more compact representations. Unfortunately, ex-
changing variables now becomes more complicated.
We prove that an exchange of neighbouring variables
in a K*BMD can complement the sign of a multiplica-
tive edge label at the root node, but not its (absolute)
value. Please refer to Figure 2 for an example.

Since reduction rules di�er for S-nodes and D-
nodes, we consider the situation for decompositions of
type S and pD for variables x and y, respectively (ex-
tension to other decompositions is straightforward).

In a �rst step edge-values in the K*BMD are
\moved" below variables x and y. Due to additive

and multiplicative values at the pointers we obtain:

f1 = a1 +m1 � ~f1; f2 = a2 +m2 � ~f2;

f3 = a3 +m3 � ~f3; f4 = a4 +m4 � ~f4:

Conversely, additive and multiplicative weight of
f = a+m � ~f are obtained from f1, f2, f3 and f4 ac-
cording to the K*BMD reduction rules:

a = a1;

jmj = gcd(a3 � a1; a2; a4;m1;m2;m3;m4):

After moving edge-values below variables x and y,
the K*BMD has no marked edges in the upper part
and variables can be exchanged simply by swapping
pointers f2 and f3. Finally, edge-values are restored.
For the root node, now one obtains:

a
0 = a1;

jm0j = gcd(a3 � a1; a2; a4 � a2;m1;m2;m3;m4):

Since gcd(a; a+ b) = gcd(a; b), we get:

jm0j = gcd(a3 � a1; a2; a4;m1;m2;m3;m4) = jmj:

This implies that absolute values do not di�er before
and after the exchange. However, the sign of the mul-
tiplicative edge-value will probably change since it is
obtained from edge-values of successors of the root
node, which might also change (see Figure 2). There-
fore, variable exchange is not a local operation for
K*BMDs.

Notice, that all results discussed in this section for
K*BMDs directly transfer to *BMDs.

4 Dynamic Minimization of WLDDs
In this section we show that even though exchang-

ing neighbouring variables in a WLDD with edge-
values is not a local operation, DVO can be carried
out e�ciently. We propose two alternatives and give a
comparison to underline the di�erences. Furthermore,
we discuss an e�cient way of dynamically changing
the DTL and incorporate this exchange in DVO.

swap
x

y y

0

0,2 0,-1

3,-1

G H
0,20,1

y

x

0

x

0,-20,1

3,1

G H
0,-10,1

Figure 2: The sign of the multiplicative edge-value
at the root of the K*BMD changes independent of
decomposition types for x and y.

3



4.1 Positive K*BMDs

As has been demonstrated above, the only di�culty
that might occur is the sign at root nodes. There-
fore, it is su�cient to restrict multiplicative edge-
values to positive numbers. By this modi�cation ex-
changing adjacent variables becomes a local opera-
tion for K*BMDs1. The resulting WLDDs are called
pK*BMDs and p*BMD, respectively, in the following.
For these WLDDs all classical DVO methods, like sift-
ing, can be applied without any restrictions.

4.2 Sifting of K*BMDs

In the following, we describe an algorithm for dy-
namic minimization of K*BMDs, similar to sifting
[24]. As a consequence of the observation made in
Subsection 3.2 exchanging variables is not a local op-
eration. The idea of our method is to loose canonicity
(temporarily), i.e. the K*BMD is not completely re-
duced with respect to reduction rules. Instead, during
dynamic reordering we mark all nodes where canonic-
ity might be violated. In a second phase we perform
a reduction run to restore the K*BMD.

We now describe the algorithm in more detail: Our
sifting-method does not repair each node separately.
Instead, nodes are marked only. (For this, one addi-
tional bit is needed for each node.)

1. The starting point of our algorithm is a (com-
pletely reduced) K*BMD. While sifting a variable
down, mark all nodes where the sign of incoming
edges changes.

2. The next sequence moving the variable up incor-
porates marks of successors to a node (and possi-
bly complements the mark at the current node).

3. Finally, a repair run is carried out which adjusts
signs of edge-values in the graph above the last
variable position from the up phase. Then all
marks are cleared.

By this algorithm, canonicity of the graph is restored
after reordering of each variable.

