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Abstract

We describe the timing analysis and optimization 
methodology used for the chipset inside the IBM S/390 
Parallel Enterprise Server - Generation 3. After an 
introduction to the concepts of static timing analysis, we 
describe the timing-modeling for the gates and 
interconnects, explain the optimization schemes and 
present obtained results. 

1. Overview

After introducing the chipset, the used library and 
differentiating static timing analysis from simulation in 
section 2, we go over the basic concepts of static timing 
analysis in section 3. In section 4, we describe our clock-
ing structure and then, in sections 5 and 6, we explain 
how circuits and interconnects are modeled for the tim-
ing-tool. Thus sections 2 through 6 set the stage for the 
introduction of the optimization scheme, which is pre-
sented in sections 7 and 8. In section 9 we share mea-
sured results, section 10 gives an outlook on our current 
work, and the paper wraps up with conclusions in sec-
tion 11.

2. Introduction and Motivation

The described chipset consists of 6 chips and is 
based on standard-cell elements from a 0.25 um Leff 
library. These were combined with some custom-
designed blocks in order to achieve an overall operating 
frequency of 155MHz.

All analysis and optimization was done on flat 
netlists, ranging up to 209000 objects for timing, and up 
to 17.9 million transistors per chip.

When working with such large designs, a timing-
simulator based methodology becomes extremely com-
plex and time consuming. Instead we de-coupled func-
tional analysis, which was done by simulation, from the 
timing verification process.

Timing verification was based on a static timing 
methodology, which has several advantages over con-
ventional simulation. Due to its exhaustive nature, static 
timing analysis guarantees 100% coverage of paths in 
the designs. Calculating every possible path raises the 
problem of non-functional or “false” paths. These have 
to be flagged through knowledge-based input from a 
human, a tedious process, which is not needed for simu-
lation.

The closed-form nature of a static timing approach 
enables the analysis of paths in early stages of the 
design. This offers the advantage of being able to detect 
and correct timing-problems before the logic-designer 



has fully completed the function. And, as static timing 
analysis does not require detailed knowledge of the 
logic, it can easily be used during the place & route pro-
cess by engineers who are not intimately familiar with 
the logic.

We chose to use EinsTimer from IBM Microelec-
tronics as our timing-analyzer. It offered all the features 
we were looking for, was built to run within our environ-
ment and could easily interface to our design databases.

Once set up, we used it to point out cycle-limiting 
paths in the design as it evolved through the front- and 
back-end methodology. During this process we continu-
ously refined our interconnect model in order to take 
advantage of more detailed information as it became 
available from place & route. Finally, we used static tim-
ing analysis as the final sign-off criterion for release of 
the mask-data to fabrication.

3. Concepts and Terminology

Basically, static timing analysis propagates signals 
through logic-gates and interconnects, adding up delays 
along the paths. EinsTimer computes arrival-times (ATs) 
for all timing-points in the design for both rising and 
falling edges. It can identify both slow and fast paths by 
propagating both latest and earliest ATs for the same sig-
nal-edge. Along with their ATs, the tool also propagates 
the changing slew-rate of the signals, as they propagate 
through the timing-graph.

These calculated ATs are then checked against 
required arrival-times (RATs), which have been propa-
gated back upstream through the logic. The checks (e.g. 
Setup and Hold) and their guard-times are coded into the 
timing models of the gates.

The difference between RAT and AT, which we 
refer to as “slack”, is the amount of excess timing 
resource in a given path. A positive slack on all tests in 
the design signifies that all tests have been met and the 
design will work at the asserted conditions and cycle-
time.

4. Clocking

The chipset is clocked fully synchronously and 
based on strict testability-rules, e.g. LSSD [1].

Our design-approach splits a PLL-regulated pulse 
into several varieties of launching and capturing clocks 
(Figure 1) which are then distributed to the latches.

FIGURE 1. Clocking Scheme

On almost all paths in the designs, data is launched 
from a latch with the rising edge of the B-Clock, propa-
gated through combinatorial logic and captured at the 
receiving latch with the falling edge of the C-Clock.

In order to obtain minimal skew between clock 
arrival-times at different latches, the clocktrees were 
symmetrically generated and optimized after placement 
had been completed.

