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Abstract

We develop a 0-1 non-linear programming (NLP)
model for combined temporal partitioning and high-
level synthesis from behavioral specifications destined
to be implemented on reconfigurable processors. We
present tight linearizations of the NLP model. We
present effective wvariable selection heuristics for a
branch and bound solution of the derived linear pro-
gramming model. We show how tight linearizations
combined with good variable selection techniques dur-
ing branch and bound yield optimal results in relatively
short execution times.

1 Introduction

Dynamically reconfigurable processors are becoming
increasingly viable with the advent of modern field-
programmable devices, especially the SRAM-based
FPGAs. Execution of hardware computations using
reconfigurable processors necessitates a temporal par-
titioning of the specification. Temporal partitioning
divides the specification into a number of specification
segments that are destined to be executed one after an-
other on the target processor. While the processor is
being reconfigured between executing the specification
segments, results to be carried from one segment to a
future segment must be stored in a memory. Reconfig-
uration time itself, along with the time it takes to save
and restore the active data, is considered an overhead;
it is desirable to minimize the number of reconfigura-
tion steps, ie., the number of segments resulting from
temporal partitioning, as well as the total amount of
data to be stored and restored during the course of
execution of the specification.

In addition to the traditional synthesis process, a
temporal partitioning step must be undertaken to im-
plement hardware computations using reconfigurable
processors. While techniques exist to partition and
synthesize behavior level descriptions for spatial parti-
tioning on multiple chips, no previous attempts have
been published for temporal partitioning combined
with behavioral synthesis.

The paper presents a (-1 mon-linear programming
(NLP) formulation of the combined problem of tempo-
ral partitioning and scheduling, function unit allocation
and function unit binding steps in high-level synthe-
sis. The objective of the formulation is to minimize
the commumnication, that is, the total amount of data
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transferred among the partition segments, so that the
reconfiguration costs are minimized.

We propose compact linearizations of the NLP for-
mulation to transform it into a mixed integer 0-1 linear
programming (LP) model. We show the effectiveness
of our linearizations through experimentation. In ad-
dition, we develop efficient heuristics to select the best
candidate variables upon which to branch-and-bound
while solving the LP model. Again, we show the effec-
tiveness of our heuristics through experimental results.

The paper is organized as follows. In Section 2 we
discuss related work, and in Section 3 we provide an
overview of our approach. The basic formulation is
presented in Section 3 and its solution in Section 4.
Experimental results are presented in Section 7 and
Section 9.

2 Previous Work

Synthesis for reconfigurable architectures involves
synthesis and partitioning. The partitioning can be
both temporal and spatial. There has been significant
research on spatial partitioning and synthesis, though
the issue of temporal partitioning has been largely ig-
nored. Early research [11, 12] in the synthesis domain
solved the spatial partitioning problem independently
from the scheduling and allocation subproblems.

The problem of simultaneous spatial partitioning
and synthesis was first formulated as an IP by Gebo-
tys in [1]. It produced synthesized designs which were
10% faster than previous research. However as men-
tioned by Gebotys in [2], the size of the model was too
large and could solve only small examples. In both
[1, 2] the dimension of the problem is reduced by not
considering the binding problem. Though the model
can handle pipelined functional units and and func-
tional units whose latency is greater than one cycle, it
cannot handle design explorations where two different
types of functional units can implement the same op-
eration. For example, we cannot explore the possibil-
ity of using a non-pipelined and a pipelined multiplier
in the same design. Also heuristics were proposed to
assign entire critical paths to partitions. This might
lead to solutions that are not globally optimal. Both
[1, 2] focus on synthesis for ASICs and hence attempt
to minimize area. For reconfigurable processors based
on FPGA technology, area (resources on the FPGA
devices) should be treated as a constraint which must
be satisfied by every temporal segment in the temporal
partition.
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Figure 1: Behavioral Specification

The work of Niemann [3] presents an IP-based
methodology for hardware software partitioning of
codesign systems. MULTIPAR [4] also has a non-linear
0-1 model for spatial partitioning and synthesis, with-
out involving binding. The linearization technique is
however not the tightest for such a formulation, (see
section 4 for details). To achieve faster runtime they
solved the formulation by heuristic techniques, leading
to suboptimal results.

