
Concurrent Error Recovery with Near-Zero Latency in

Synthesized ASICs�

Samuel Norman Hamilton and Alex Orailo�glu

Department of Computer Science and Engineering

University of California, San Diego

La Jolla, CA 92093-0114

Abstract

The importance of fault tolerant design has been

steadily increasing as reliance on error free electron-

ics continues to rise in critical military, medical, and

automated transportation applications. While rollback

and checkpointing techniques facilitate area e�cient

fault tolerant designs, they are inapplicable to a large

class of time-critical applications. We have developed

a novel synthesis methodology that avoids rollback, and

provides both zero reduction in throughput and near-

zero error latency. In addition, our design techniques

reduce power requirements associated with traditional

approaches to fault tolerance.

1 Introduction

As chip density continues to rise, so does its vul-

nerability to faults. In critical military, medical, and

transportation applications an undetected fault can

have costly or even life threatening results.

While triple-modular redundancy combined with

sparing is an e�ective method for concurrent fault iso-

lation and recovery, its tremendous overhead in both

area and power has prompted a search for more e�-

cient solutions.

High-level synthesis approaches, which ameliorate

the cost of calculation duplication with techniques

such as rollback and load balancing, have proven par-

ticularly e�ective [1] [2] [3] [4]. These techniques en-

tail signi�cant error latency, however, making them

impractical in applications with strict timing require-

ments. Furthermore, in order to circumvent overhead,

many approaches provide only partial error checking

capacity, thereby limiting resilience [5] [6] [7].

In this paper, we present an automated synthe-

sis methodology which provides zero reduction in

throughput, near-zero error latency, and guarantees

�This work is supported by the National Science Foundation

under grant number MIP-9308535.

fault security. Rollback is replaced with a novel er-

ror recovery system, which upon detection of an error

utilizes encoded error isolation information to identify

which units are not involved. Based on a single faulty

unit assumption, duplication is temporarily suspended

on these safe units, freeing resources to conduct recal-

culation in parallel with subsequent operations. Fur-

thermore, our system actually eliminates recalculation

in many cases by utilizing error isolation information

to deduce correct results. Thus, throughput is never

compromised, while error latency is often zero, and is

otherwise limited to the recalculation of a few opera-

tions. In addition, our high-level synthesis approach

is designed such that error recovery introduces only

minor control logic and interconnect overhead.

By avoiding rollback, bulky state storage hardware

is avoided. In addition, our technique utilizes less re-

calculation than retry. Thus, compared to rollback

schemes, power usage is reduced both during normal

operation by avoiding state storage and during re-

covery by limiting recalculation. Compared to triple-

modular redundancy the reduction in power consump-

tion is even greater, cutting the number of operations

by almost a third.

The remainder of the paper is organized as follows:

Section 2 outlines the proposed scheme. Section 3 dis-

cusses synthesis issues, while section 4 describes our

high-level synthesis implementation. Section 5 shows

our results on a variety of benchmarks. Section 6 sum-

marizes our work and results.

2 Overall Approach

The algorithmic approach we propose maintains

fault security while avoiding throughput reduction and

error latency usually associated with fault detection.

This is achieved through a modest interjection of hard-

ware combined with carefully tailored high-level syn-

thesis routines. Figure 1 outlines the operation of a

system utilizing our technique.

NORMALLY
PROCESS

NORMALLY
PROCESS

C0

C3

C2

C1

check points

ERROR
RECOVERY

CONCURRENT

duplication

erroneous

unneccessary

detected
error

suspend

duplication

recalculate

result

resume

represents a comparison fault isolation information

DUPLICATE CALCULATIONS

Figure 1: Fault Isolation and Recovery Structure.

Errors are detected through comparison of all calcu-

lations with duplicate calculations at periodic check-

points. When an error is detected, calculation dupli-

cation is temporarily suspended. The resources freed

are then used for recalculation of the erroneous oper-

ations while processing continues. Calculation dupli-

cation is immediately resumed following recalculation.

Thus, as long as the single fault assumption is valid

during recalculation an undetected error cannot occur,

since the encoded error isolation information enables

the system to avoid reliance on potentially faulty units

during duplication suspension.

The encoded error isolation also allows a reduction

of the set of potentially faulty units during the report

and correction of errors through a single fault assump-

tion. Upon isolation, spares are used to replace the

faulty unit, since the strict timing constraints of time-

critical applications disallow more e�cient solutions

such as graceful degradation. The single fault assump-

tion is then lifted, supplying the system resiliency in

the face of multiple, concurrent faults.

