
Abstract

We present a grammar based specification method for hard-
ware synthesis of data communication protocols in which
the specification is independent of the port size. Instead, it
is used during the synthesis process as a constraint. When
the width of the output assignments exceed the chosen out-
put port width, the assignments are split and scheduled
over the available states. We present a solution to this prob-
lem and results of applying it to some relevant problems.

1. Introduction

System descriptions are composed of three elements:
Data structuring, Computation and Communication. Lan-
guages like VHDL, C++ etc. have evolved to support com-
putation intensive applications. Communication in such
languages are weakly supported using data structuring ele-
ments to specify theinterface and computation elements to
specify theimplementation of protocol for communication
between systems.

ProGram (Protocol Grammar) is a grammar based
specification language, inspired by YACC and LEX,
intended to serve the need of communication intensive
applications, where the functionality is dominated by the
task of recognising messages in the input stream(s) and
producing output stream(s) based on message contents and
the sequence. The specification essentially specifies the
vocabulary and the grammar for communication between
systems. A crucial detail that is not part of specification is
the width of the communication channel. Just as in a tele-
phone conversation, the communicating parties do not
worry about the bandwidth of the communication channel.

Computational aspects of the system description are
modelled as the actions that need to be performed when a
message has been recognised. Depending on the chosen
width of input and output streams, the actions are spread
over several cycles. This is the task of output scheduling
that is the focus of this paper.

Section 2 relates our work to similar work done
recently. Section 3 gives a brief introduction of ProGram.
Section 4 illustrates the synthesis process using a small
example and present the output scheduling algorithms. Sec-
tion 5 shows the results of doing design space exploration
and synthesising a small part of the Operation and Mainte-
nance (OAM) functionality of the ATM-protocol together
with initial experiments on the quality of the produced
VHDL code. Finally, section 6 summarizes our contribu-
tion, draws some conclusions and discusses future research.

2. Related Research

Automatic generation of language recognizers from
grammar specifications has been extensively used in the
software area for a long time [7]. Synthesis of hardware
from such specifications was recently reported by
Seawright et. al. [1]-[4]. They describe a system, called
Clairvoyant, which is used to synthesize some small to
medium sized examples from Production-Based Specifica-
tions. The output of Clairvoyant is an FSM described in
VHDL that is synthesizable by logic synthesis tools. This
system is targeted for detailed specification of communica-
tion interfaces and other control-dominated circuits includ-
ing Communication Protocols. In Clairvoyant a design
entity with a single process and a well defined boundary
and interface is specified. All inputs and outputs in the
design entity are described at clock cycle level.

Our approach is similar to this to the extent that the
input is a production based specification and the output is in
RT-level VHDL. However, ProGram is targeted for specifi-
cation and synthesis of large systems and differs from the
above approach in being at a higher level of abstraction.
The synthesizer allows fast exploration of the lower level
design alternatives and frees the designer of clock cycle
level details and exact input-output description. Further-
more, multiple processes can be specified in ProGram and
reading and writing of the multiple input and output
streams can take place independently. This is very useful
for structuring large designs. In addition, the ProGram

Scheduling of Outputs in Grammar-based Hardware
Synthesis of Data Communication Protocols

Johnny Öberg, Anshul Kumar1, Ahmed Hemani

Electronic Systems Design Laboratory,
Royal Institute of Technology (KTH),

ESDLab/KTH-Electrum, Electrum 229, S-164 40 Kista, Sweden
1 Dept. of Computer Science & Engineering,

Indian Institute of Technology, New Delhi, India.
Email: {johnny, ahmed}@ele.kth.se, anshul@cse.iitd.ernet.in

descriptions are independent of the width of I/O. The I/O
sizes are derived to satisfy the throughput constraints posed
in the grammar description. This entails splitting and
scheduling the logic for message recognition from input
stream and assignment to output stream. This is the key
extension to our previous work ([15]) in this field.