Since a functional unit is not explicitly modeled in
the above [1, 2, 4] formulations, they cannot deter-
mine the ‘actual’ area utilization of a partition. This
factor though not critical for ASIC designs, is critical
for reconfigurable processors based on FPGA technol-
ogy. For example, in an optimal solution, a temporal
segment may contain 1 multiplier and 5 adders and
another temporal segment may contain 2 multipliers
and 2 adders. Our formulation, which explicitly mod-
els binding of operations to functional units, can deter-
mine whether a functional unit is actually being used in
any temporal segment. Moreover, we explicitly model
the usage of each functional unit in each temporal seg-
ment and hence can explore the design space using 5
adders and 2 multipliers, although all these functional
units may not simultaneously fit on the processor re-
sources (function generators or CLBs in the FPGAs).
Our model can automatically determine the above op-
timal solution, that simultaneously meets the resource
constraints at the FPGA resource level as well as at
the functional unit level.

3 System Specification

The behavior specification is captured in the form of
a Task Graph, as shown in the Figure 1. The vertices
in the graph denote a set of tasks, 7. The depen-
dencies among the tasks are represented by directed
edges. Each task can be visualized as being composed
of a number of operations which should stay together
in one temporal partition. The edge labels in the task
graph represent the amount of communication required
if the two tasks connected by an edge are placed in dif-
ferent partitions. Let I be the set of all operations in
the specification.

The cost metrics of the target FPGA, FPGA re-
source capacity (C) and temporary on-board memory
size (M) are the inputs to our system. Typical re-
sources for an FPGA are combinational logic blocks
and function generators. We assume a component li-
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Figure 2: Flow of the Temporal Partitioning and
Synthesis system

brary consisting of various functional units which can
execute the operations in the specification. The com-
ponents in the library are characterized by cost metrics
in terms of delay times and FPGA resource require-
ments.

An outline of the temporal partitioning system is
shown in Figure 2. The system proceeds by first heuris-
tically estimating the number of segments (N), which
becomes an upper bound on the number of temporal
segments in the NLP formulation. It uses a fast, heuris-
tic list scheduling technique to estimate the number of
segments.

Before the problem can be formulated, we need to
determine the ASAP and ALAP schedules for the op-
erations. These will be used to set the mobility ranges
for the operations in the formulation. This is done in a
preprocessing step over the combined operation graph
of the specification. From this schedule we can also
determine the set of functional units F', which must be
used for the design exploration.

While partitioning the specification, we honor the
task boundaries in the specification. That is, a task
cannot be split across two temporal segments. How-
ever, if two different tasks are together on the same
segment, then they share control steps and functional
units among them. If it is desired to permit splitting
of tasks across segments, then each operation in the
specification may be modeled as a task in our system.
In this case, each task would have only one operation
associated with it. The entire formulation developed
in this paper will work correctly. Formally the system
is defined as follows -

e t; = t;, a directed edge between tasks, t;,t; € T,
exists in the task graph. ¢; is at the tail of the directed
edge and t; is at the head, when the execution of task
t; depends on some output of t;.

e i; — i;, a directed edge between operations, 4;,%; € I
exists.

o Bandwidth(t;,t;), number of data units to be com-



municated between tasks ¢; and ¢;.
e Op(t), the set of all the operations in the operation
graph of a task ¢.
e F' is the set of functional units required for the most
parallel schedule of the operation graph.
e Fu(i), the set of functional units from F', on which
operation ¢ can execute.
e Fu~1(k), the set of operations which can execute on
functional unit k.
e (S(i), the set of control steps over which
operation ¢ can be scheduled. Ranges from
ASAP(i)... ALAP(i)+L, where L is the user-specified
relaxation over the maximum ALAP for the schedule.
ASAP(i) and ALAP(i) are the As Soon As Possible
and As Late As Possible control steps for operation 4.
e CS~1(j), the set of operations which can be sched-
uled on control step, j.
o N upper bound on the number of partitions. The par-
titions are numbered 1... N, the index of the partition
specifies the order of execution of the partitions. Note
that the generated optimal solution may have fewer
than N partitions.
e M, scratch memory available for storage between
partitions.
e FG(k), the number of function-generators used for
functional unit k, obtained from the characterized com-
ponent library.
¢ (', is the resource capacity of the FPGA. sectionNon-
Linear 0-1 model

In this section we describe the variables, constraints
and cost function used in the formulation of our model.

