Design Of Future Systems

[an Page
Head of Hardware Compilation Research Group,
Computing Laboratory,
Oxford University, Oxford OX1 3QD, U.K.

Abstract

This paper describes a vision in which future sys-
tems consisting of novel hardware and software com-
ponents are designed and implemented by a single type
of professional engineer. That professional has more
in common with today’s programmer than a hardware
designer, although both of these existing bodies of pro-
fessionals have a strong contribution to make to under-
standing, defining and bringing about this transforma-
tion in product creation.

1 Design of Future Systems

Computing systems are becoming increasingly com-
plex and often contain large amounts of both hardware
and software. Currently, a yawning gap exists between
the study and practice of computing, and the study
and practice of digital electronic engineering. We be-
lieve that managing effectively the design of tomor-
row’s products necessitates the use of comprehensive
design tools, methodologies, and education and train-
ing provision which can close this gap.

Errors in the design and understanding of systems
usually congregate between the boundaries of sub-
systems, particularly when the sub-systems have been
engineered using different methods. This is certainly
true when we consider systems with both hardware
and software components. Historically it is easy to un-
derstand because the subject of computing was split
at a very early stage in its development between the
branches which deal with hardware and with software.

I take the view that a single style of system de-
scription is needed, from which both hardware and
software sub-systems can be synthesised. I also believe
that currently the only body of knowledge and practice
which is capable of supporting the design of very com-
plex systems is programming. It seems self-evident
that the current styles of hardware description are
completely inadequate to describe software. However,
it seems to be the case that the languages, tools, and
practices of software engineering can be adapted to
meet the challenge of hardware design. Indeed, there

has been an obvious historical process over the last
twenty years in hardware design which has resulted
in the ability to describe higher and higher levels of
abstraction in hardware description languages. These
have tended to look more and more like programming
languages as time goes by. I believe the time is now
upon us when we need to begin the completion of this
evolutionary process by merging the two professions,
also their tools and practices, and their educational
and training support.

The work done in my own Hardware Compilation
Research Group at Oxford University serves to high-
light some important points. Our enabling ‘act of
faith’ was to assume that at some point in the fu-
ture we would all be routinely using programs as the
single description of complete systems [4, 8]. Thus,
we assume that many hardware-software systems will
be created by programmers rather than mixed teams
composed of programmers and electronic engineers.
Since making this judgement, our work has been fo-
cussed on building the tools and methodologies to
make this dream become a practical reality. Happily,
I can report significant progress towards this goal, al-
though there is still much interesting work to be done.
Other articles giving a more detailed account of our
work can be found in [6, 7, 9, 2].

For the most part, we concentrate on the tools
and methods necessary to allow programmers to build
working hardware-software systems. We believe that
this stance makes our group rather different from some
other groups who might use HDL descriptions to syn-
thesise hardware. Another difference perhaps lies in
the choice of languages and the style of programming.
While there is much interest in synthesis from be-
havioural descriptions, we feel that purely behavioural
descriptions do not capture enough information to al-
low synthesis of efficient hardware. Until the state
of art in synthesis from arbitrary behavioural descrip-
tions is good enough, we take the view that it is both
reasonable and practical to ask a little more of the
programmer.



The primary reason for implementing some system
functions with hardware rather than with software is
because of gains in speed of execution. Thus, as hard-
ware is only fast because of its inherent parallelism,
it is clear that the final hardware descriptions must
exhibit an appropriate degree of parallelism. If the
behavioural description does not contain, or strongly
hint at, the appropriate parallelism, then it must be
extracted automatically. Our experience is that this
very difficult task is not, in general, yet within the
grasp of automatic tools. However we have found that
with appropriate languages and tools it is in fact quite
reasonable to ask that programmers provide this level
of description themselves. Crucial to this process is
providing an abstract enough model of the descrip-
tive language that the designer is not swamped by the
myriad of details that an electronic engineer currently
has to deal with.

We also believe that programming languages should
be heavily influenced by mathematics. The notations
used by designers need to be simple, appropriate, and
highly trustworthy for us to have any hope that their
designs will be right first time (or even last time!) and
that they will be maintainable and reusable. Pro-
gramming languages based in mathematics can help
to ensure these qualities. In contrast, most existing
‘real-world’ programming languages do not even have
their meaning properly defined in any document (i.e.
they have no formal semantics), so there is simply no
hope of building completely trustworthy systems on
top of them.