In Clairvoyant all actions are specified in VHDL-code,
similar to the software approaches used by, for instance,
YACC [6][7]. ProGram, however, uses actions specified as
lists of assignments. This helps in analysing the specifica-
tions for design space exploration, as well as for design ver-
ification. ProGram is also inspired by YACC in terms of its
notations, but has been designed with the aim of hardware
synthesis. In spirit, it has some similarity with LOTOS [8]
in the sense that like LOTOS, specifications in ProGram
deal with sequences of allowed events rather than states and
state transitions as is the case with Estelle, SDL [8] and
Promela [5].

DALI [14], is a commercial system based on the Clair-
voyant system. It uses a graphical interface for entering the
production rules, called frames, in a hierarchical manner
together with their actions. As with Clairvoyant, DALI sup-
ports actions in a “host” language (VHDL or Verilog). In
addition, DALI has some inbuilt simple data manipulation
and communication primitives.

3. Describing Hardware Protocols as a Gram-
mar

Data communication protocols can be viewed as a lan-
guage in which two systems communicate. ProGram is
based on a BNF like notation to specify a) the vocabulary of
the language and b) the grammar rules to compose a mes-
sage in terms of the vocabulary. A third element specifies
the action to be taken when a message has been recognised.
Two additional elements specify the memory layout and
interface.

A. Interface declaration section

In the interface section, see Figure 3.1., the external
interfaces and internal signals (interfaces between proc-
esses) are declared. Input declaration specifies an input port
and consists of the name, the width and the bitrate of the
input. The bitrate is optional and if given, ProGram uses the
information as a constraint during the synthesis process and
will introduce pipelining if necessary. If the bitrate is not
given, the synthesised circuit will not accept another mes-
sage until the completion of the current one. An Internal
specification specifies the name and width of an internal
signal, that are used for communication between concurrent
processes inside the protocol circuit. An Output specifica-
tion similarly specifies the name and width of the output
port. Note that, though the width of input, output and inter-
nal signals is specified, the grammar is completely inde-

pendent of the bitwidth. By varying bitwidth, the user
easily explores the design space. This will cause the inter-
nal and output assignments to be partitioned and scheduled
over the input tokens constructed from the input port size
constraint.

Memories are specified in a slightly different way. The
size of the memory is specified in terms of number of
address lines followed by the name of the rule that specifies
the memory field layout.

Start rules mark the top rule in the rule hierarchy. Since
there can be multiple input streams, the start rules also
specify the current input stream. The input stream is then
inherited downwards in the hierarchy of rules until a redi-
rection is found, as explained later.

B. Token definitions section

A Token is a pattern of bits read from an input stream
or written to an output stream. Reading and writing tokens
are the primary events. Unlike YACC & LEX, tokens are
not specified separately nor is a separate recognizer built
for them.

Symbolic names are given to tokens as shown in Figure
3.2. The Token SIXA42 is an example of multiplicity where
the pattern 6A (hexformat) is repeated 42 times.

C. Memory Layout Section

Memories are interpreted as a list of records. The
record is a collection of named fields. A field consists of a
name together with its bit size. Fields inside a record can be
accessed separately. The record to access is identified by
the address to the memory.

%input input_cell_1 [bit]8 rate 155 Mbps
%internal vci [bit]16
%internal address [bit]8
%output output_cell_11 [bit]53*8

%memory connection_memory [[bit]8] connection_status

%start Input_Handler(input_cell_1)

Figure 3.1. Interface declaration for the F4
OAM example.

// GENERAL TOKENS
VCI_SEGMENT 0000 0000 0000 0011
VCI_CONNECTION 0000 0000 0000 0100
VCI_USER_1 0000 0000 0000 0001
VCI_HIGH_IS_ZERO 0000 0000 0000
VCI_IDLE 0000 0000 0000 0000

SIXA42 [0110 1010]42

Figure 3.2. Examples of F4 OAM specific
tokens.

D. Action Macro Section

Actions in the grammar specify assignment of values
to signals. To ease the task of specification, actions that are
frequently used can be specified as a macro which can be
referenced later in the action part of the production rules.
An example of action macros is shown in Figure 3.3.