Manufacturing tolerances aside, and assuming a 
perfectly symmetrical clocktree, the non-overlapping 
clocking-scheme would prevent short-path problems. In 
order to take realistic manufacturing tolerances into 
account, a SPICE-like circuit-simulator was used to ana-
lyze the clocktrees under different process and environ-
mental parameters. These calculated margins were then 
added as guardbands to the clock ATs at the latches.

5. Modeling

The propagation delays through the blocks, coded 
in the timing-models of the gates, were based on a suite 
of circuit-simulation runs at various environmental con-
ditions. Results from these runs were abstracted into 
coefficients for the equation-based models. These equa-
tions for gate-delay and slew-propagation are nonlinear 
and take output loading, input slew, temperature, VDD 
and process variations (sampled as worst-case, nominal 
and best-case) into account.

The interconnects were modelled in several ways, 
depending on the stage in the methodology. During syn-
thesis, capacitance and RC-delay of the interconnects 
were estimated based on fanout. The formulas for these 
estimations were derived by analyzing earlier versions of 
the design or similar designs, that have been placed & 
routed in the past. 

After receiving the netlist from the synthesis-pro-
cess, we asserted all interconnect-lengths to be zero 
instead of estimating them based on fanout. This pro-
vided a lower bound on the cycletime, which the place & 
route process could strive towards. As we are employing 
techniques for drive-strength optimization and buffer-
insertion, this is not an absolute lower bound, but still an 
interesting metric to compare different versions of an 
evolving netlist.

B-Clock

C-Clock

Data



During the timing-driven placement phase, estima-
tions were replaced by 2D-rectilinear Steiner-trees gen-
erated from the current placement.

Following layout, we extracted the actual wire-
lengths from the design using an abstracted stick-figure-
representation of the wires. This model, which was char-
acterized earlier from generic shapes, is provided with 
each IBM Microelectronics library. Through this pro-
cess, we reduced turn-around-time and data volume sig-
nificantly compared to an extraction from actual shapes. 
The resistance- and capacitance-per-wirelength model 
assumed an average channel usage of 80%, in order to 
conservatively model the overlap and fringing capaci-
tance due to adjacent routing.

The RC-delays caused by the interconnects were 
calculated based on the Elmore delay model [2].

As the clocktree was generated and inserted after 
placement (in order to minimize skew), the ATs of the 
clock-signals at the latches had to be asserted based on 
an “ideal” clocktree during the synthesis and placement 
step. We then replaced these overrides with calculated 
ATs as soon as the clocktree was placed, routed and 
extracted.

6. Assertions

EinsTimer is controlled by assertion-files, which 
serve several purposes.

• They establish clockphases and their relationships, so 
that the tool can automatically adjust clock edges, 
e.g. by one cycle.

• They define chip boundaries with asserted ATs and 
slopes at the inputs, as well as RATs and capacitive 
loading at the outputs.

• They contain false-path declarations and individual 
signals adjustments, defined by the designer, as the 
tool understands very little about the logical function 
of gates.

7. Optimization

Due to the large design-complexities and associated 
turn-around-times of the tools, it becomes unfeasible to 
separate the placement and delay-optimization phases 
from each other. For this reason, we have chosen to use 
an optimization-program which was developed and 
implemented at the University of Bonn. It is tightly inte-

grated into their suite of place & route tools [1] and its 
results correlate very well with EinsTimer.

This coupling makes it far easier to make correct 
decisions concerning the different optimization options 
(e.g. drive-strength change, buffer-insertion, net-weight). 
Especially, if it is done in between the steps of the place-
ment-phase [3].

At these points a placement program can be led in 
the right direction by first optimizing the logic according 
to the current placement and then increasing the weight 
on the remaining critical paths. This not only achieves 
the fastest physical implementation of the logic, but also 
minimizes the area and power consumption. And fur-
thermore, design rule checks, such as maximal capaci-
tance loads to be driven and maximal input slopes, must 
be honored by the resulting solution.

For these different tasks a common optimization 
scheme has been developed. It interacts with place & 
route tools in order to get as accurate information about 
the interconnects as possible. Figures 2 and 3 show the 
optimization scheme, which is embedded in the higher-
level environment shown in figure 4.

In contrast to other optimization methods (see [4] 
for an overview) this algorithm has two advantages:

• The solution found in each iterative step is almost 
always optimal. 