4.3 Comparison

To support reordering techniques for (K)*BMDs,
either the data structure must be changed to
p(K)*BMDs or graphs must be repaired after variable
exchanges. Both methods have some advantages and
disadvantages:

� Multiplication with a constant only requires con-
stant time for (K)*BMDs, while this is only true

1This technique has been proposed for *BMDs in [20, 16]

for positive numbers in p(K)*BMD. For multipli-
cation with negative numbers a traversal of the
graph may become necessary.

� Dynamic reordering for (K)*BMDs needs a reduc-
tion run after a sequence of exchanges. This is not
needed for p(K)*BMDs. Furthermore, exchanges
of variables cannot be randomly distributed over
K*BMDs, i.e. reordering is restricted to heuristics
like sifting (in order to be e�cient).

� Since each (K)*BMD might occur negated and
non-negated the relation between the sizes of
p(K)*BMDs and (K)*BMDs representing the
same function is as follows:

k(K)*BMDk � kp(K)*BMDk � 2 � k(K)*BMDk

In the following section these e�ects will be demon-
strated from a practical point of view.

4.4 Dynamic Change of Decomposition
Type

The simplest method to change the decomposition
type of a node is to perform a synthesis operation on
its successors. But since the synthesis operations have
exponential worst case behaviour, this approach might
become very time and space consuming.

Instead, we make use of a method proposed for
OKFDDs, called DTL-sifting [14]: During dynamic
reordering variable x is moved to the bottom level of
the WLDD by exchange of neighbouring variables. In
the bottom level there exists only nodes marked by x

that directly point to constant nodes. Then the de-
composition type of these nodes is changed as follows:
The type of the node is changed and the correspond-
ing modi�cations on the edges are performed. In some
cases an additional DFS-run must be used to restore
canonicity of the (p)K*BMD, i.e. edge-labels have to
be changed. An analysis similar to the one in Subsec-
tion 3.2 shows that this DFS is needed, if a transfor-
mation to (or from) nD is performed, since in this case
incoming edges are a�ected. (The details are left out
due to page limitation.) The transformation between
S and pD in contrast is a local operation. (For this, we
restrict DTL-sifting in the following to S and pD only.
Experiments have shown that this is su�cient in our
cases.) Then sifting (as described in Subsection 4.2)
starts again with the new decomposition type.

5 Experimental Results

In this section we describe experiments carried out
on a Sun UltraSparc-170 workstation with 256 MByte
of main memory.

4



Circuit pK*BMD K*BMD

Initial Sift Initial \classical" Sift Sift

#in #out size time size time size time size time size time

alu4 14 8 3394 1.8s 2124 4.8s 2971 1.6s 1670 8.3s 1670 4.0s

apex1 45 45 2598 4.7s 1558 10.0s 1702 4.4s 1076 150.7s 1076 10.9s
apex3 54 50 1119 62.4s 808 13.7s 880 60.2s 623 338.9s 623 17.8s

apex6 135 99 1631 1.8s 540 45.7s 1086 1.6s 461 3642.1s 461 61.2s

dalu 75 16 4357 9.7s 2222 26.4s 2976 7.3s 968 623.0s 968 26.2s

div8 16 9 8528 5.3s 7933 19.6s 6942 4.4s 6537 35.7s 6537 19.9s

e64 65 65 4031 4.5s 189 28.5s 2077 3.7s 126 403.3s 126 24.8s

frg2 143 139 9681 13.6s 862 65.1s 5855 10.9s 521 4284.1s 521 77.4s

i3 132 6 88780 27.5s 370 108.5s 45448 18.8s 193 4185.8s 193 98.0s

i4 192 6 168046 182.9s 1748 346.1s 87240 129.0s > 2h 850 278.9s
i9 88 63 4165 9.1s 1434 33.4s 2380 7.7s 881 1023.7s 881 36.1s

k2 45 45 2689 5.0s 1729 11.3s 1875 4.6s 1181 166.8s 1181 12.4s

seq 41 35 2559 25.4s 1323 12.4s 1309 19.3s 662 139.5s 662 10.9s

too large 38 3 21601 16.1s 1813 33.4s 10806 10.5s 915 147.3s 915 20.9s

x3 135 99 1535 2.0s 550 46.2s 1180 1.7s 437 3558.2s 437 61.3s

mean 81 46 21648 24.8s 1680 53.7s 11648 19.0s 1161 17m17s 1140 50.7s

Table 2: Sifting for (p)K*BMDs and "classical" sifting.