Expressions to compute values may be put directly in
the assignments with a size specification. The expressions
allow concatenation and conditionals in addition to the
usual arithmetic and logic operations. The operands can be
constants, signals, other action value symbols or bit pat-
terns recognized by grammar symbols. Hierarchical
descriptions are supported. The assignments can then sim-
ply refer to the name of the macro. A symbol prefixed with
$ refers to the bit pattern recognized by that symbol. The
scope of such a reference is limited to the symbols already
recognized in the current alternative.

E. Grammar Rules

A grammar rule consists of a grammar symbol which
serves as a rule identifier and a list of alternatives. Each
alternative is a sequence of non-terminal symbols and/or
terminals followed by actions enclosed in curly brackets as
shown in Figure 3.4. A redirection of the input stream is
done by passing the new signal stream as a parameter to the
subtree of productions.

In the signal assignment in Figure 3.4., the signal
address is assigned the value of the rule productionvpi. The
symbol special_user_cell parses the full record obtained
from the memoryconnection_memory at addressaddress.

Symbols that are not hierarchical are called Terminals.
A terminal can be any of the four following things: a token,
a bit string, a special pattern or the keyword error. The key-
word error denotes an error condition. There are two types

of special patterns:

[bit]k
[others]k

where k is an integer. The first one specifies a string of
k don’t cares (either a 1 or a 0). The second one is the same
as specifying an else clause i.e. all other combination of bits
that has not previously been specified. This also matches
any string of k bits. Theothers type of pattern or anerror
keyword can only appear as the last alternative in a gram-
mar rule. In addition, it is also possible to negate a pattern,
i.e. to specify that anything but this pattern matches the
description. Any pattern or error condition not directly
given, corresponds to an error state in the synthesized hard-
ware.

4. Synthesis from the Protocol Grammar

The synthesis procedure is based on a series of trans-
formations performed on the grammar specification, each
transformation taking the specification closer to a possible
implementation. To illustrate the synthesis process we will
walk through the synthesis of a self synchronizing Man-
chester encoder, whose ProGram description is shown in
Figure 4.1.

The manchester encoder has one input, namedinp, and
one output, namedq, of the size bit. The encoder does not
have a reset input since it is self synchronizing. It should be
implemented as a single statemachine clocked at 20 MHz.
The clock period does not affect the structure of the pro-
duced statemachine, but is instead used by the backend tool
as a constraint for the subsequent logic synthesis. The
encoder input must be oversampled with a factor of two in
order to have enough transitions to output the manchester
encoded output. If the sampled sequence is00 or 11, the
encoder is in sync and the corresponding manchester
encoded output is assigned toq. If however the sampled
sequence is01 or 10, the encoder is out of sync and need to
wait one additional bit in order to get in sync again. There-
fore, one additional bit is added to these transition

q = $a next CPM16 ($trcc01+1)16;

next = if (inp=00) then 1001 else 0110 end if;

Figure 3.3. Example of an action value
specification.

input_cell: gfc vpi VCI_SEGMENT
{ vci=VCI_SEGMENT; }

pti clp hec
 { address = $vpi; } oam_segment_types

| gfc vpi vci_user {vci=$vci_user;} pti clp hec
{ address = $vpi; } user_cell_body
special_user_cell(connection_memory[address])
{ output_cell_11 = special_user_cell_action;
 priority=PRIORITY_1; };

Figure 3.4. Partial grammar specification for
the OAM/ATM example.

// ProGram Specification of a Manchester Encoder
%input inp bit
%output q bit
%start encode(inp) no_reset clk 20 MHz single_FSM
%% // No constants are specified
%% // No memories are specified
%% // No actions macros are specified
%%
encode: 00 { q = 01 ; }

| 01 bit { q = 010 ; }
| 10 bit { q = 100 ; }
| 11 { q = 10 ; };

Figure 4.1. ProGram Specification of a self-
synchronizing Manchester encoder

sequences. The output assignments during these phases
could be used to output a correct value but instead we
choose values that allows us to minimize the number of
states in the final FSM.