In the short term at least, it may require a slightly
new breed of programmer to describe and synthesise
hardware-software systems; someone who successfully
combines some of the skills associated with each of the
two existing types of specialist. In particular these
designer/programmers have to be aware of both the
parallelism and temporal behaviour of their programs.
The skills needed for dealing with time and space in
a design to an intimate degree are perhaps currently
exhibited rather more by digital engineers than pro-
grammers. However, we contend that it is not a diffi-
cult task to train someone to have both a good grasp of
programming and a proper understanding of the tem-
poral and spatial implications of their programs. We
have experienced this many times in our own group
when programmers have come into the group with a
standard programming background and have quickly
become competent at producing hardware implemen-
tations, sometimes in hours.

Moreover, we believe that a program can have the
necessary expressive power to enable it to serve as an

executable specification of a system, whether it be en-
tirely in hardware, entirely in software (running on
some off-the-shelf processor), or in a combination of
the two. Moreover, we believe that programs are the
only reasonable basis for a single framework which
spans both hardware and software implementations.
One justification for this is that very large computer
programs are the most complex artefacts that human
beings have developed to date and the paradigm of
programming has clearly been at least adequate to
this task. Apparently then, the tools and techniques
of programming are already good enough to deal with
the problems posed by large scale complexity in sys-
tems (although there are undoubtedly many improve-
ments still to be made). Also, as no paradigm other
than programming has yet emerged to deal with the
software problem, so it seems natural to look to this
paradigm to help with the design and synthesis of
hardware also.

In our work, we use automatic program transforma-
tion within a CSP-style framework [3] to map a source
program into a variety of target programs. CSP is a
mathematical system for reasoning about parallel sys-
tems. It has an associated algebra which means that
you can put together CSP programs with the same de-
gree of confidence enjoyed when combining algebraic
terms. There is simply no question that in putting
two algebraic terms, say a and b together with the +
operator that the resulting term a + b ‘works’. Indeed,
we expect and demand that a + b ‘works’ no matter
what any actual values of a and b might be now, or in
the future.

Putting programs into an algebraic framework can,
at best, have exactly the same benefit, so that com-
bining two existing programs must have the expected
behaviour. Only when we liberate programming from
the current constraints of today’s ill-defined and over-
complex languages can we hope to enjoy this property.
Only then will we be able to expect machines, as well
as humans, to be able to combine existing programs
together in new ways for us without reference to the
programmers who originally wrote them or indeed any
programmers at all.

In such a framework programs can be automati-
cally transformed by computers into a wide variety of
different forms. These different forms can all have dif-
ferent properties, such as the amount of parallelism
that they exhibit or the amount of storage that they
use. However all forms can share the same function-
ality as the original program. In other words, if the
(automatic) transformation process sticks to the rules
of the algebra, it is simply not possible for it to gener-



ate a program that doesn’t do what was intended (i.e.
the same as the program originally supplied).

By exploiting such a system, it is possible to trans-
form user programs into forms which can be imple-
mented directly as hardware, or as software, or as
machine code for an application-specific processor to-
gether with a hardware description of the processor.
Using such transformations, a single application pro-
gram can be made to exploit the inherent, and widely
differing, cost-performance characteristics that each of
these forms has. Thus, hardware support can be given
to the parts of the application that need it most.

2 Programs into Hardware

The Handel-C language has been developed at Ox-
ford for describing programs which are (usually) com-
piled into hardware. Handel-C is a small subset of
C, extended with the parallelism and communication
constructs of Hoare’s CSP and expressions of arbitrary
bitwidth. The language is necessarily different from C
itself because of the different nature of hardware and
software implementations.

C is not adequate for our task because it is a se-
quential language. This means that algorithmic par-
allelism can’t be expressed in C programs. However
it is in the very nature of hardware implementations
that they achieve their speed through exploiting par-
allelism. It is beyond the state of the art automati-
cally to introduce the appropriate parallelism into a
sequential program. For this reason we expect the
programmer explicitly to denote the parallelism that
is appropriate for the desired hardware implementa-
tion.

Programs, written in Handel-C, are mapped into
hardware at the level of netlists by a series of trans-
formations. This is documented in [6] but note that
this paper does not use the Handel-C syntax. Fo the
latest details of the Handel-C language see [5] or the
web site of the company selling the compiler [1]. The
implementations fully exploit the explicit parallelism
of the programs themselves and serial execution is only
introduced where explicitly required.

A feature of Handel which is of particular note is
its simple model of time. By definition, each assign-
ment statement takes exactly one clock cycle to exe-
cute and none of the other constructs in the language
add any hidden clock cycles to the implementation.
This regime gives control of the scheduling and allo-
cation of the hardware resources to the programmer
but in a way in which this added burden can be un-
derstood and handled.