3.1 Variables

We have three sets of decision variables, which
model the three important properties - y;, models the
partitioning at the task level, z;;; models the synthe-
sis subproblem at the operation level, wy,+, models the
communication cost incurred if two tasﬁs connected to
each other are not placed in the same partition. All
are 0-1 variables.

1
Ytp =
? 0

1 if operation i € I is placed in control
step j € CS(i), and uses functional

if task ¢t € T is placed in partition p,
1<p<N
otherwise

Tijk = unit k € Fu(i)
0 otherwise
1 if task ¢; is placed in any partition
_ 1---p—1 and t, is placed in any of
Wptats = p---N and t; = to

0 otherwise

As will be seen yy;, and ;1 are the fundamental system
modeling variables. All other variables are secondary
and are constrained in terms of the fundamental vari-
ables.

3.2 Temporal Partitioning

The variables y;;, model the partitioning behavior
of the system. Temporal partitioning has the following
constraints.

Uniqueness Constraint: FEach task should be
placed in exactly one partition among the N tempo-
ral partitions.

N
VtET :Zytpzl (1)
p=1

Temporal order Constraint: Because we are par-
titioning over time, a task ¢; on which another task
to is dependent cannot be placed in a later partition
than the partition in which task ¢ is placed. It has to
be placed either in the same partition as t3, or in an
earlier one.

VtzeT, \Vltl—)tg, Vp2, 1Sp2SN—1

Z Yt1p1 + Ytapo S 1 (2)

p2<p1<N

Scratch Memory Constraint: The amount of in-
termediate data stored between partitions should be
less than the scratch pad memory M,. The variable
Wpt,t,, if 1, signifies that ¢; and ¢5 have a data depen-
dency and are being placed across temporal partition
p. Therefore the data being communicated between
them, Bandwidth(t1,t2), will have to be stored in the
scratch memory of partition p. The sum of all the data
being communicated across a partition should be less
than the scratch pad memory.

Vp, 2<p<N

Z Z (Wptyt, * Bandwidth(ty,t2)) < M, (3)

tzGT t1—1ta

Notice in the Figure 3, how the variable wp,,, mod-
els not only the communication among tasks which are
on adjacent temporal partitions, but also on the non-
adjacent ones. 3 tasks are to be placed optimally on
3 partitions. On the left of the figure are the original
equations used to model the constraints for the exam-
ple. The equations on the right of the figure show the
variables which will be 1 in the mapping of tasks to
partitions shown and the constraint which have to be
satisfied. The variable wp, ,, is shown to range from 2
to N, because the data at partition 1 is actually the ex-
ternal input to the system. We can reasonably assume
that there is enough memory for the external input at
any time, since this is known a priori and is not a func-
tion of the partitioning of the system. wp, ¢+, are 0-1
non-linear terms constrained as -

vpa QSPSN; VtZGTa

Vii = t2, Vp1, 1<p1<p, Vp2, p<p2 <N

Wptyts 2 Ytipy * Ytopo (4)

Vp, 2<p< N, Via €T, Vt1 =t
Z Z (ytlpl * yt2pz) - wpt1t2 = 0 (5)

1<p1 <pp<p2<N
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Figure 3: The memory constraints to be satisfied if tasks are mapped to partitions as shown

Equation (4) constrains wp, ¢, to take a value 1, if any
of the non-linear product terms in the associated equa-
tions are 1. Equation (5) constrains wp,t, to a value
zero, when all the associated product terms are 0. The
equation alone (4) does not stop wp,+,, from taking a
value 1 when all the product terms are 0 because 1 > 0
is a valid solution to the constraint (4).

3.3 Synthesis

For the sake of clarity and ease of understanding
we will not describe in the equations for synthesis, the
formulations for pipelining, chaining, and latency of
functional units. This formulation is easily extendible
to incorporate those features, as described in [6] and
[7]. We assume for the current model that the latency
of each functional unit is one control step, and the
result of an operation is available at the end of the
control step.