In order to synthesize a state machine, we transform
the grammar specification into a Directed Acyclic Graph
(DAG), called the Grammar DAG, which is a series-parallel
graph in which the parallel subgraphs correspond to the
alternatives for a grammar symbol and the subgraphs in
series correspond to the sequence of items within an alter-
native. All non-recursive references to non-terminal sym-
bols are expanded to their subgraphs in the Grammar DAG.
Thus, the nodes of the Grammar DAG correspond to the
terminals and recursive references to non-terminals.

The input is parsed and the productions stored in tables
and checked for consistency and conformance to the
restrictions. Then the Grammar DAG is constructed for
each start symbol and optimised using the procedure shown
in Figure 4.2. Each start symbol will result in one parallel
communicating VHDL process. The details of the first four
algorithms were covered in [15] so they will only be cov-
ered briefly here. The main focus will be on the two output
schedule algorithms.

First, the grammar is build using the
build_grammar_DAG() algorithm. Each item of all the
alternatives in a grammar production rule is expanded and
linked together with a dummy exit state. The dummy exit
states are reduced out of the Graph by the ReduceExits()
algorithm. One Exit node remains after reduction: the exit
state of the uppermost level of the grammar that collects all
expanded branch alternatives for the DAG of that start sym-
bol.

When the grammar DAG has been constructed and all
dummy Exits have been deleted, the resulting grammar
DAG is word aligned onto the input stream of its start sym-
bol. Terminals of smaller size than the width of the input
stream are grouped together and terminals that are wider
than the width of the input stream are split into smaller
pieces. Actions are kept with the last terminal of the split
sequence. The result of applying this algorithm to the Man-

chester Encoder example is shown in Figure 4.3. The input
transition sequences are split into portions that have the
same size of the inputinp.

The grammar DAG could at this point be slightly
ambiguous. For ease of description a designer is allowed to
duplicate terminals and patterns in multiple branches. After
applying WordAlignTerminals(), two alternatives in a rule
may end up in having the same condition for transition.
This ambiguity is resolved by reducing out all duplications
using the ReduceGrammar() algorithm. Input sequences
that are identical are merged. Two sequences are identical if
they have the same transition and the same actions assigned
to it. The result of applying this algorithm on the Manches-
ter Encoder example is shown in Figure 4.4.

When the input sequence ambiguities have been
removed out of the grammar DAG, the output sequences,
i.e. the actions, must be word aligned to their respective
outputs. Action items, that are smaller than their output
stream, are grouped together and actions that are wider than
their output stream are split into appropriate chunks. Appli-
cation of this transformation on the encoder is shown in
Figure 4.5. All bit sequences associated to the outputq is
split into a list of actions; all items in the list having the size
bit.

The resulting grammar DAG is again slightly ambigu-
ous. To output all bits during the same state is not meaning-
ful. The output assignments need to scheduled over the

CheckConsistency();
for i=1 to Number_of_Start_Rules loop

start_symbol=new symbol(ENTER,stream(i));
exit_symbol=build_grammar_DAG(start_rule(i),

start_symbol);
ReduceExits(start_symbol);
WordAlignTerminals(start_symbol,stream_size(i));
ReduceGrammar(start_symbol);
WordAlignOutputs(start_symbol);
ScheduleUpwards(start_symbol);
ScheduleDownwards(start_symbol);
ReduceTailStates(exit_symbol);
MarkAllStates(start_symbol);
Output_FSM(start_symbol);

end loop;

Figure 4.2. The synthesis procedure.

00

01-

10-

11

q= 01;

q= 100 ;

q= 10 ;

q= 010 ;

Start Exit

0

0

1

1

0

1 -

0 -

1

Start Exit

q= 10

q= 010 ;

q= 100 ;

q= 01;

Figure 4.3. Applying the WordAlignTermi-
nals() on the Grammar DAG

0

1

0

1 -

0 -

1

Start Exit

q= 10

q= 010 ;

q= 100 ;

q= 01;

Figure 4.4. Applying the ReduceGrammar()
on the Grammar DAG

0

0

1

1

0

1 -

0 -

1

Start Exit

q= 10

q= 010 ;

q= 100 ;

q= 01;

transitions. This is done using the ScheduleUp() algorithm
shown in Figure 4.6.