If the programmer has explicit control over space
(i.e. the gates of the implementation) and time (i.e.

the clock cycles), then the language is by its very na-
ture a hardware description language. Because they
are a source of complexity, misunderstanding and de-
lay, we avoid the problems of a designer worrying
about such hardware-related concepts as gate count.
Instead, we have them focus on time and give them a
very simple model for dealing with the temporal be-
haviour of their programs. Since there is a natural
tradeoff between space and time in most implemen-
tations, there is some rudimentary control over space
but the programmer only has the much simpler con-
cerns of counting clock cycles.

3 Actual Applications

To forestall a possible accusation of ivory-towered
dreaming that the foregoing is not practical, I will
briefly mention some of the applications that have
been constructed by programmers using our Handel-C
hardware compiler. For the most part these program-
mers have not been concerned at all with hardware
and many have not understand hardware at all.

3.1 Video Games

We have had a lot of fun building a number of
simple computer games on a single FPGA. We have
found that we can get a single FPGA to perform all
the functions of these games, namely video genera-
tion, the game itself, including all its memory, and
the user interface as well. Note that this is without
using any special graphics hardware or even a screen
bitmap memory - the FPGA, a crystal oscillator, and
a three D/A converters built only of cheap resistors
is all there is! A standard VGA monitor shows the
resulting video.

So far, we have so far constructed versions of tetris,
space invaders, the game of life, breakout, and others.
The space invaders game was noteworthy in that the
programmer was an undergraduate student who knew
nothing about Xilinx FPGAs, or indeed hardware and
FPGAs at all. With no warning at all, he was given
the task of implementing space-invaders in hardware
and in just six hours on the first day he had produced
a working hardware implementation of the core of the
game on a single Xilinx 4005 chip. Further details of
this work can be found in [10], reprinted in [11].

3.2 Image Warping

A more serious application was a real-time video
image warping demonstration using Handel-C to tar-
get the ‘Pamette’ FPGA board from Digital Equip-
ment Corporation. In it, a two-dimensional spatial
mesh describes a source-to-destination warping and a
video stream is passed through this mapping and dis-
played on a screen in real time. The implementation
allows the mesh to be manipulated interactively using



mouse dragging operations. The warping algorithm
used is based on George Wolberg’s implementation
of Douglas Smythe’s ‘T'wo Pass Mesh Warping Algo-
rithm’. In truth, it took rather a long time to coax the
brand new, and largely unsupported, DEC Pamette
board to talk to the PCI bus and to get its five FP-
GAs to talk to each other reliably, but the warping
application itself was working with under two days of
programming effort.

3.3 Positron-electron Collider

The Japanese High Energy Physics Laboratory is
building a positron-electron collider to evaluate some
of the design considerations for a proposed large lin-
ear collider. The beam path has to be accurate to a
few tens of microns. Thus it is important to remove
the effects of traffic-induced vibration and other earth
tremors on the apparatus.

The damping ring uses 36 FPGA-based position
controllers to implement dynamic stabilisation of the
beam path via the 36 movable alignment tables carry-
ing the beam steering magnets. Laser position sensing
is used between neighbouring tables to determine lo-
cation in each of the five degrees of freedom.

It was very pleasing that within four weeks, the
engineer concerned had interfaced our reconfigurable
hardware to the motion controllers, had written Han-
del programs to implement the control algorithm and
had the whole system working. The unsolicited com-
ment of this hardware engineer that “after two or three
days, I completely forgot that it was hardware that I
was developing” I found especially welcome.

An unexpected benefit of this collaboration was
that when the system became operational, it was
found that a design assumption for the ring was in-
valid. It had been assumed that the massive con-
crete foundations for the 50m ring would remain at a
constant temperature. In practice, it was found that
the planned strategy for controlling the beam could
not, work with the expansion and contraction actually
found in the concrete platform. This necessitated a
complete rethink of the control strategy. As the im-
plementation was in Handel implemented in FPGAs
however, the whole system was so flexible that only
a very small amount of programming effort was nec-
essary to overcome a problem which might otherwise
have been massive.

3.4 Self-validating Sensors

We have been collaborating with the Oxford Con-
trol Engineering Group to build ‘self-validating sen-
sors’ [12]. These are sensor systems which give an
on-line guarantee of their accuracy. The Coriolis mass
flow meter is an example of one of our more com-

plex sensor systems. Its implementation uses three
RISC processors, eight FPGAs and 5000 lines of Han-
del code.