Unique Operation Assignment Constraint:
Each operation should be scheduled at one control step
and on only one functional unit. Therefore only one
variable z;;;, for an operation i, will be 1.

Vi Y Y mp=1 (6)

keFu(i) jeCS(i)

Temporal Mapping Constraint: This constraint
prevents more than one operation from being scheduled
at the same control step on the same functional unit.

VIR YD

ke Fu(i) ieCS=1(5)

Tijk S 1 (7)

Dependency Constraint: To maintain the depen-
dency relationship between operations, an operation 4;
whose output is necessary for operation is, should not
be assigned a later control step than the control step
to which i- is assigned.

Viy =2, Vj2 <j1, j1 € CS(i1), j2 € CS(ia)

Z Tirjrks T Z Tizjoks <1 (8)

k1€Fu(i1) k2€Fu(i2)

3.4 Combining Partitioning and Synthesis

It is essential for partitioning for an FPGA to meet
the area constraints of the FPGA. It is not necessary
that all the functional units F', used in the design ex-
ploration are finally used in a partition. To determine
whether a functional unit has been used in a partition
we define the following decision variables -

1

Upk =
8 0
1

Otk =
0

These variables are constrained by,

if functional unit k € F used in partition
p, 1 <p < N to perform some operation
otherwise

if task t € T uses functional unit & € F
to perform some operation
otherwise

VteT, Vp, 1<p< N, VEEF :up >y *ou

9)

Vp, 1<p<N, VkeF :Z(ytp*otk)—ukaO
teT

(10)

The variable u,y, defines the functional unit usage in
a partition and the variable oy, defines the functional
unit usage in a task. These variables are also secondary
and are defined in terms of the fundamental modeling
variables y;, and z;j,. Equation (9), constrains uyy to
take a value 1, when any of its associated non-linear
terms is 1. Equation (10) is needed to make sure, that
at least one task on that particular partition uses the
functional unit. The derivation for variable o, will be
described in Section 4.

Resource Constraints We introduce resource con-
straints in terms of variables wp,,. Typical FPGA
resources include function generators, combinational
logic blocks (CLB) etc. Similar equations can be added
if multiple resource types exist in the FPGA. a is a
user defined logic-optimization factor in the range 0-1.
Typical values of a using Synopsis FPGA components
are in the range 0.6-0.8 [5].

Vp,1<p< N :a*Z(upk*FG(k))SC (11)

keF

Unique Control Step Constraint: We introduce
constraints to make sure that each control step is



mapped uniquely to a temporal segment. We use a
new derived variable ¢;; to formulate this constraint.

if task t € T has any operation

1
ctj = mapped to control step j
0 otherwise

VteT, Vj, Vie Opt)nCS~'(j)

Ctj > Z Tijk (12)
ke Fu(s)
Vi1 € T, Vta #t1, Vi, Vp1,1 <p1 <N,
Vp2 #p1,1<p2 <N
Ctij + Ytipr + Ctoj + Ytops <3 (13)

If the operations of two distinct tasks use same control
steps, then these tasks should be on the same partition.

In this paper, we have not considered flip-flop re-
source constraints. To consider flip-flop resources, the
formulation must estimate the number of registers nec-
essary to synthesize the design. It is straight-forward
to add register optimization to our formulation on the
lines proposed by Gebotys et al. [6].

3.5 Cost Function

Minimize the cost of data transfer between tempo-
ral partitions. This cost function will get an optimal
solution using the least number of partitions and the
least amount of inter-partition data transfer.

Minimize : Z Z Z (wpty 1, *Bandwidth(t1,t2))

toeT t1—1t2 1<p< N

(14)
4 Solving the 0-1 Non-linear Model

We can use various solution techniques in the math-
ematical programming field, for solving models which
are non-linear in their objective function and con-
straints. The main approaches are (1) Linearization
methods, (2) Enumeration methods, (3) Cutting plane
methods. Refer to [8] for an interesting survey of all
the approaches. Due to the existence of a good set
of linearization techniques and the easy availability of
LP codes for solving linear models we have chosen the
linearization technique, though enumerative methods
and cutting plane methods are viable alternatives.