To support reordering techniques for K*BMDs, ei-
ther the multiplicative edge-value must be restricted
to positive numbers (pK*BMD) or the reordering al-
gorithm must be modi�ed (see Subsection 4.2). Ta-
ble 2 compares both approaches. The name of the
benchmark is given in the �rst column. We �rst con-
structed an OBDD. Then the OBDD is transformed
into a (p)K*BMD by constructing a weighted sum over
all outputs. (For more details on output encodings see
[7].) By this a (p)K*BMD with a single output is ob-
tained. The DTL for the (p)K*BMD consisted of type
pD only. The size (given by the number of nodes) of
the resulting (p)K*BMD and the time needed for the
transformation are shown in columns Initial. Then we
applied a minimization heuristic similar to sifting [24].
The resulting graph-sizes and run-times are reported
in columns Sift. Analogously to OBDDs the reduction
in size can be up to 98% [24, 23]. Column \classical"
Sift gives the results for a straightforward extension
of the sifting heuristic to the word-level, i.e. variables
are exchanged and a reduction is carried out to retain
canonicity in each step.

As can be seen the initial size of K*BMDs is al-
ways smaller then for pK*BMDs. This can range
up to a factor of two. The times to compute ini-
tial representations as well as times for sifting do not
vary too much and are relatively independent of the
K*BMD-model. But run-times needed for \classical"
sifting of K*BMDs are much larger. E.g. for circuit i4
the straightforward approach failed, while reordering
based on pK*BMDs and our new concept terminated
in about 4 CPU minutes. Thus, our new reordering
method uni�es the advantages of the two approaches,

i.e. small representation sizes and fast run-times. (No-
tice that the results also directly transfer to *BMDs.)

In a second series of experiments we compare sift-
ing and DTL-sifting starting from the same initial
K*BMD. The results are given in Table 3. The
WLDDs are derived from OBDDs as described above.
Again, initial graph-sizes and construction times are
given in column Initial. The K*BMD sizes after sifting
and DTL-sifting are given in column Sift and DTL-
Sift, respectively, followed by the run-times of the al-
gorithms. Furthermore, the number of variable ex-
changes and the maximum graph-size during mini-
mization are reported in columns #swap and peak,
respectively.

DTL-sifting reduces graph-size over sifting by up
to a factor of 4 at comparable run-time (see circuit
div8). The average reduction by DTL-sifting is more
than a factor of 2 over the sifting heuristic, while time
requirements are less then twice the time needed for
sifting. The peak size during minimization is about
the same for both techniques.

The large size reduction obtained by DTL-sifting
also has a signi�cant impact on run-time behaviour
of graph construction algorithms. In Table 4 sifting
and DTL-sifting have already been applied during the
graph construction phase. (Notice that for these cir-
cuits the K*BMDs could not be constructed using
the initial variable ordering.) (DTL-)sifting occurred
whenever the total number of nodes increased by more
than a factor of two over the last minimization. Some
examples have only been �nished partially (the num-
ber of outputs are then given in brackets in column

5



Circuit Initial Sift DTL-Sift

#in #out size time size time #swap peak size time #swap peak

alu4 14 8 2971 1.6s 1670 4.0s 307 3102 678 6.7s 672 3102

apex1 45 45 1702 4.4s 1076 10.9s 3759 1870 464 17.2s 7776 1870

apex3 54 50 880 60.2s 623 17.8s 5383 986 211 32.4s 11688 986
apex6 135 99 1086 1.6s 461 61.2s 35120 1090 426 111.8s 70357 1181