• The chosen operations to improve the network are 
independent of each other. This ensures that their 
application will result in the computed outcome. 

Other methods, like [5], take the neighborhood of 
an operation into account to compute its outcome accu-
rately. However, during the selection of the operations 
which will ultimately be applied, they discard this neigh-
borhood information. This results in a situation where 
the subnetwork used to compute the outcome of the 
operation is different from the one where the operation is 
actually applied.

As delay-minimization is the focus of the optimiza-
tion, we present it as an example of the overall scheme. 

8. Delay Optimization

The basis of the optimization scheme is a directed 
graph which is derived from the logic as follows:

• each node in the graph represents a pin in the design



• each arc in the graph is either a source to sink con-
nection of a net or a timing dependency between an 
input pin and an output pin of a block

• the direction of an arc is defined by the “natural” sig-
nal flow. Bidirectional pins are represented by two 
different nodes, one for the input direction and the 
other for the output direction.

FIGURE 2. Visualization of the optimization scheme

(1) Optimize(graph, NodeObjective, OperationDriver, 
NodesetSelection) {

(2) op_pool = 0;
(3) lap = 0;
(4) cnt = -1;
(5) while (lap < MAXLAPS && cnt != 0) {
(6) objective = 0;
(7) if (!mark_active(graph, NodeObjective, 

&objective))
(8) /* no nodes marked active */
(9) break;
(10) if (circular_objective(objective) ||
(11) variance(objective) < THRESHOLD)
(12) break;
(13) ops = OperationDriver(graph, op_pool);
(14) assign_cheapest_operations(graph, ops);
(15) nodes = NodesetSelection(graph);
(16) ops = collect_operations(nodes);
(17) cnt = apply_operations(ops, op_pool, graph);
(18) if (cnt) compute_timing(graph);
(19) }
(20) }

FIGURE 3. The common optimization scheme

Each node corresponding to a pin with a negative 
slack is considered to be an active node. 

The NodeObjective for the delay optimization is the 
negative of the sum of the slacks over all active nodes. 
Any reduction of this objective will make at least one 
path faster. The OperationDriver checks at each active 
node if there are any applicable operations and computes 
their effect. The operations to reduce the delay along a 
path can vary from a simple power-level change or 
repeater-insertion/deletion to more complex logic 
changes. These include swapping of logically equivalent 
pins and local logic resynthesis.

The delay computation depends on the slope at the 
tail of an arc as well as on the capacitance at the head of 
the arc. Any operation thus does not only effect the delay 
along the arcs the operation will modify, but also along 
some arcs preceding the modified part as well as some 
succeeding arcs. For example, a power-level change 
might influence the capacitance of the input pins of the 
cell. In this case the delay over the arcs leading in to the 
pins driving these inputs, must be recomputed. Further-
more, the slope at the output pins of the modified cell 
changes, forcing at least the recomputation of the delay 
along the paths to the subsequent output pins. According 
to this observation, each operation defines an “environ-
ment”. On one hand it is necessary to compute locally 
the total effect of the operation, on the other hand the 
computed effect of an operation will be shown if and 
only if the environment remains unchanged.

For this reason, operations at two different nodes 
are called conflicting if their environments intersect. The 
gain of an operation is obviously the difference of the 
worst slack of the actual implementation SLKact, and the 
worst slack after applying the operation SLKop. The cost 
of an operation is the difference between the actual and 
the new area/power consumption. These values are 
stored at the operation. 

All computed operations are stored in a pool 
op_pool, so that they can be used as long as the environ-
ment of the operation remains unchanged. The returned 
set ops is a subset of op_pool of operations with positive 
gain and no negative side-effects (i.e. creates no new 
design rule violations). Out of this subset the operation 
with the lowest cost per gain is stored at its node.

The decision (NodesetSelection) which nodes 
should be optimized is done by a minimal-cost node-cut 
procedure.

To compute the cut, a directed graph with capacit-
ized arcs is derived from the active nodes of the timing 
graph in the following way:

update

OP-Select

marked by objective

OP-Generator

OP-Set

OP-Subset

update

OP-Apply



• First the graph induced by the active nodes is con-
structed with arcs of infinite capacity.

• Each node for which an operation is stored, is split 
into two nodes, the first one connected to the inputs, 
the second one to the outputs.