Linearization of Equations (9-10) For each non-
linear product term of the form a x b, we generate a
new 0-1 variable ¢ as, ¢ = a * b, which can be written
in Fortet’s linearization method[8] ! as

a+b—c<1 (15)
and —a—-b+2%xc<0 (16)

Constraint (15) implies ¢ = 1, when both a and b are
1. Constraint (16) implies ¢ = 0, when either a or b

IFor each distinct product of variables, H T, replace it

JEN

by a new 0-1 variable z, 4 and add the constraints:
jen, T~ Tntk < |Nk[ -1,

and —Ej xj + |Ni| * Tpqp <0

become 0. We need both the constraints to get the
correct solution.

However Glover and Wolsey [9] proposed an im-
provement, by defining ¢ as a continuous real-valued
variable (with an upper bound of 1), instead of, an
integer variable by replacing equation (16) by the fol-
lowing two constraints, while retaining equation (15)
intact -

(17)

and (18)

Glover’s linearization has been shown to be tighter
than Fortet’s. This has also been borne out by our
experimentations. Equations (9) and (10) can be now
replaced by the following compact linearized equations.
Here zp¢y, is a continuous real-valued variable bounded

between 0 and 1 (0 < zpy, < 1).

a>c
b>c¢

VieT, Vp,1<p< N, VkeF

VteT, Vp,1<p< N, VE€F :ow > 2p 88;
VieT, Vp,1<p< N, YVEE€F :yy>zux (21)
VieT, Vp,1<p< N, VkeF Upk > Zptk (22)
Vp,1<p< N, VEEF ) zpp—up <0 (23)

teT

Constraint (19) implies zp;, = 1, when both y;, and
oy, are 1. Constraints (20) and (21) imply zp = 0,
when either y;, or oy, become 0. We need all three
constraints to get the correct solution.

Linearization of Equations (4) - (5) This lin-
earization can be done exactly as we have done for
equations (9) and (10) by defining a new continuous
variable for each distinct non-linear term. As will be
shown shortly however in our final formulation we use
lesser number of variables in linearizing wpt, ¢, -

Formulating constraints for decision variable oy,
For any task ¢t and functional unit k, variable o
is 1 if any of the x;;; variables used to denote the
synthesis variables of task t using functional unit &
are 1. Consider a small example, where variables
T11k, 12k, T21k, o2k are the synthesis variables for task
1 and functional unit k£. Then

o1, = ZTi1k V Ti2k V To1g V Tazk
T11k V Z12k V T21k V T2ok
T11k N T12k A To1k N\ Took

O1k

Ti1k * T12k * T21k, *T22k
logical A and product * being interchangeable for 0-1

terms. Using @ = 1 — a and using the Glover’s lin-
earization we get -
Ti1k + T2k + 21k + T2k — 0 > 0 (24)

Otk > T11k, Otk > Ti2k, Otk > T21k, Otk > Tazk (25)



Characteristics ILP Model
Graph No. N[ A+M+S | L Var | Const Run-Time
1 3 24+2+1 1 230 549 >7200
1 2 24241 2 241 493 >7200
1 2 24+2+1 3 287 562 953.3
3 3 24241 1 741 2239 >7200

Table 1: Some Preliminary results

Based on the above discussion we get the following con-
straints for oy, -

Vte T, Vj € CS(i), Yk € F, Vi € Op(t)AFu~' (k)

Otk = Tijk (26)

VteT, VkeF

> Y mgr—ow =0 (27)

icOp(t)AFu—1 (k) je CS(3)

5 Preliminary Results

To verify our formulation by experimentation, we
generated various random graphs. We ran some ex-
periments with the current formulation to see how it
performs. However as we see in Table 1, only one of the
formulation solved in reasonable time, even though the
graphs for which the experiments are done are not very
large. Others were terminated when their run time be-
came too large. Refer to Table 4, for the actual sizes
of the graphs in this experiment. In the result tables,
N denotes the number of partitions, A, M, S the num-
ber of adders, multipliers and subtracters respectively
used in the design exploration. L, is the user speci-
fied latency margin bound. Var and Const denote the
number of variables and constraints respectively that
are generated for each graph by the ILP formulation.
The run times are in seconds and all experiments have
been run on an UltraSparc machine running at 175
Mhz. We use Ip_solve, a public domain LP solver [10]
for solving our ILP formulation.