dalu 75 16 2976 7.3s 968 26.2s 9758 4128 380 40.9s 21881 4128

div8 16 9 6942 4.4s 6537 19.9s 425 8859 1505 17.6s 940 7367

e64 65 65 2077 3.7s 126 24.8s 7309 2081 123 52.6s 15767 3734

frg2 143 139 5855 10.9s 521 77.4s 38731 6056 509 155.6s 82402 6056

i3 132 6 45448 18.8s 193 98.0s 32459 47529 137 190.6s 70604 47535

i4 192 6 87240 129.0s 850 278.9s 69314 93723 888 541.0s 146327 95184

i9 88 63 2380 7.7s 881 36.1s 13395 2502 462 60.8s 28872 2502
k2 45 45 1875 4.6s 1181 12.4s 3682 2332 389 18.3s 7842 2579

seq 41 35 1309 19.3s 662 10.9s 3028 1528 320 18.7s 6553 1528

too large 38 3 10806 10.5s 915 20.9s 2652 14310 457 34.7s 5456 15854

x3 135 99 1180 1.7s 437 61.3s 35219 1187 395 111.7s 71132 1416

mean 81 46 11648 19.0s 1140 50.7s 17369 12752 490 94.0s 36551 13001

Table 3: Sifting vs. DTL-Sifting.

Circuit Sift DTL-Sift

#in #out size time #swap peak size time #swap peak

C432 36 7 15288 8m18s 29088 101247 2484 2m13s 30832 12315
C880 60 26 46072 17m45s 96317 103470 28887 12m40s 108647 67781

C3540 50 (12) > 2h � 913080 27836 14m12s 66571 95044

C7552 207 (20) > 2h � 2814941 3531 25m31s 717475 53183

bin2bcd 16 35 16734 3m40s 6369 53511 1653 46s 6304 12473

mcalu32 77 35 > 2h � 905891 19758 26m33s 193635 113721

Table 4: Sifting and DTL-Sifting for hard examples.

#out). For the hard test cases of Table 4 improve-
ments obtained by DTL-sifting become even more ob-
vious. For these examples, DTL-sifting is superior
to sifting in any respect. This is due to the fact,
that sifting cannot change decomposition types. How-
ever, both S and pD decompositions are important
for word-level functions. As a consequence, the sifting
heuristic failed for some examples, while DTL-sifting
succeeded.

6 Conclusions

In this paper a framework for dynamic minimiza-
tion of WLDDs has been presented. We demonstrated
that a direct extension of previously used concepts is
not possible in all cases.

In order to support reordering techniques for
WLDDs like *BMD or K*BMD, either the data struc-
ture or reordering algorithms must be changed. A
comparison of both approaches has been given in the
paper.

We have proposed a modi�cation to the sifting
heuristic that temporarily looses canonicity during
minimization. Sifting of WLDDs obtains graph-size
reductions comparable to the bit-level (up to 98%)

and requires negligible overhead to restore canonicity.

Based on this new sifting algorithm, we re-
examined a minimization technique for OKFDDs,
called DTL-sifting. In contrast to the bit-level, DTL-
sifting of word-level functions reduces graph size (over
sifting) by more than a factor of two on the average.

Due to this large reduction, DTL-sifting is even
faster then sifting for hard examples which require dy-
namic minimization during graph construction. As
a consequence, DTL-sifting succeeded for examples
where the sifting heuristic failed.

DTL-sifting is even more promising for representing
HDL constructs that combine data part and control
(e.g. conditional expressions). Typically, both require
di�erent decompositions which are chosen automat-
ically by DTL-sifting. Another direction for future
research will be the integration of the presented word-
level concepts into BFS-like synthesis techniques, such
as MORE [19].

References

[1] L. Arditi. *BMDs can delay the use of theorem
proving for verifying arithmetic assembly instruc-
tions. In FMCAD, pages 34{48, 1996.

6



[2] R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D.
Hachtel, E. Macii, A. Prado, and F. Somenzi. Al-
gebraic decision diagrams and their application.
In Int'l Conf. on CAD, pages 188{191, 1993.

[3] B. Becker, R. Drechsler, and R. Enders. On the
computational power of bit-level and word-level
decision diagrams. In ASP Design Automation

Conf., pages 461{467, 1997.

