
Architectural Simulation in the Context of Behavioral

Synthesis

A. Jemai: INSAT, Tunis, Tunisia,
P. Kission, ANACAD, Grenoble France

  A.A. Jerraya, TIMA Laboratory, Grenoble, France

Abstract

 This paper deals with integrating an interactive
simulator within a behavioral synthesis tool, thereby
allowing concurrent synthesis and simulation. The
resulting environment provides a cycle based simulation
of a behavioral module under synthesis. The simulator
and the behavioral synthesis are based on a single
model that allows to link the behavioral description and
the architecture produced by synthesis. The basic
simulation-synthesis model is extended in order to allow
for concurrent architectural simulation of several
modules under synthesis.

This paper also discusses an implementation of this
concept resulting in a simulator, called AMIS. This tool
assists the designer for understanding the results of
behavioral synthesis and for architecture exploration. It
may also be used to debug the behavioral specification.

I. Introduction
Starting from behavioral description, behavioral

synthesis allows to produce an architecture made of a
controller and a data path. The later is generally given as
an RTL description which is 5 to 10 times larger than
the initial behavioral description [PFHB95]. A typical
HLS flow is depicted in figure 1.

The first experiences using behavioral synthesis
[Berr96] have shown that designing with behavioral
synthesis is an iterative process where starting from an
initial specification, the user proceeds in several
iterations. At each iteration behavioral synthesis is used
in order to produce an architectural solution. If the
obtained solution is not "good enough", another
behavioral synthesis iteration may be needed. In order to
obtain a better solution the designer can refine the initial
behavioral description or the synthesis script according
to the hints extracted from earlier synthesis sessions.

On the other hand, experiences with complex system
design have shown the need to allow for modular
approaches. A complex system is seldom described as a
single module. Even if behavioral synthesis is still

restricted to a single process, the overall design
methodology need to handle multi-module architecture.

It is then clear that combining modular design with
iterative behavioral synthesis is  needed for the design of
complex systems [PFHB95]. However this combination
issues several challenges:

-1- Analyzing the interaction between several
modules under synthesis may be a nightmare for
designers. Behavioral synthesis may introduces extra
cycles that affects the inter-modules communication
timing.  When several modules needs to be synthesized,
specific debug tools are required in order to check inter-
module interaction after synthesis.

-2- Debugging the results of behavioral
synthesis is fastidious and inefficient when performed
on the resulting RTL description. First RTL simulation
may take hours for the compilation, elaboration and
simulation. Second, the RTL model may be very
difficult to read because organization of the RTL model
is generally very different from the initial behavioral
description.. Some existing behavioral synthesis tools
reduce the time needed for this step by producing an
elaborated RTL description [Syno95].

-3- The analysis of the architecture may
provide statistic information on the use of the resources
and on the execution time. Some of these information
need just static analysis. However in the case of a
behavioral description that includes a data dependent
loop, the execution time cannot be computed by a static
analysis. In this case a simulation is needed to find the
typical execution time according to the test vectors used.

As long as the three above-mentioned problems are not
solved, behavioral synthesis will remain isolated and
difficult to include in an overall design methodology.

1. Previous Work

Several tools published tackle one or two of the above
mentioned problems. Multi-module debug and
validation is handled quite well using simulation and co-
simulation[PFHB95]. However none of the existing
tools, to our knowledge, allows for concurrent debug of



2

several modules under synthesis.

Only few tools tackled the problem of debugging. Some
of them tried to link the behavioral description and the
resulting architecture. In this field AWB [TDWR88,
TLWN90] is a precursor, it provides an original model
allowing such links. The model allows the user to
analyze these links and to understand the decision of the
behavioral compiler and thereby to explain the resulting
solution. ISE [ChaG92, Gajs96] provides also an
interactive environment allowing an easy interaction
with the user for understanding the architecture and
debugging the design. As mentioned above, some works
have tried to solve one of the three problems but none of
the existing tools to our knowledge allows to solve the
three above mentioned problems.

The dynamic analysis of the behavioral description,
pointed out as the third problem, can be done through a
simulation of the corresponding RTL description
operated by the behavioral compiler using standard
simulators. However this implies that the designers have
to complete the behavioral synthesis before starting the
analysis. Some behavioral synthesis tools include
statistic analysis. CATHEDRAL [NGCD91] and
PHIDEO [LMWV91] for example include such
facilities. However, these tools are restricted to regular
algorithms without data dependent computation. MIES
[NeSM89] is an interesting approach to architecture
simulation, it is based on a micro-architectural model
similar to those produced by behavioral synthesis.
Unfortunately, it is not connected to most popular
behavioral compilers.