The ScheduleUp() algorithm is a recursive algorithm
that is applied depth-first on all the symbols in the grammar
DAG. If there is only one successor, all but the last item in
all the action lists of the successor are moved up to this
symbol. If there are many successors, only those outputs
which have their action lists written by all successors are
considered for scheduling. To do otherwise would violate
the specification. All the items but the last in the considered
action lists are then compared, starting from the first item,
to find out how many consecutive items that are identical
between the action lists. The consecutive items that are
identical are then moved up to this symbol. The result of

applying the ScheduleUp() algorithm on the encoder exam-
ple is shown in Figure 4.7.

The assignment0 followed by 1 is moved up in the
hierarchy, starting from thex transition in the upper part of
the figure, to the preceding transition, the1. Then the
assignments of the transition0, the0, is compared with the
assignments of the transition1, also a0. Because the assign-
ments to be moved are identical, the assignments can be
moved up to the preceding transition, the first0 transition.

When the ScheduleUp() algorithm has been applied,
there could be several outputs that have not been scheduled.
This happens when there are more than one item left after
identifying the sequence of identical consecutive items.
These are taken care of by the ScheduleDown() algorithm
shown in Figure 4.8.

The ScheduleDown() algorithm is applied recursively
in a top-down manner to all symbols in the grammar DAG.

0

1

0

1 -

0 -

1

Start Exit

Figure 4.5. Applying the WordAlignActions()
on the Grammar DAG

0

1

0

1 -

0 -

1

Start Exit

q=10;

q=100;

q=010;

q=01;
q=1;

q=0;

q=0;

q=1;
q=0;

q=1;
q=0;

q=0;

q=0;
q=1;

ScheduleUp()
begin

Denote the set of all successors as Succ()
if symbol has no successors then return;
for i in all successors loop

ScheduleUp();
end loop;
if symbol has one successor then

Denote the set of action lists that are written to in
the successor as Outputs()

for i in Outputs() loop
Denote the list of items in the action list Output(i)

as OutputsToBeScheduled
Move all elements in OutputsToBeScheduled

except the last one up to this symbol
end loop;

else
Denote the set of action lists that are written to by the

successor S as Output(S)
for i in all Output(S) that are written to by all

successors S loop
Denote the list of consequtive items, except the

last one, that are identical for all action lists
Output(S,i) as OutputsToBeScheduled.

Move all elements that are identical in
OutputsToBeScheduled up to this symbol

end loop;
end if;

end ScheduleUp();

Figure 4.6. The Up Scheduling Algorithm.

0

1

0

1 -

0 -

1

Start Exit

Figure 4.7. Applying the ScheduleUp() on
the Grammar DAG

q=1;

q=0;q=0; q=1;

q=1; q=0; q=0;

q=1;

0

1

0

1 -

0 -

1

Start Exit

q=1;

q=0;

q=0;

q=1;
q=0;

q=1;
q=0;

q=0;

q=0;
q=1;

ScheduleDown()
begin

Denote the set of all successors as Succ()
if symbol has one successor and the successor is the exit

state then return;
Denote the set of action lists that are written to by this

symbol as Outputs()
for i in all Outputs() loop

for jin all Succ() loop
if the Ouput(i) is writing to an output also written to by

Succ(j)
Copy all the items, except the first, in the list

Output(i) to the beginning of the action list of
the output that is also written to by Succ(j)

else
Copy all the items, except the first, in the list

Output(i) to Succ(j)
end if;

end loop;
Delete all the items, except the first, in the list Output(i)

end loop;
for i in all successors loop

ScheduleDown();
end loop;

end ScheduleDown();

Figure 4.8. The Down Scheduling Algorithm.

If a symbol has more than one item left in an action list the
first item is kept and the remaining items are copied to the
successors. If a successor has an output with an associated
action list that are writing to the same output stream as the
action list that is to be copied, the copied list is inserted in
the beginning of the associated list. If the successor does
not have an output that are writing to the same output
stream, a new output, with the list to be copied associated to
it, is added to the successor’s list of outputs. When the
ScheduleDown() algorithm has been applied, it can happen
that the outputs of the symbols preceding the exit symbol
have more than one item in their associated action lists.
This case is the result of a grammar that does not contain
enough transitions to schedule the output, which has
resulted in a solution that is partly unschedulable and is
reported as an error.