• The two nodes are connected by an arc with its 
capacity equal to cost divided by gain, as derived 
from the corresponding operation. 

• Two new nodes, source and sink, are created. The 
node source is connected to all nodes with no input 
arcs, the node sink is connected to all nodes with no 
output arcs. These arcs also have infinite capacities.

• Every path consisting only of arcs with infinite 
capacity is replaced by a single arc of infinite capac-
ity. And any arc between source and sink is deleted.

In this graph, a minimum-capacity edge-cut which 
separates source and sink is computed. This is done by 
using the FIFO preflow-push algorithm presented in [6].

It follows that the cut must consist of edges created 
by splitted nodes only. In case that two adjacent cells of 
the logic are chosen, the corresponding operations are 
conflicting and one of them is deleted. This is sufficient 
because the deleted operation will be recomputed in the 
next lap with a correct environment, if the path still vio-
lates the timing constraints. This algorithm guarantees 
that at least one operation is selected for almost all paths 
with negative slacks.

(1) Late_Delay(logic) {
(2) graph = create_graph(logic);
(3) Optimize(graph, LoadLimit, LoadDriver,
(4) AllMarkedNodes);
(5) Optimize(graph, SlackLimit, SlackDriver,
(6) MaxNodeCut);
(7) Optimize(graph, SlopeLimit, SlopeDriver,
(8) AllMarkedNodes);
(9) Optimize(graph, LoadLimit, LoadDriver,
(10) AllMarkedNodes);
(11) Optimize(graph, PowerLimit, PowerDriver,
(12) MaxAnitChain);
(13) backannotate(graph, logic);
(14) delete_graph(graph);
(15) }

FIGURE 4. The optimization environment

The scheme described above is used not only to 
optimize long path problems, but can be used to handle 
short path violations as well. This is achieved by insert-

ing as little delay as possible, without introducing new 
long path problems.

9. Results

As is common for a static timing analysis method-
ology, coding the assertion files for the tool was not a 
trivial task. It took time and effort to correctly model our 
very complex clock-tree which contained many gated 
sub-trees of different clocks. 

In addition, coding a coherent set of ATs and RATs 
for the off-chip nets proved to be more difficult than 
anticipated. These had to cover a set of different applica-
tions, packages and environments in which the chipset 
was to be used. Table 1 shows EinsTimers run-times and 
memory-requirements for different steps in the analysis 
of one of the larger designs (778k pins) in the chipset.

The most useful results from an analysis run were: 

• The “slack-report”, sorted by increasing slack, which 
pointed out the cycle-limiting paths with their origin 
and endpoints.

• A violations-report to alert the designer to over-
loaded outputs of gates as well as excessive slew-
times at their inputs.

• The “clock-skew” report with the distribution of 
clock ATs at the latches, pointing to skew-problems 
in the clocktree generation.As all ATs (early and late) 
for all timing-points are propagated in a single run, it 
was not necessary to time the designs twice.

Solving the false-path problem can easily appear to 
be a daunting task. However, after overcoming some ini-
tial problems due to feedback-loops in the netlist, we 
found this to be much easier than anticipated [7]. To 
eliminate non-functional paths (e.g. scan-chains and test-
only signals) from the design, the originating pins must 
be flagged as “Don’t Care”. Although the total number 
of non-functional paths in the design is quite large, we 

Step Runtime Memory

loading tool and timing-models 30 sec 9.4 MB

loading netlist 7 min 290MB

loading assertions and 
interconnect extractions

10 min 100MB

timing analysis of all paths 150 min 207MB

TABLE 1. Requirements for an IBM RS/6000 Model 
590



needed only add a few dozen “Don’t Care” flags by con-
fining our analysis to the paths with negative slacks. 

We found EinsTimer’s graphical browser (Wizard), 
which annotates the schematic with timing-information, 
to be extremely useful while interactively debugging 
timing-problems.

As EinsTimer is a fully incremental tool, quick 
“what-if” analysis of paths was almost instantaneous, 
even on very large designs.

The optimization-tool was able to decrease the 
slack on all of our designs substantially. Table 2 shows 
the results for different stages in the optimization of the 
processor chip.

10. Current work

Although the described methodology has served us 
well, we are presently implementing extensions to take 
into account the effects of smaller geometries.