6 Additional constraints that tighten

the model further

When an ILP problem is solved by using LP tech-
niques, we are solving the LP relazation of the model.
The LP relaxation is the same as the ILP, except the
0-1 constraints on the variables are dropped. The
LP relaxation has a much larger feasible region, and
the ILP’s feasible region lies within it. An important
method of reducing the solution time is to modify the
formulation with constraints which cut away some of
the LP feasible region, without changing the feasible
region of the ILP. This is called tightening the LP
model. After studying the model carefully we could
identify some more constraints which cut off a large
amount of non-optimal integer and non-integer solu-
tions and helped in reducing the time required to solve
the model.

o If a task t; is placed on some partition p, and t; —
to exists then it means that ¢5 definitely can only
be placed in partition p or greater and therefore

Case (1)
=
1 1
Case(3)

2
W, >= t, %t

3 Case(2) 312 11 23
Wa1p>= t1g" Ty
W, . >= t,.* t

4 312 12 '23
Wapp ™= 110" Ty

Figure 4: Equations for variable w for 2 tasks
and 4 partitions

they cannot contribute to the scratch memory of
any partitions less than or equal to p.

Vt2€Ta Vt1—>t2, Vpl: 2SP1SN

Wpt1to + E

p,p1<p< N

Yop <1 (28)

o If a task 5 is placed on some partition p, and
t1 — to exists then it means that ¢; definitely can
only be placed in partition p or lesser and therefore
they cannot contribute to the scratch memory of
any partitions greater than p.

thGT, th_)t27 Vpl) ZSPISN

Wpytity + Z Ytap < 1 (29)

1<p<p1

o If t; — to exists, and both tasks are in the
same partition, then they cannot contribute to the
scratch memory of any of the partitions.

Vio € T, Vt1 —» t2, Vp,2<p<N,
Vp1 #p,2<p1 <N
Yt1p T Ytop + Wpitits <2 (30)

In our formulation we have not introduced ex-
plicitly a new term for each distinct product term
Ytip1 * Ytops, a8 we did for oy, * yip. We have lin-
earized wpt,+, as follows -

Vp,2<p< N, Vi, €T, Vt; = t

Wptqte Z Z Yti1p1 + Z Ytops — 1 (31)

1<p1<p p<pa<N

Fewer new variables are introduced in the lin-
earization because a single new variable reflects
the constraints of several non-linear product
terms. The main limitation in the above lineariza-
tion is that though wp, +, will take a value 1 if one
or more of its constituent products is 1, it will also



Characteristics ILP Model
Graph No. N[ A+M+S | L Var | Const Run-Time
1 3 24+2+1 1 230 656 86.2
1 2 24241 2 241 551 4670.4
1 2 24241 3 287 620 9.7
3 3 24241 1 741 2526 >9000

Table 2: Results of tightening the Constraints

take a value 1 even if none of the constituent prod-
ucts is 1. This is because there is no constraint
which will limit the value of wp,, to 0, if all its
constituent product terms are 0. If the new linear
term is in a minimizing cost function, then such
a solution will get cutoff after being generated as
the solution, since the objective value of the cost
function is greater in this case. This is true in our
case as Wyt ¢, is part of the cost function. However
as we shall see the new tightened inequalities will
actually limit the solution space. wpy, ¢, Will never
be 1 if all of its constituent non-linear terms are
0.

Equations (28), (29) and (30) eliminate the prob-
lem mentioned above. We will show by an exam-
ple how this is possible. In Figure 4 two tasks
t; and ts, t; — t2 are to be place in four parti-
tions. The variable w312, will have the equations
shown. Consider the following three cases, where
none of the 4 product terms shown in the figure
are 1, how the variable w312 will still never be 1.
(1) If t11 = l,tgg = 1, the value w312 = 1 will be
cut off by equation (29), (2) if t13 = 1,¢24 = 1, the
value w32 = 1 will be cut off by equation (28),
(3) t12 = 1,122 = 1, the value w312 = 1 will be cut
off by equation (30).

e Another constraint observed, which reduced dra-
matically the solution time is that, if a task t uses a
functional unit k and is placed in partition p, then
the associated upy, variable should also reflect this.