The flexibility given by the Handel + FPGA im-
plementation route has meant that many more exper-
imental versions of the sensor could be built. Again
unexpectedly, this has resulted in a huge increase in
the accuracy of the sensor by using more sophisticated
processing than originally envisaged. These experi-
ments simply would not have been done if conventional
methods had been used to implement the hardware.

This particular sensor has been very successful and
a large American industrial partner is currently repli-
cating it for extended field trials.

4 Conclusions

We have argued the practicality of representing the
hardware and software components of a system within
a single framework. With this framework, imple-
mentations of programs can be generated which have
amounts of software and hardware corresponding with
desired cost-performance characteristics. We believe
that using a framework like this will eventually result
in designs being provably correct, and that moreover
such proofs will be a natural side-effect of the compi-
lation process, not something that the designer has to
do separately.

Although the current hardware and software lan-
guages that we use are actually different, they are
at least close in spirit. It is our intention to com-
bine them both into a single language when time and
our understanding permit. The languages and sup-
port tools we have developed have been used by many
different programmers to develop moderately complex
hardware/software systems. We claim that this jus-
tifies our original ‘act of faith’ and that the future
of much hardware/software design will be done by a
process of software engineering.

Much exciting work remains to be done. For
example: the design of a single language for
hardware-software co-design, the design and imple-
mentation of hardware and software compilers for
the languages, optimisation of hardware implemen-
tations, asynchronous hardware implementations, au-
tomatic design and implementation of microproces-
sors, knowledge-driven and language-driven placement
strategies for silicon implementations, new architec-
tures for FPGAs and much more.

It seems likely to us that the combination of high-
level, programming-based approaches to hardware-
software codesign together with reconfigurable hard-
ware will fundamentally change the ways in which the
digital systems of the future are designed and built.



If true, this has far-reaching implications for the nec-
essary skills basis that industry must adopt and nur-
ture to be successful in the future. Our universities
will have to start breaking down some of the barriers
that exist between the subjects they currently teach.
Hardware engineers, who already have an excellent un-
derstanding of the nature of parallelism, will have to
become more programming-literate, and programmers
will have to become more aware of parallelism and the
time and space implications of the programs that they
write.

Acknowledgements

I wish to thank all the members of my Hardware
Compilation Research Group who make it worth com-
ing into work each day - even when I’'m on sabbatical
leave! Their support has been invaluable, inspirational
and hugely enjoyable. I would also like to acknowledge
the work of Timo Korhonen who implemented the col-
lider control system.

References

[1] Embedded Solutions home page.
http://www.embedded-solutions.ltd.uk/.

[2] Jonathan Bowen, Jifeng He, and Ian Page. Hard-
ware compilation. In J.P. Bowen, editor, Towards
Verified Systems, Real-time Safety-Critical Sys-
tems, chapter 10, pages 193-207. Elsevier Science
B.V., Amsterdam, 1994.

[3] C.A.R. Hoare. Communicating Sequential Pro-
cesses. International Series in Computer Science.
Prentice-Hall, 1985.

[4] C.A.R. Hoare and Tan Page. Hardware and soft-
ware : The closing gap. Transputer Communica-
tions, 2(2):69-90, June 1994.

[5] Embedded Solutions Ltd. Handel-C reference

manual.

[6] I. Page. Constructing hardware-software systems
from a single description. Journal of VLSI Signal
Processing, 12(1):87-107, 1996.

[7] I. Page. Reconfigurable processor architectures.
Microprocessors and Microsystems, May 1996.
Special Issue on Codesign.

[8] I. Page. Towards a common framework for hard-
ware and software (keynote paper). In M. E.
de Lima, editor, IX Brazilian Symposium on Inte-
grated Circuits. Brazilian Computing Society, So-
ciedade Brasileira de Computagao, March 1996.

[9] Ian Page. Automatic design and implementation
of microprocessors. In Proceedings of WoTUG-
17, pages 190-204, Amsterdam, April 1994. T10S
Press. ISBN 90-5199-1630.

[10] Tan Page. Compiling video algorithms into hard-
ware. In Advice97. EDA Ltd, London, Jul 1997.

[11] Tan Page. Compiling video algorithms into hard-
ware. Embedded System Engineering, Sep 1997.
Reprint of Advice97 paper.

[12] Tan Page. Hardware compilation, configurable
platforms and asics for self-validating sensors.
In M. Glesner W. Luk, P.Y.K. Cheung, editor,
FPL97, number 1304 in Lecture Notes in Com-
puter Science. Springer Verlag, 1997.



	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index