2. Contribution

In a previous paper [JKJ97] we introduced an
architectural simulator called AMIS which is integrated
within AMICAL, an interactive behavioral synthesis
This paper presents an extension of AMIS to handle
distributed architectural simulation within behavioral
synthesis. The goal is to allow for concurrent debug and
performance analysis of multi-modules descriptions.

II. Synthesis and Simulation
The key idea for combining behavioral synthesis and
architectural simulation is to use the representation
and internal data structures of behavioral synthesis for
simulation. . Figure 1 shows a design flow combining
architectural simulation and behavioral synthesis.

1. Behavioral Synthesis

Behavioral synthesis allows to produce an RTL
description starting from a behavioral specification. The
RTL model is composed of a data path and a controller.
Behavioral synthesis is generally organized in two major
steps. The first step performs scheduling and allocation
in order to produce the data path and to fix the

controller. The second one performs the generation of
the controller and produces the RTL description. Most
of the design decisions are made during the first step. At
this stage, we have enough information about the
architecture to perform architectural simulation.

Architecture 
Generation

Behavioral Synthesis

Behavioral 
Description

Scheduling 
Allocation

Abstract 
Architecture

ARCHITECTURAL 
SIMULATION

RTL 
Description

Simulation 
Synthesis 
Back-end

- Statistics 
- Execution Models 
of the Operations

Fig. 1: Mixing Synthesis and Simulation

After scheduling and allocation we know how the
behavioral description will be realized by the
architecture. All the complex operations are
decomposed into basic transfers (and operator
activation). The paths used to transfer data in the data
path are also fixed. These may be made through
multiplexers, switches and buses. The intermediate
model produced by this step is called an abstract
architecture. This model can be used for architectural
simulation

In this paper we will use AMICAL for behavioral
synthesis. AMICAL is an interactive synthesis tool
that starts from behavioral VHDL models and
produces architectures also described in VHDL. The
rest of this section introduces the internal models used
by AMICAL. For more details about this system see
[JDKR96].

Fig. 2: Abstract Architecture of GCD



3

Figure 2 shows a screen dump of AMICAL during
behavioral synthesis. This screen shows the intermediate
models used by AMICAL. The example under synthesis
is the GCD[Benc89]. The top left part of the window
shows a portion of the scheduled behavioral description.
This is organized as an FSM and printed as a transition
table. Each transition is defined by two lines. The first
gives the transition number, the present state, the
condition and the next state. The second line shows the
operations that have to be executed when the transition
is selected.

The bottom window shows the corresponding data path.
In this case the synthesis produces a bus based solution.
The synthesis was made with an option that introduces
I/O units for communication with the external world
using a specific protocol.

At this level an operation may hide a complex behavior
and may therefore require several basic cycles (or clock
cycles to execute). Each operation is decomposed into a
set of elementary transfers by the synthesis process. An
elementary transfer is composed of a source and a sink
that may be a register, a port or a connector (input or
output) of a functional module. During data path
generation, a connection path (set of multiplexers, buses,
switches) is associated to each elementary transfer. Of
course, when several transfers have to be executed in
parallel, separate connection paths should be allocated.

Fig. 3: Decomposition of Operations into Transfers
and Transfer Execution Paths

Figure 3 shows these two decomposition levels using
transition 7 from figure 2. This transition uses I/O
operations that have to be executed in parallel. These
operations are bound to two I/O units that need two
transfers to execute each I/O operation. The top part of
figure 3 shows the transition and the decomposition of
the operations into transfers. The resulting transfers are
organized into micro-cycles. Each micro-cycle is
composed of a set of operations that have to be executed
in parallel. Then each transition is decomposed into a set
of micro-cycles according to the operations of the
transition. In the following we will call the transition:
macro-cycle. In fact the FSM can be seen as the result of
a two-level scheduling of the behavioral description. The
first one fixes the parallelism of operation and produces

an FSM where each transition is made of a macro-cycle.
The second level decomposes each macro-cycle into a
set of basic transitions that have to be executed in
sequence. Each basic transition is a micro-cycle whose
execution will take a single clock cycle.