In the Manchester encoder example, this error would
have occurred, had the assignments not been identical in the
two alternative branches. The ScheduleDown() algorithm
would have moved the assignments down through the hier-
archy ending up with two assignments in the states preced-
ing the exit state. The specification does not contain enough
transitions for the outputs to be scheduled properly and the
error would be reported.

After the output assignments have been scheduled over
the transitions, there is still an opportunity for optimising
the final FSM. Transitions with multiple preceding transi-
tions, like the exit state, may have identical tokens and
identical assignments on some of the incoming transitions.
In this case it is useful to merge these transitions. The appli-
cation of the ReduceTailStates() algorithm on the example
is shown in Figure 4.9. The ReduceTailStates() algorithm is
almost identical as the ReduceGrammar() algorithm pre-
sented in [15] but is applied Bottom-Up starting from the
exit symbol and comparing and merging predecessors
instead of being applied Top-Down starting from the start
symbol and comparing and merging successors.

After the outputs have been scheduled and the gram-
mar has been optimised, states are assigned to the grammar
DAG. This can be done in two ways. For designs that have
long decision trees and the branches of the tree are of
approximately equal size, there is an advantage in splitting

the controller into a depth counter and a branch selector.
The depth counter would then keep track of how far down
in the tree the controller is and the branch selector would
keep track of in which branch of the tree the controller is in.
The partition of the controller into two parts reduces the
complexity of the problem, and thereby the time and mem-
ory spent in state optimisation, and thus allows synthesis of
much larger designs. For smaller designs and for designs
that don’t have near equal length of their branches, it is
more advantageous to assign all states to the same FSM.

The result of applying the MarkAllStates() algorithm
on the Manchester encoder is shown in Figure 4.10. The
first state isstate_0. Then the trailing transitions are fol-
lowed from the left to the right. Thestate_1 is assigned to
the transitions going out from transition0 of state_0 and
state_2 is assigned to the transitionx going out from transi-
tion 1 from state_1. Thestate_3 is assigned to the transitions
going out from transition1 of state_0. Since the transitionx
going out from transition0 of state_1 already has a state
assigned to it, this transition branch is not followed. The
final state diagram of the self synchronizing Manchester
Encoder is shown in Figure 4.11.

When the states has been marked the final Grammar
DAG is output as an FSM in VHDL in a format suitable for
synthesis by Synopsys. The two possible target architec-
tures of the synthesized design are shown in Figure 4.12.
The first architecture consists of a depth counter in the form

0

1

0

1

0

-

1

Start Exit

Figure 4.9. Applying the ReduceTailStates()
on the Grammar DAG

q=1;

q=0; q=1;

q=1; q=0;

q=0;

q=1;

0

1

0

1 -

0 -

1

Start Exit

q=1;

q=0;q=0; q=1;

q=1; q=0; q=0;

q=1;

0

1

0

1

0

-

1

Start Exit

Figure 4.10. Applying the MarkAllStates()
on the Grammar DAG

q=1;

q=0; q=1;

q=1; q=0;

q=0;

q=1;

0

1

0

1

0

-

1

Start Exit

q=1;

q=0; q=1;

q=1; q=0;

q=0;

q=1;

S0

S1

S1

S3

S3

S2

S0

0

1

0

1

0

-

1

Start Exit

Figure 4.11. Final Grammar DAG vs. State
Diagram of the Manchester Encoder

q=1;

q=0; q=1;

q=1; q=0;

q=0;

q=1;

S0

S1

S1

S3

S3

S2

S0

S3 S1

S0

S2

1| q=1;
0| q=0;

1| q=0;
0| q=1;

0| q=0; 1| q=1;

-| q=0;

of a token pipeline, one FIFO per Input Stream to allow the
actions to refer to the values of previous parsed symbols, a
branch selector in the form of a symbolic State Machine,
memories and output logic plus registers. Before Logic
Synthesis, the token pipeline, the FIFO and the memories
need to be extracted from the VHDL-code since these are
poor candidates for optimisation by Logic Synthesis. The
second architecture is similar to the first one but the Branch
Selector and the Depth Counter is replaced with a single
FSM controller. It should be noted that both the FIFO and
the memory are optional and are only instantiated if they
are needed. The Manchester encoder example uses the sec-
ond architecture with a single controller. The FIFO and the
memory are not needed so the design will consist only of a
single controller together with output logic and registers.