In order to calculate delays through gates and inter-
connects more precisely [8], we are now using AWE-
based algorithms [9, 10] and are taking capacitive shield-
ing by interconnect-resistance [11, 12] into account.

The rather crude assumption of an average popula-
tion in adjacent channels of wires is being replaced by an 
interconnect-extraction that takes overlap- and fringing-
capacitances into account.

Another difficult topic under consideration is that of 
taking manufacturing variations into account by using 
more refined methods than simply adding additional 
guard-times at tests.

To further enhance the interactive timing-capabili-
ties, we are looking for the ability to selectively “zoom-
in” on portions of the logic and analyze these with a 
SPICE-like simulator.

11. Conclusions

In order to keep the gate-level flow from synthesis 
all the way to tape-out under tight control with respect to 

timing, we used static timing analysis extensively 
throughout the methodology.

Having a single timing-tool and using the same tim-
ing-models for both synthesis and layout, we achieved a 
high level of consistency regarding timing-results.

By refining the interconnect models from step to 
step, we could asses the state of a design at any point in 
the layout-process and had a clear, accurate metric for 
tool-performance and design-decisions.

12. Acknowledgments

We would like to express our appreciation to Alex 
Suess of the EinsTimer development-team for his ongo-
ing support of our programming efforts. 

Furthermore, we would like to thank David Yearack 
of the EinsTimer support-team for relentlessly answer-
ing questions and providing insights into the operation of 
the tool.

Many thanks also to Asmus Hetzel, who imple-
mented the operational part of the optimization system, 
and his useful and constructive discussions during the 
development of the running program.

13. References

[1] J.Koehl, U.Baur, B.Kick,T.Ludwig and T.Pflueger, “A 
Flat and Timing-driven Design System for a High-Per-
formance CMOS Processor Chipset”, To appear in pro-
ceedings of DATE 1998

[2] W.C. Elmore “The Transient Analysis of Damped Linear 
Networks with Particular Regard to Wideband Amplifi-
ers”, J. Applied Physics, vol. 19(1), 1948

[3] J.Vygen, “Algorithms for Large-Scale Flat Placement”, 
to appear in Proceedings of the 34st ACM/IEEE Design 
Automation Conference, June 1997

[4] O.Coudert, R.Hadded, S.Manne, “New Algorithms for 
Gate Sizing: A Comparative Study”, Proc. 33rd ACM/
IEEE Design Automation Conference, June 1996

[5] O.Coudert, “Gate Sizing: a General Purpose Optimiza-
tion Approach”, Proc. of ED&TC’96, March 1996

[6] A.V.Goldberg, “A new max-flow Algorithm”, Technical 
Report MIT/LCS/TM-291, Laboratory for Computer 
Science, MIT, Cambridge, MA

[7] Krishna P. Belkhale, Alex Suess, “Timing Analysis with 
known False Sub Graphs”, Proc. ACM/IEEE Intl. Conf. 
Computer-Aided Design, November 1995

Optimization phase worst slack
# of negative
slacks

after placement -8.46 ns 6771 endpoints

after powerlevel 
optimization

-1.87 ns 4478 endpoints

after repeater-
insertion

0 ns 0 endpoints

TABLE 2. Optimization results



[8] V. Rao “Delay Analysis of the Distributed RC Line”, 
Proc. 32nd ACM/IEEE Design Automation Conference, 
June 1995

[9] C.L. Ratzlaff, N.Gopal and L.T.Pillage. “RICE: Rapid 
Interconnect Circuit Evaluator”, Proc. 28th ACM/IEEE 
Design Automation Conference, June 1991

[10] L.T. Pillage and R.A. Rohrer, “Asymptotic Waveform 
Evaluation for Timing Analysis”, IEEE Transactions on 
Computer Aided Design, April 1990

[11] J.Qian, S.Pullela, L.T.Pillage, “Modeling the effective 
capacitance for the RC Interconnect of CMOS Gates”, 
IEEE Trans. Computer Aided Design, vol. 13, no. 12, 
December 1994

[12] F.Dartu, N.Menezes, J.Qian, L.T.Pillage, “A gate-delay 
model for high-speed CMOS circuits”, Proc. 31st ACM/
IEEE Design Automation Conference, June 1994


	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index