Figure 3 also shows the correspondence between an
elementary transfer and the connection path used to
execute the transfer. Both the transfer in the top window
and the connection path in the bottom one are
highlighted. Besides data transfers, a macro-cycle may
include several control transfers; these correspond to the
activation of the data path components, e.g. functional
unit selection and to I/O operations of the controller.

Complex transfers may be decomposed into several
basic transfers. For example, a transfer including an
operation may be decomposed into several register-FU
transfers (in order to feed the FU with input to recover
the outputs) and a control transfer that selects the
operation that has to be executed by the functional unit.

2. Architectural Simulation

Architectural simulation makes use of the abstract
architecture (internal model of behavioral synthesis) to
simulate the execution of the design at the architectural
level. This simulation is performed at the clock cycle
level. At each cycle both data path and controller
execute one step. A controller step selects a transition
and computes the next state. A data path step executes
the transition selected by the controller. A transition is
made of a set of elementary operations that have to be
executed simultaneously in the same cycle. An operation
may be a data transfer between resources or a functional
unit selection. The execution of a transfer may need the
activation of several components of the data path
(switches, multiplexers, registers, ...).

The simulator produces several results that may be used
by the designer to understand and refine his solution
during the iterative design process (figure 1).

The simulator produces information related to cycle
based execution of the behavioral model (usage of
buses and operators, intermediate values of wires, I/O
and registers).

In addition to this cycle based information, the
simulator computes and provides dynamic statistics
on the resource use (e.g. frequency of use of the
buses). The cycle based information are generally
used to understand and debug the design. The
statistics are used to analyze the architecture and to
react for the modification of the synthesis script or the
behavioral description (illustrated by bold arrows in
figure 1). More information about architectural
simulation may be found in [JKJ97].



4

3. Combining Architectural Synthesis and
Simulation

The key idea of this work is to use the internal model
used during synthesis in order to perform an
architectural simulation. In fact the abstract
architecture used by behavioral synthesis provides all
the information needed to perform a cycle based
simulation. This way the simulation may be used to
evaluate and validate the architecture before the
generation of the RTL description. The main benefit
of this scheme is to reduce the amount of RTL
simulation. In fact architectural simulation may be
used to validate the RTL descriptions with respect to
the behavioral ones. Such a validation is needed
because behavioral synthesis may introduce extra
cycles that modify the behavior of the system under
synthesis. The interactive architectural simulation
allows the designer to follow the data transfers and to
understand the operation schedule.

III. AMIS: The AMICAL Architectural
Simulator

Fig. 4: Combined Simulation/Synthesis Session

AMIS is an architectural simulator embedded in
AMICAL. The rest of this section outlines the simulator
organization and the simulation modes. More details on
AMIS can be found in [JKJ97].

Figure 4 shows a screen dump of a combined synthesis
and simulation session. The top left part of the screen
shows the AMIS interaction window. The right window
gives the corresponding architectural simulation report,
while the windows underneath show the standard
AMICAL results. The simulation and the synthesis tools
are fully integrated. AMIS is invoked through a simple
command from the AMICAL menu.

The simulation is made of three cooperating processors:
- A simulation engine in charge of executing the

statements of the behavioral description in the right
order.

- A functional unit emulator in charge of executing the
simulation view of the functional units. This engine
is needed in case the data path includes functional
units able to execute multi-cycle operations.

- An environment emulator in charge of providing the
stimulus.

Figure 5 shows the AMIS organization. The simulation
engine communicates with the functional unit emulator
and with the environment emulator through UNIX-IPC
[CouT95].

Environment
Emulator

Behavioral
Specification

AMICAL
(Behavioral
Synthesis)

AMIS
(Simulation

Engine)
Abstract

Architecture

Functional Unit
Emulator

UNIX / IPC

Fig. 5: AMIS Organization

The environment emulator is in charge of providing
stimuli (test vector for the simulation) and recovering
the output of the circuit simulated. It acts as a test
program in standard simulation environment. IV.5
Interaction with AMIS

The functionality and user interface of AMIS are
tailored to work in cooperation with a high level
synthesis. The simulation can be performed in automatic
mode or in a step by step mode. The granularity of a step
is fixed by the user, it may be a macro-cycle, a micro-
cycle or a simple transfer. At each step the operation
executed and the resources used are highlighted in the
synthesis screen. During a simulation session the user
has a continuous access to the values of the register and
the buses. In addition the simulation provides statistics
on the use of the different resources.