5. Results & Discussion

A small part of the F4 Operation and Maintenance Pro-
tocol for ATM-switch systems [9] has been synthesised for
different input port widths to test the efficacy of our
approach. The design parses the incoming ATM-stream and
extracts different types of OAM-cells. The synthesis results
for different bitwidths are shown in Figure 5.1. The datap-
ath area includes the area of muxes and output registers.
Memory and FIFO area are not included in the area figures.

The lsi_10k was used as a target technology.
In Figure 5.1. a) the output width is fixed to 424 bits,

which means that the protocol is performing a series to par-
allel conversion, and therefore the datapath area is constant.
If we instead would have selected the output width to be the
same as the input width we get Figure 5.1. b). Here we can
see that the design has a minimal area at a port size of 53
bits. However, the design with 8 bits is almost equal in size.
Since the Pad area is not included in the figures and since it
is always easier to handle 8 bit ports than 53 bit ports, the 8
bit design is probably a better choice. The Depth Counter
was realized as a Johnson-counter, i.e. a one-hot encoded
counter and the Branch Selector was implemented using
binary encoding. It should be noted that the designs with bit
widths one and two did not meet the timing requirements
because of too long a critical path in the next state logic.
For these two cases, the whole state machine needs to be
one-hot encoded in order to meet the timing constraints.
Thus, the proper selection of target architecture would in
this case have been to select a single FSM as the controller.

We also synthesized a smaller design, the earlier pre-
sented Self-Synchronizing Manchester Encoder. This was
compared to a) a manually designed encoder expressed at
RTL in VHDL and b) a behavioural description synthesised
with a commercial HLS tool. Both designs were written
and manually optimised by an experienced designer. The
results are displayed in Table 5.1.

FIFO
Depth

Branch
Selector

Counter

Output Logic &
Registers

Memory

CTRL Output Logic &

Memory

Figure 4.12. The two Possible Target architectures.

FIFO

Registers

1 2 4 8 53 424

Area

Bits

10k

Depth Counter Area
Branch Selector Area

Data Path Area

Figure 5.1. Design Space Exploration. a) Area vs. input port width.
b) Area vs. input & output port width.

1 2 4 8 53 424

Area

Bits

10k

The first thing important to note is that the HLS-code is
not so much smaller than the manually written RTL VHDL-
code. This is because the functionality contains many tran-
sitions. The ProGram code is 3 times smaller than the HLS
code. The second thing to note is that the ProGram code got
identical result after synthesis as the manually optimised
code, both in terms of performance and in area. The manu-
ally synthesized design was actually larger in the first try.
This was caused by the synthesis tool which was given
more freedom to find a solution, but after constraining the
search space the manual design was of equal size. The HLS
coded design was 2.7 times bigger than the RTL and Pro-
Gram designs. In addition, it required two clock cycles to
perform the functionality with a 1.67 times slower clock
and five more states.

6. Conclusions and Future Research

We have extended our methodology for specifying data
communication protocols in an implementation independ-
ent manner and synthesizing hardware from such specifica-
tions with output scheduling. In addition, we have added a
state reduction algorithm to improve the produced state
machine. The synthesis tool developed can be used to
explore alternative realisations with different widths of the
I/O ports.

The initial experiments on the quality of the produced
code is promising, but it is too early to draw any conclu-
sions from it since the number of synthesized designs are
small. The quality of the produced VHDL code for small
designs seems to be as good as the code produced by an
experienced designer. However, to draw any general con-
clusion, an extensive case study needs to be performed.