2.1 Algorithmic Duplication

Error detection is achieved through calculation du-

plication and result comparison. A calculation may in-

volve several operations before comparison. This can

reduce comparators as well as reduce registers required

to store uncompared results. For subsequent clarity,

we denote a string of operations as a string, while a

string and duplicate pair is referred to as a track.

As pointed out in [4], the information inherent in

error detection can be used for error isolation: when a

track reports an error, it is known that one of the units

active in that track is faulty. In fact, by the single fault

assumption we can deduce that all units not included

in the track are fault free. The set of units which

might be responsible for a detected error is referred to

as the ambiguity set; a singleton ambiguity set denotes

the faulty unit.

Notice that the information present in any one track

may not be adequate to narrow the set of potentially

faulty units to one. One way to further reduce the

ambiguity set is through exploiting information inher-

ent in the error resolution process. After recalculation

of the erroneous track, result comparison will reveal

which string contains the error. The ambiguity set is

then limited to the units in that string.

Since strings may contain multiple units, recalcula-

tion may not result in a singleton ambiguity set. In

such cases, complete ambiguity resolution is achieved

through repetition of the process. When the next error

is detected and recalculated, the additional informa-

tion can be combined with the current ambiguity set

to facilitate further reduction of the ambiguity set.

2.2 Error Recovery

Time-critical applications impose three challenges

to error recovery:

� error latency associated with recovery from an er-

ror or isolation of a faulty unit must be minimal.

� recon�guration after isolation of a faulty unit can-

not result in degraded performance.

� in applications where outside input is regular and

frequent, the systemmust be able to process input

at the same speed it is supplied. Thus, through-

put cannot be compromised.

Post-recon�guration performance can be preserved

through simple sparing. Minimizing latency and main-

taining processing speed, however, is extremely chal-

lenging without resorting to functional unit triplica-

tion. To achieve this goal, after an error is detected,

operations must continue to be processed while the

fault is simultaneously isolated and the error cor-

rected. This approach limits error latency to the re-

calculation time, while maintaining throughput.

By freeing resources through the temporary sus-

pension of calculation duplication, this imposing task

can be achieved. The single fault assumption assures

only units in the ambiguity set can be faulty. Thus,

calculations done in parallel with recalculation do not

require duplication as long as they exclude units in the

ambiguity set. In addition, by reducing the number of

operations through suspension of duplication, power

consumption actually decreases during recalculation.

If numerous tracks require recalculation, the ad-

ditional resources provided by duplication suspension

could prove insu�cient. To prevent this, tracks can be

designed such that at most one track is recalculated

after any given checkpoint. This is achieved by uti-

lizing the error isolation information implicit in error

detection, as seen in �gure 2.

unit
A B C D E F

string 1 duplicate

track 2: string 2 duplicate

track 1: string 1

string 2

Figure 2: Track set where a maximum of one string

requires recalculation.

If track 1 reports an error, the ambiguity set would

be ABCD, and a string would have to be recalculated

using units EF. Consider, however, if track 1 and 2

both report an error. Due to the single fault assump-

tion, the ambiguity set would be ABCD & CDEF =

CD. Since neither string 1 nor string 2 use these units,

we can conclude that these strings have produced cor-

rect results. Thus, in this case, no recalculation is

required. In fact, through careful track design, it can

be ensured that multiple errors will always allow iden-

ti�cation of a safe string in each erroneous track. Of

course, if only one error is reported, no such deduc-

tions can be made, and recalculation must occur.

While limiting recalculation and suspending dupli-

cation provides resources for continuing calculation,

data dependencies between an unresolved error under-

going recalculation and the calculations done in par-

allel must be considered. Of course, this is only prob-

lematic for dependent tracks, which rely on the result

of the unresolved error. Independent tracks may be

calculated in parallel with recalculation without fear

of introducing errors.

To ensure throughput is maintained, dependent

tracks must utilize calculation splitting, wherein two

calculations are made, one for each possibly correct

predecessor string. Immediately following recalcula-

tion, the correct string is identi�ed and calculations

based on the incorrect string halt.

Note that while calculation splitting introduces re-

dundancy, the resources devoted to that calculation

are no greater during error recovery than during nor-

mal operation. This is because for each dependent

track the redundancy added by calculation splitting is

equivalent to the redundancy eliminated by duplica-

tion suspension.