IV. Using AMIS for single module
design
This section illustrates the use of AMIS for debugging
and dynamic analysis of the results of behavioral
synthesis. We will use the GCD example introduced
earlier to illustrate this process. The next section will
report on the simulation of multi-module design.



5

1. Using AMIS to debug the Results of
Behavioral Synthesis

In order to debug the architecture produced by
behavioral synthesis the designer needs to relate it to
the initial behavioral description. Without specific aid
tools, the designer would have to decode the produced
architecture in order to find the correspondence with
the behavioral description. This is a fastidious task.

The use of AMIS combined with AMICAL makes
easier this correspondence.  In fact the simulation may
be executed in a step by step mode allowing to follow
the execution details of the behavioral description. A
step may be a basic transfer, a clock cycle or a macro-
cycle. For each step executed, the system provides the
corresponding VHDL line in the input description. It
also uses the capabilities of AMICAL (figure 3) in
order  to show the resources of the data path used for
the execution of the current step. This way the user
can easily make the correspondence between the
initial behavioral description and the scheduled
behavioral description. It is easy to find which path is
used to execute which transfer and which functional
unit is used to execute which operation.

The architectural simulation allows to detect several
kinds of specification errors that cannot be detected
using behavioral simulation. Typical errors are those
related to communication protocols with the external
world and with functional units. In fact the scheduling
may introduce extra steps that may induce a change
between the results of behavioral and RTL simulations.
These changes may provoke errors, but they can be
easily detected by architectural simulation.

2. Using AMIS for data analysis of data
dependant computation.

AMIS provides statistics on the use of the resources of
the architecture. These statistics are computed
dynamically during simulation. Of course, the quality of
these data depends on the quality of the test vectors used
for architectural simulation. For example in the case of
the GCD, table 1 gives the statistics corresponding to a
typical test program..

Resource

Frequency 
of Usage

AS 
(FU)

I/O 
(FU)

I/O 2 
(FU-1) Bus 1 Bus 2 Bus 3 Bus 4 X Y

95,93% 2,64% 2,64% 100% 50,61% 2,64% 2,64% 74,8% 73,17%

Table 1: Frequency of Use of the Resources

The table gives for each resource the percentage of
cycles it is used. We can easily see from this table that
the two I/O units and the buses 3 and 4 are used only
during few cycles. In fact the solution includes 2 I/O
units because the scheduling step produced a solution

where several macro-cycles make use of 2 parallel I/O
operations (transitions 7, 10 and 11) in figure 2. In this
case, we can iterate in the design processes by changing
the synthesis script in order to restrict the number of I/O
operations. This induce a serialization the execution of
the I/O operation in cycles 7, 10 and 11.

V. Multi-module Simulation
This sections explains the extension of AMIS to
handle a multi-module systems. In this case a design
is a heterogeneous system composed of
programmable processors executing software and
dedicated  hardware processors communicating
through a network. Such a system may be
implemented as a single chip, a board or a
geographically distributed system. In the rest of this
paper we assume that the design starts with a
heterogeneous model where the software modules are
described C and the hardware modules are described
in behavioral  VHDL. We also assume that each
software module will be executed on a SPARC
processor. A cycle true model of the SPARC, called
SPIM, is used for the simulation of software modules.

The simulation scheme is an extension of the one
given in figure 5. A simulation configuration is made
of several AMIS instances executing the different
hardware modules and several software modules and
several SPIM instances executing the different
software modules. The different modules interact
using UNIX/IPC communication.

Fig.6 : Multi-component simulation

Fig. 6 shows an example of a multi-module
simulation screen. The system under simulation is
made of three hardware processors and three software
processors. The hardware modules perform GCD
operations. The right part of the screen shows the
global configuration and the simulation control board.
The left part of figure 6 shows two instances of
AMIS.



6

The control board allow to select the module that
needs to be shown during the simulation process.
During simulation, SPIM provides a detailed report on
the software execution (number of cycles, operations
count …).

The multi-module simulation allows to debug both the
modules and their interaction. It also allow to perform
dynamic analysis of the system under test.