VteT, YVEeF, Vp, 1<p<N
Ot + Yep — tpk < 1 (2)

Equations (1), (2), (3), 86), (7), (8), (11), (12), 51337
(10 (505, (21), (0o sy o). (57}, o8, (201, (30).
(31) and (32) are the constraints and Equation (14) is
the cost function in our final model.

7 Experimental Results for Tightened

Constraints
With the tightened constraints in place, we again
ran the same series of experiments as in Table 1 and
observed a significant improvement in the run times.
Examples in rows 1, 2 and 3 of Table 2 solved, though
the run times are very large for the sizes of graphs

under consideration.

8 Solution by branch and bound

While solving a 0-1 LP by the branch and bound
technique, an active node of the branching tree (ini-
tially the given mixed 0-1 problem), is chosen and its
LP relaxation is solved, and a fractional variable, if any

is chosen to branch on. If the variable is a 0-1 variable,
one branch sets the variable to 0 and the other to 1.
In this framework, there are two choices to be made
at any time: the active node to be developed and the
choice of the fractional variable to branch on. The
variable choice can be very critical in keeping the size
of the b-and-b tree small. We formulated the follow-
ing heuristic to guide the selection of the branch and
bound and has worked very well in practice. For the
task graph, do a topological ordering of the tasks. For
dependency t; — t3, t; will have a higher priority than
ta. The priorities range from 1..n, highest to lowest,
and when the variable for tasks are generated in the
ILP i.e., y¢p, the index t reflects this priority. While
solving the model by an LP-solver, we always take the
branch which sets the variable value to 1 first. To pick
a variable to branch and bound we use the following
heuristic -

o If there are variables y;, still fractional, then pick
the variable y;, with the lowest t value and p value
to branch on first.

e Once no fractional y;, variables remain, pick any
fractional upg variable to branch on. As a naive
approach at this point once all the tasks are
assigned to partitions we might have chosen to
branch on any fractional x;;; variable to continue
the synthesis process, but our approach cuts off
all solutions which are using some functional unit
k which does not fit in the partition, very early in
the branching process.

As you will observe in Section 9, this variable se-
lection process has greatly reduced the run time of the
experiments. This result emphasizes that careful study
into the variable selection method must be done, rather
than leave the variable selection to the solver (which
randomly chooses a variable to branch on).

We choose to pick yy, as a variable to branch on
because once the task get assigned to partitions, the
remaining problem is now just a scheduling-allocation
problem whose linearization is quite tight and so pro-
duces less number of non-integer solutions. Observe
that we are not forcing the tasks to lie on a particular
partition, as in [2], where the variables in the critical
path are forced into one partition, thus making the so-
lution only locally optimal. Our method just guides
the solution process to a quick solution (which may or
may not be optimal), and this solution then acts as a
lower bound on all other solutions undertaken after it
in the solution process. This helps in eliminating many
non-optimal branches of the solution tree. Since we are
never forcing the value of any variable to some value,
our solutions are always global optimal.

9 Experimental Results

We first explore the effect of different design param-
eters on an example behavioral specification. Table
3 shows the results of fixing the number of functional
units and varying the latency and number of partitions.
This graph called graph 1 has 5 tasks and 22 opera-
tions. 2 adders, 2 multipliers and 1 subtracter were
used to schedule the design. The first row in Table 3



Characteristics ILP Model Results
Graph No. Tasks Opers | N [ A+M+S L Var Const RunTime | Feasible
1 5 22 3 24241 1 230 656 8.96 Yes
2 10 37 4 34242 1 698 1992 51.13 Yes
3 10 45 3 24242 1 741 2526 267.7 Yes
4 10 44 2 24242 1 564 1421 240.64 Yes
4 10 44 3 24242 0 635 1942 167.23 Yes
5 10 65 3 24242 0 748 2472 .78 No
5 10 65 2 24242 1 813 2032 310.45 Yes
6 10 72 3 24242 0 1055 2900 882.27 Yes
6 10 72 2 24242 1 1158 2465 1763.27 Yes