3 Synthesis

In order to minimize control logic and interconnect

overhead, it is important to have as much similarity in

behavior before, during, and after the detection of an

error. In addition, the properties alluded to previously

must be maintained in order to limit recalculation re-

quirements. There are two major synthesis issues to

address within this context:

1. Overall control
ow both during normal operation

and directly after the detection of an error.

2. High-level synthesis of track sets that enable error

recovery and are compatible with the desired
ow

of control.

3.1 Control Logic

The
ow of control should be as simple as possi-

ble in order to minimize control logic. To achieve

this, there are several behavioral aspects to the de-

sign which must be succinctly captured by a single

control
ow. The main parts are:

� control logic for normal operation.

� control logic for recalculation.

� control logic for tracks processed in parallel with

recalculation.

� control logic for ambiguity resolution.

Ambiguity resolution can be supplied by including

a bit for each unit with comparison operations. Upon

detection of an error, these bits are intersected with

the ambiguity set. Resolution of an error results in

intersection of the bits from the incorrect string with

the ambiguity set. If the ambiguity set is reduced to

one, identi�cation has occurred, and the faulty unit is

replaced by a spare.

Recalculation control logic can be achieved by in-

serting an additional string of operations for each track

directly after that track's checkpoint. A control mech-

anism is consequently required to ensure these opera-

tions are only activated by the error condition associ-

ated with them. Our solution is to give each operation

a set of condition bits, one for the error condition of

each track in the previous cut. An operation's con-

dition bits indicate whether the operation should be

done under each error condition, and can be used to

ensure recalculation strings are only enabled when the

corresponding track reports an error. Of course, a con-

dition bit for the no error condition also exists, which

is on for all strings that are not recalculations, and o�

for all strings involved in recalculation. In this way,

control
ow for recalculation operations and normal

operations is identical.

The methodology utilized for limiting the num-

ber of recalculations to one string per checkpoint im-

poses an additional hardware requirement. As alluded

to previously, tracks are designed such that correct

strings can be deduced from the ambiguity set. To

ensure that subsequent operations utilize correct data,

tracks that report errors but contain strings without

units from the ambiguity set receive special treatment.

The register storing the correct data is copied into the

register with the incorrect data, and the error is ig-

nored. Thus, if multiple errors occur, recalculation is

avoided while maintaining ambiguity resolution.

In addition to simplifying recalculation, condition

bits also supply an e�cient framework to process de-

pendent and independent tracks in parallel with re-

calculation. For independent tracks, duplication is

waived. Thus, one string in each independent track

is not processed, and the comparison operation that

detects errors is skipped. This is captured by setting

the condition bit o� on strings and comparisons that

are not processed.

For dependent tracks, the scenario is almost as sim-

ple. Though duplication is waived, calculation dupli-

cation requires that both strings continue, each based

on di�erent assumptions regarding which string in the

erroneous track is correct. The simplest approach is

to set up dependent strings such that they draw data

from di�erent registers, corresponding to the string

they draw data from. If there is no error, these reg-

isters will contain identical data, so no consistency

problems arise. When an error is detected, by setting

the condition bits of dependent strings on, we ensure

both strings are calculated and draw data from the

appropriate register. Thus, dependent tracks continue

to process strings as they would during normal oper-

ation. The only limitation is that after recalculation,

the string reliant on faulty data should be ignored.

This can be achieved using the register transfer hard-

ware already suggested to enforce consistency during

recalculation minimization.

Overall, this control
ow e�ciently captures the

complex behavior of our technique. The only signif-

icant overhead is the condition bits, and the opera-

tions introduced for recalculation. Since an operation

and duplicate pair requires only one recalculation op-

eration, the increase over simple duplication in num-

ber of operations is 50%. As mentioned previously,

minor hardware support is also required to maintain

the ambiguity set and transfer between registers. In

addition, recalculation operations may increase inter-

connect, though the static nature of dependent and

independent track binding limits this e�ect.

3.2 High-Level Synthesis

The e�cient control logic and recovery methodol-

ogy described above are reliant on tracks maintaining

several speci�c properties. These properties must be

introduced during high-level synthesis, and have the

following characteristics:

1. tracks with the same checkpoint must be designed

such that multiple errors allow for deduction of

correct strings, thereby minimizing recalculation.