A problem with our current approach is that the output
assignments that consist of datapath calculations that are
wider than the stream output needs to be split over the
states. Ponder the case where an addition is performed and
only the lower half of the result should be used in a cycle
and the higher half in the next cycle. In the current imple-
mentation, a full size addition is scheduled and the result
stored in a register, whose value is kept for two cycles. This
results in an unnecessary slow hardware. Instead the addi-

tion could be performed in two steps, the lower half of the
result calculated during the first cycle and the second half
calculated during the second cycle.

The case of a solution that is partly unschedulable
caused by a reduce-conflict in the grammar can be solved
using a pipelined controller mechanism that output the val-
ues during the first transitions of the next pass of the con-
troller. As long as there are no output assignments
scheduled in these control steps for the output in question,
the reduce-conflict is resolved.

A number of other design options can be included to
explore a larger design space. These include alternative
state partitioning and encoding choices, alternative syn-
chronisation schemes and various pipelining options. The
synchronisation schemes could be organized in the form of
a macro library which could be accessed by the synthesizer.

REFERENCES

[1] A. Seawright, F. Brewer, “Synthesis from Production-Based
Specifications”, 29th DAC, pp 194-199, June 1994.
[2] A. Seawright, F. Brewer, “High Level Symbolic Construction
Techniques for High Performance Sequential Synthesis”, 30th
DAC, pp 424-428, June 1994.
[3] A. Seawright, F. Brewer, “Clairvoyant: A Synthesis System
for Production-Based Specification,” IEEE Trans. on VLSI Sys-
tems, vol. 2, pp 172-185, June 1994.
[4] A. Seawright, Grammar-Based Specifications and Synthesis
for Synchronous Digital Hardware Design, Ph. D. Thesis, Univ. of
California, Santa Barbara, June 1994.
[5] G. J. Holzmann, “Specification and validation of Protocols”,
Prentice-Hall International Inc., 1991.
[6] S. C. Johnson, “YACC, Yet another compiler compiler”, Com-
puting Science Tech. Rep. 32, AT&T Bell Lab., Murray Hill,
1975.
[7] A.V. Aho, R. Sethi, J.D. Ullman, “Compilers, Principles,
Techniques and Tools”, Addison-Wesley Publishing Company,
1986.
[8] Edited by K. J. Turner, “Using Formal Description Tech-
niques”, John Wiley & Sons Ltd., 1993.
[9] “B-ISDN Operation and Maintenance interface principles and
functions”, ITU-T Recommendation I.610.
[10] M. E. Lesk, “Lex-A lexical analyzer generator”, Computing
Science Tech. Rep. 39, AT&T Bell Lab., Murray Hill, 1975.
[11] D. D. Gajski, F. Vahid, S. Narayan, J. Gong, “Specification
and Design of Embedded Systems”, Prentice Hall, 1994.
[12] F. Vahid, S. Narayan, D. D. Gajski, “SpecCharts: A VHDL
frontend for embedded systems”, IEEE Trans. on CAD, vol. 14,
pp 694-706, 1995
[13] D. D. Gajski, S. Narayan, L. Ramachandran, F. Vahid, “Sys-
tem Design Methodologies: Aiming at the 100 h Design Cycle”,
IEEE Trans. on VLSI Systems, vol. 4, pp 70-82, March 1996.
[14] A. Seawright, U. Holtmann, W. Meyer, B. Pangrle, R. Ver-
brugghe, and J. Buck, “A System for Compiling and Debugging
Structured Data Processing Controllers”, in Proc. of EuroDAC
‘96, Geneva, Switzerland, September 1996.
[15] J. Öberg, A. Kumar, A. Hemani, “Grammar-based Hardware
Synthesis of Data Communication Protocols”, In Proc. of
ISSS’96, pp 14-19, La Jolla, California, Nov 6-8, 1996.

Table 5.1. Program vs. VHDL coded for HLS and
manually coded RT level VHDL

HLS RTL ProGram

Number of lines in the speci-
fication

30 40 10

Resulting Area after Logic
Synthesis (Gates)

75 28 (31) 28

Minimum Clock Period (ns) 6.0 3.6 3.6

Critical path (clock cycles) 2 1 1

Number of states 9 4 4

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