VI. Evaluation and Future Work
Although defined for AMICAL, most of the concepts
underlying AMIS may be applied to other HLS tools. In
fact, most of existing behavioral synthesis tools makes
use of an internal representation of the architecture
which can be used for simulation.

First experiments with AMIS tools have shown that such
a tool brings a great deal of added value that makes
easier the iterative design process required for
behavioral synthesis. The paper discussed AMIS
through a small example. However for large examples
the need for such a tool is even bigger since the
architecture is much more complex and harder to
understand, to debug and to evaluate.

The main restriction of the present version is the non
availability of a link to VHDL simulators. Such a link
would allow to co-simulate behavioral modules with
existing components described at the RTL and gate
level. Such an extension requires the development of co-
simulation techniques allowing to execute AMIS and
SPIM concurrently with a VHDL simulator that
emulates the hardware blocks which are not under
synthesis. The communication between AMIS and the
VHDL simulator may also use a protocol based on
UNIX IPC as reported in [CouT95,PFHB95].

VII. Conclusions
This paper discussed the integration of an
architectural simulator, called AMIS, within a
behavioral synthesis tool, called AMICAL. This
scheme allows the user to analyze the results of
behavioral synthesis and to link this results to the
initial behavioral model.  The use of  AMIS make the
debug of the initial specification and the resulting
architecture easier.

The simulation environment was extended to handle
heterogeneous system composed of programmable
processors executing software and dedicated
hardware processors communicating through a
network.

References
[Benc89] Benchmarks for the Fourth International
Workshop on High Level Synthesis, 1989.

 [Berr96]E. Berrebi al. “intensive use of Behavioral
synthesis for the design of XXXXX”, 33rd Design
Automation Conference, 1996

[ChaG92] V. Chaiyakul, D.D. Gajski,
"Assignment Decision Diagram for High-Level
Synthesis", Technical Report #92-103, Department of
Information and Computer Science, University of
California, Irvine, December 1992.

 [CouT95] S.L. Coumeri, D.E. Thomas, "A
Simulation Environment for Hardware-Software
Codesign", International Conference on Computer
Design, 1995.

 [Gajs96]D. Gajski, " Interactive behavioral synthesis",
Invited paper, SASIMI 1996. 

[JDKR96] A.A. Jerraya, H. Ding, P. Kission,
M. Rahmouni, "Behavioral Synthesis and Component
Re-use with VHDL", Kluwer Academic Publishers,
Boston/London/Doredrecht, 1996.

[JKJ97] A. Jemai, P. Kission, A. Jerraya, “Combining
Behavioral synthesis and Architectural simulation”,
ASPDAC 1997.

 [LMWV91] P.E.R. Lippens, J.L. van
Meerbergen, A. van der Werf, W.F.J. Verhaegh et al,
"PHIDEO, A Silicon Compiler for High Speed
Algorithms", European Conference on Design
Automation, 1991.

[NeSM89] J. Nestor, B. Soudan, Z. Mayet,
“MIES: A Micro-Architecture Design Tool”, 22nd
International Workshop on Microprogramming and
Micro-Architecture, 1989.

[NGCD91] S. Note, W. Geurts, F. Catthoor, H.
De Man, "Cathedral-III: Architecture-Driven High-
level Synthesis for High Throughput DSP
Applications", 28th ACM/IEEE Design Automation
Conference, 1991.

[PFHB95] P.G. Paulin, J. Fréhel, M. Harrand,
E. Berrebi, C. Liem, F. Naçabal, J.-C. Herluison,
"High-Level Synthesis and Codesign Methods: An
Application to a Videophone Codec",
EuroDAC/EuroVHDL, 1995.

 [Syno95] Synopsys Inc., "Behavioral
Compiler Methodology", Version 3.3.a, 1995.

[TDWR88] D.E. Thomas, E.M. Dirkes, R.A.
Walker, J.V. Rajan, J.A. Nestor, R.L. Blackburn, "The
System Architect's Workbench", 25th ACM/IEEE
Design Automation Conference, 1988.

[TLWN90] D.E. Thomas, E.D. Lagnese, R.A.
Walker, J.A. Nestor, J.V. Rajan, B.L. Blackburn,
"Algorithmic and Register-Transfer Level Synthesis:
The System Architect's Workbench", Kluwer
Academic Publishers, 1990.


	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index