2. independent tracks must contain a string that

does not utilize units from the ambiguity set.

3. after recalculation eliminates the incorrect string

in a dependent track, the remaining string must

not contain units in the ambiguity set.

To minimize recalculation, for any track a with

checkpoint C, and any other track b with checkpoint

C, at least one string in a must not include units in

b. This is referred to as the independent string prop-

erty. For track groups that hold this property, if more

than one track reports an error, each of the tracks will

contain a string whose result can be trusted, thereby

avoiding recalculation. Recalculation is consequently

restricted to single track errors only.

Occasionally, simultaneous tracks must violate the

independent string property. Violation occurs when

tracks share an operation, since all tracks that share

an operation share the units that operation and its du-

plicate are bound to. Tracks that share an operation

in this way are referred to as joined tracks, and are

treated as a single track with multiple output. Thus,

these tracks share a condition bit.

Independent tracks can be successfully encoded by

enforcing the independent string property across a

checkpoint. This ensures that each independent track

contains a safe string, which can then be used without

fear of using a unit in the ambiguity set. Of course,

holding this property across all tracks would be ex-

traordinarily di�cult. Fortunately, the independent

string property only needs to hold during recalculation

of an erroneous track. After recalculation, errors are

detected through algorithmic duplication as speci�ed

previously, allowing utilization of units in the ambigu-

ity set without risking undetected output errors.

clock cycle 1-3

clock cycle 4-6

track 1 track 2

track 3 track 4

AB CD EF GH

AB EF CD GH

Figure 3: Independent tracks design.

Figure 3 illustrates this principle. If track 1 reports

an error, the ambiguity set ABCD is created. Both

tracks 3 and 4 contain strings which do not utilize

units from this ambiguity set. These strings can be

used during error recovery, while their duplicates are

eliminated. Tracks 3 and 4 are similarly equipped if

track 2 reports an error.

The calculation splitting methodology utilized for

dependent tracks requires a less stringent property.

Since only one string is kept, only that string must

avoid using faulty units. This can be ensured by hold-

ing the limited dependence property, which ensures

that if string a is dependent on data from string b,

then it cannot use units in the duplicate of b. Since

the ambiguity set after recalculation is limited to those

units used in the incorrect string, it is guaranteed that

the string kept will not use any units from the ambi-

guity set. Note that during calculation, dependent

strings can use units from the string they receive data

from, even if those units are in the ambiguity set. This

is justi�ed by the fact that if one of those units is

faulty, recalculation will identify the string containing

the faulty unit and copy over its results.

4 Implementation

To test the feasibility of our techniques, we im-

plemented scheduling and binding algorithms utilizing

the encoding speci�cations previously presented. Our

goal was to introduce fault tolerance while keeping the

number of clock cycles constant.

First all operations are duplicated and scheduled.

Ignoring binding considerations during scheduling en-

sures that the binding constraints introduced through

enforcement of the independent string property and

the limited dependence property do not result in an

increase in the number of clock cycles.

After scheduling, a cut size is chosen, which acts as

the maximum string size for all tracks. The maximum

string size is imposed to introduce regularity, which

signi�cantly simpli�es enforcement of the independent

string property and the limited dependence property.

To further simplify enforcement, recalculation occurs

within one cut, thereby limiting the enforcement of the

aforementioned properties as well as the error latency

to one cut.

Binding is achieved through a variation of simu-

lated annealing. The cost function is heavily weighted

against shared units in strings and duplicates, and is

lightly weighted against violations of the independent

string and limited dependence properties. In addition,

a small penalty is assessed if the cut following any

track does not have su�cient free units for recalcula-

tion of that track. If at the end of annealing the cost

is nonzero, the best schedule previously considered is

randomly perturbed, and the process retried.

5 Results

The scheduling and binding implementation was

tested on several benchmarks under a variety of con-

ditions. Hardware requirements for homogeneous ar-

chitectures using only ALUs are shown in table 1, and

results for heterogeneous designs are shown in table

2. Each benchmark was tested in a wide spectrum of

performance/cost tradeo�s.

As expected, our technique requires signi�cantly

less functional units than triple-modular redundancy

(38% less for homogeneous designs, 39% less for het-

erogeneous designs). In addition, our results indi-

cate that despite the variety of properties required to

avoid error latency and state saving hardware associ-

ated with rollback, our techniques result in even less

units than simple hardware duplication (7% less for

homogeneous designs, and 8% less for heterogeneous

designs).