Table 4: Temporal Partitioning Results for various Graphs

N | A+M+S L | Var Const RunTime | Feasible
3 24241 0 183 583 1.72 No
3 24+2+1 1 230 656 8.96 Yes
2 24241 2 241 551 9.91 Yes
2 24+2+1 3 287 620 8.86 Yes

Table 3: Results of variation of Latency and
number of Partitions for Graph 1

shows that with no relaxation in latency, the design
could not be feasibly partitioned onto 3 partitions. So
the latency bound was relaxed by 1, and the design
was optimally partitioned and synthesized onto 3 par-
titions. The latency bound was relaxed by 2 and the
design fit onto 2 partitions. It was further relaxed to
3, and it fit optimally onto a single partition though
2 partitions were used in the design space exploration.
In all these examples, the execution time for getting
the optimal results is very small.

For any ILP formulation, being solved by branch
and bound using LP relaxation of the model, it is very
important to have tight linear relaxations and good
variable selection methods, so that a large amount of
non-integer solutions are cutoff from the solution space.
We ran a series of experiments to substantiate the vari-
able selection technique and the tightened constraints
we have imposed on our model. In Table 4, the re-
sults of running the experiments on larger graphs are
shown. The columns Tasks and Opers give the size of
the specification in terms of the number of tasks and
operations in them. Medium sized graphs of upto 72
operations, can be optimally partitioned in very small
execution times.

10 Conclusion

To make our model an effective tool for temporal
partitioning and synthesis, we need to add constraints
to model the registers and buses used in the design.
Note however that the number of variables (which
largely influence the solution time) will not increase,
as the current variable set is enough to model the ad-
ditional constraints. In this paper we have presented
a novel technique to perform temporal partitioning and
synthesis optimally. Good linearization techniques and
careful variable selection procedures were very helpful
in solving the models in a short time. The effectiveness
was demonstrated by the results.

References
[1] C. H. Gebotys, “Optimal Synthesis of Multichip
Architectures”, IEEE ICCAD, p238-241, Nov. 1992.

[2] C. H. Gebotys, “An Optimal methodology of Syn-
thesis of DSP Multichip Architectures”, Journal of
VLSI Signal Processing, 11, p9-19, 1995.

[3] R. Niemann and P. Marwedel, “An Algorithm
for Hardware/Software Partitioning Using Mixed
Integer Linear Programming”, Proceedings of the
EDETC, 1996.

[4] Y. Chen, Y. Hsu and C. King, “MULTIPAR: Be-
havioral Partitioning for Synthesizing Application-
Specific Multiprocessor Architectures”, Proceedings
of the FuroDac, p14-18, 1992.

[5] M. Vootukuru, Ranga Vemuri and Nand Kumar,
“Resource Constrained RTL Partitioning for Synthe-
sis of Multi-FPGA Designs”, Proceedings of the 10th
International Conference on VLSI Design, IEEE
Press, 12 pages, 140-144, January 1997.

[6] C.H. Gebotys and M. I. Elmasry, “Optimal
VLSI architectural synthesis Area, Performance and
Testability”, Kluwer Academic Publishers.

[7] B. Landwehr, P. Marwedel and R. Domer, “OS-
CAR:Optimum Simultaneous Scheduling, Alloca-
tion and Resource Binding Based on Integer Pro-
gramming”, Proceedings of the FuroDac, p90-95,
1994.

[8] P. Hansen, B. Jaumard and V. Mathon, “Con-
strained Nonlinear 0-1 programming”, ORSA Jour-
nal of Computing, Vol. 5, No. 2, 1993.

[9] F. Glover and E. Woolsey, “Converting the 0-1
Polynomial Programming Problem to a 0-1 Linear
Program”, Operations Research 21:1, 156-161, 197j.

[10] M. Berkelaar, Ip_solve() Eindhoven University of
Technology.

[11] K. Kucukcakar and A. Parker, “CHOP: A
Constraint-Driven-System-Level Partitioner”, DAC,
p514-519, 1991.

[12] R. Gupta and G. DeMicheli, “Partitioning of
Functional Models of Synchronous Digital Systems”,
Proc. of ICCAD-90, p216-219, 1990.



	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index