[4] B. Bollig and I. Wegener. Improving the variable
ordering of OBDDs is NP-complete. IEEE Trans.

on Comp., 45(9):993{1002, Sept. 1996.

[5] R.E. Bryant. Graph - based algorithms for
Boolean function manipulation. IEEE Trans. on

Comp., 35(8):677{691, 1986.

[6] R.E. Bryant. On the complexity of VLSI imple-
mentations and graph representations of Boolean
functions with application to integer multiplica-
tion. IEEE Trans. on Comp., 40(2):205{213,
1991.

[7] R.E. Bryant and Y.-A. Chen. Veri�cation of
arithmetic functions with binary moment dia-
grams. In Design Automation Conf., pages 535{
541, 1995.

[8] R.E. Bryant and Y.-A. Chen. ACV: an arithmetic
circuit veri�er. In Int'l Conf. on CAD, pages 361{
365, 1996.

[9] R.E. Bryant and Y.-A. Chen. *PHDD: an e�-
cient graph representation for 
oating point cir-
cuit veri�cation. In Int'l Conf. on CAD, pages
2{7, 1997.

[10] Y. Chen, E. Clarke, P. Ho, Y. Hoskote, T. Kam,
M. Khaira, J. O'Leary, and X. Zhao. Veri�cation
of all circuits in a 
oating-point unit using word-
level model checking. In FMCAD, pages 389{403,
1996.

[11] E. Clarke, M. Fujita, P. McGeer, K. McMillan,
J. Yang, and X. Zhao. Multi terminal binary de-
cision diagrams: An e�cient data structure for
matrix representation. In Int'l Workshop on Logic

Synth., pages P6a:1{15, 1993.

[12] E.M. Clarke, M. Fujita, and X. Zhao. Hybrid
decision diagrams - overcoming the limitations of
MTBDDs and BMDs. In Int'l Conf. on CAD,
pages 159{163, 1995.

[13] E.M. Clarke and X. Zhao. Word level symbolic
model checking - a new approach for verifying
arithmetic circuits. Technical Report CMU-CS-
95-161, 1995.

[14] R. Drechsler and B. Becker. Dynamic minimiza-
tion of OKFDDs. In Int'l Conf. on Comp. Design,
pages 602{607, 1995.

[15] R. Drechsler, B. Becker, and S. Ruppertz.
K*BMDs: A new data structure for veri�cation.
In European Design & Test Conf., pages 2{8,
1996.

[16] R. Drechsler and S. H�oreth. Manipulation of
*BMDs. In Asian and South-Paci�c Design Au-

tomation Conference, 1998.

[17] R. Drechsler, A. Sarabi, M. Theobald, B. Becker,
and M.A. Perkowski. E�cient representation and
manipulation of switching functions based on or-
dered kronecker functional decision diagrams. In
Design Automation Conf., pages 415{419, 1994.

[18] M. Fujita, Y. Matsunaga, and T. Kakuda. On
variable ordering of binary decision diagrams for
the application of multi-level synthesis. In Euro-

pean Conf. on Design Automation, pages 50{54,
1991.

[19] A. Hett, R. Drechsler, and B. Becker. MORE:
Alternative implementation of BDD packages by
multi-operand synthesis. In European Design Au-

tomation Conf., pages 164{169, 1996.

[20] S. H�oreth. Implementation of a Multiple-Domain
Decision Diagram Package. In CHARME, Chap-
man&Hall, pages 185{202, 1997.

[21] G. Kamhi, O. Weissberg, and L. Fix. Automatic
Datapath Extraction for E�cient Usage of HDD.
In CAV, LNCS 1254, pages 95{106, 1997.

[22] Y.-T. Lai and S. Sastry. Edge-valued binary de-
cision diagrams for multi-level hierarchical veri�-
cation. In Design Automation Conf., pages 608{
613, 1992.

[23] S. Panda and F. Somenzi. Who are the variables
in your neighborhood. In Int'l Conf. on CAD,
pages 74{77, 1995.

[24] R. Rudell. Dynamic variable ordering for ordered
binary decision diagrams. In Int'l Conf. on CAD,
pages 42{47, 1993.

7


	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index