Note our fault tolerance techniques require a mini-

mum of three units, otherwise following error detec-

tion, no units would be available for recalculation.

While this became relevant for three of our hetero-

geneous implementations of an elliptic �lter, it is of

little signi�cance, since area is rarely critical in ICs

requiring less than three units.

Overall, our results did not suggest a clear superior-

ity of homogeneous or heterogeneous implementations

of our techniques. Homogeneous implementations use

less overall units, and are unlikely to be limited by

the three unit minimum. On the other hand, hetero-

geneous implementations allow slight improvements in

load balancing, and allow for greater
exibility in de-

sign. Of course, fault tolerance is only one of numer-

ous criteria, and tradeo�s between homogeneous and

heterogeneous design must be made within a broader

context.

6 Conclusion

We have described the �rst e�cient synthesis

methodology for fault-secure fault identi�cation with

both zero reduction in throughput and near-zero error

latency.

Not only do our methods satisfy the stringent re-

quirements of time-critical applications, they do so

with only modest increases in area. Our method-

ology limits control logic and interconnect overhead

through regularized
ow of control, and limits power

requirements through reducing redundancy of calcu-

lation during error conditions.

References

[1] A. Orailo�glu and R. Karri, \Automatic synthesis

of self-recovering VLSI systems," IEEE Transac-

tions on Computers, vol. 45, no. 2, pp. 131{142,

February 1996.

DFG CC no fault tolerance fault tolerance savings over savings over

ALU units ALU units duplication triplication

DFCT 5 6 11 8% 39%

6 5 9 10% 40%

7 4 8 0% 33%

8 4 7 13% 42%

AR 8 4 8 0% 33%

9 4 7 13% 42%

10 3 6 0% 33%

11 3 6 0% 33%

FIR 5 8 16 0% 33%

6 6 11 8% 39%

7 4 8 0% 33%

8 4 7 13% 42%

EL 13 4 7 13% 42%

14 3 6 0% 33%

15 3 5 17% 44%

16 3 5 17% 44%

Table 1: Experimental results for homogeneous architectures.

DFG CC no fault tolerance fault tolerance saving s over savings over

add sub mult add sub mult duplication triplication

DFCT 5 3 4 3 6 6 6 20% 47%

6 2 2 2 4 4 4 0% 33%

7 2 2 2 4 3 4 7% 39%

8 2 2 2 3 3 3 25% 50%

AR 8 2 0 4 4 0 8 0% 33%

9 2 0 4 4 0 5 25% 50%

10 2 0 2 3 0 4 13% 42%

11 2 0 2 3 0 4 13% 42%

FIR 5 8 0 8 16 0 16 0% 33%

6 4 0 4 8 0 8 0% 33%

7 3 0 3 6 0 6 0% 33%

8 2 0 2 4 0 4 0% 33%

EL 13 3 0 2 6 0 4 0% 33%

14 3 0 1 not enough units for e�cient FT

15 2 0 1 not enough units for e�cient FT

16 2 0 1 not enough units for e�cient FT

Table 2: Experimental results for heterogeneous architectures.

[2] W. Chan and A. Orailo�glu, \High-level synthesis

of gracefully degradable ASICs," in EDAT, March

1996, pp. 50{54.

[3] S.Y. Ohm, D.M. Blough, and F.J. Kurdahi, \High-

level synthesis of recoverable microarchitectures,"

in EDAT, March 1996, pp. 55{62.

[4] S.N. Hamilton and A. Orailo�glu, \Microarchitec-

tural synthesis of ICs with embedded concurrent

fault isolation," in FTCS, June 1997, pp. 329-338.

[5] A.T. Dahbura, K.K. Sabnami, and W.J. Hery,

\Spare capacity as a means of fault detection and

diagnosis in multiprocessor systems," IEEE Trans-

actions on Computers, vol. 38, no. 6, pp. 881{891,

June 1989.

[6] D. M. Blough and A. Nicolau, \Fault toler-

ance in super-scalar and VLIW processors," in

IEEE Workshop on Fault Tolerant Parallel and

Distributed Systems, July 1992, pp. 193{200.

[7] B. Iyer and R. Karri, \Introspection: a low over-

head binding technique during self-diagnosing mi-

croarchitecture synthesis," in DAC, June 1996, pp.

137{142.

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

