
A Systematic Analysis of Reuse Strategies
for Design of Electronic Circuits

Manfred Koegst1, Peter Conradi2, Dieter Garte1, Michael Wahl2

1 Fraunhofer-Institut für Integrierte Schaltungen, EAS Dresden,
Zeunerstr. 38, D - 01069 Dresden, e-mail: koegst@eas.iis.fhg.de

2 Universität-GH Siegen, Fachbereich 12, Fachgruppe Rechnerstrukturen,
Hölderlinstr. 3, D - 57068 Siegen, e-mail: peter@rs.uni-siegen.de

Abstract

In this paper a number of reuse approaches for circuit
design are analysed. Based on this analysis an algebraic
core model for discussion of a general reuse strategy is
proposed. Using this model, the aim is to classify different
reuse approaches for circuit design, to compare the
applied terms and definitions, and to formulate classes of
typical reuse tasks. In a practical application with focus
on retrieval and parameterisation techniques, this model
is on the way to being applied to DSP design issues.

1 Introduction

In the past, synthesis of electronic circuits was thought of
as building the formal specification from scratch. Reuse of
electronic circuits means kinds of instantiation of existing
electronic circuit concepts into new designs [7], [8]. Since
this general idea is quite usual, many other authors have
reported about these techniques in different CAD-domains.
The daily work of electronic CAD engineers divides the
design into two strictly separated regions: the newly created
functionality and the reused components. A good example
is given by the well known FSM/Datapath design para-
digm, addressing two parts of design: the part control in
combination with the part datapath, containing functional-
ity, represented by reusable components. The process of
control design requires selection of reusable components
given, e.g., by VHDL descriptions [11], [13], [14]. This
requires parameterisable behavioural specifications and
usable design, verified in distinct parameter spaces. Exam-
ples for parameterisation are amount, bitlength, and kinds
of operators and functions [2]. For reconstruction of syn-
thesis, not only basic elements or complete synthesisable
circuit specifications are necessary, but also archived design
flows [15]. In typical cases they are parameterised; in some

This paper has been partially supported by a foundation of the
German Ministry of Rhineland Palatinate, the DFG project
SFB 358, and the European EURIPIDES project.

cases this is simplified by enumeration.

Due to the growing amount of reusable components, ade-
quate formal methods for their description are necessary for
two reasons: to work on suitably combined reuse-focused
data management, retrieval, and parameterisation tech-
niques. A first proposal for a suitable formal reuse
approach was presented in [12]. Now the formal descrip-
tion is extended in this paper by a common view for
retrieval and parameterisation in theory as well as experi-
mental implementation.

The paper is structured as follows: First an overview of
goals and problems for reuse of electronic circuits is pre-
sented. In sections 3 to 5 we describe our library organisa-
tion and the technique of design by reuse as well as design
of reuse. Section 6 discusses the task of database manage-
ment. We finish with specific implementation issues.

2 Reuse for circuit design

2.1 Reuse cycle for Case-Based Reasoning
Starting with learning and problem solving processes,

some authors [1], [4] are formalising recognition and reuse
as a paradigm of the so-calledCase-Based Reasoning sys-
tems (CBR). Here, the strategy of reuse is presented as a
cycle. It is mentioned that the process of learning and prob-
lem solving does not only contain reuse of learned patterns,
but even the reuse of applied solution procedures. In Fig.1
we apply this cycle to one case of circuit design relying on
a library of reusable components, called intellectual prop-
erty (IP).

The reuse cycle contains four steps :
(a) retrieve (or identify) by selection of an IP for the

specification under actual user-specified conditions [2],
(b) instantiate necessary subdesigns following a given

specification, if an IP was selected; alternatively, definition
of adesign flow concerning the constraints,

(c) design under application of a fixed flow, verification
andrevision of design. The result is an optimised circuit,

(d) if the decision process leads toretaining the synthe-
sised circuit in a library, its specification has to be general-
ised (for reuse-relevant parameters) and adesign flowhas
to be generated.

In a project, founded by the Stiftung Innovation of Rhine-
land-Palatinate, Case-Based Reasoning aspects are under
research, especially for the retrieval aspects of this cycle.
This effort is resulting in a prototype system, named
READEE (ReuseAssistant forDesign inElectrical Engi-
neering), discussed in more detail in section 7.

2.2 Classes of reuse tasks
From this cycle following problem classes can be derived:

• the standardisation and analysis of specifications
(step a, d),

• the design of electronic circuits by usage of IPs
(design by reuse, steps a ,b ,c),

• the design of IPs (design for reuse, step d),
• the development of parameterised procedures for syn-

thesis (steps b, d),
• the development of parameterised environments for

verification (steps c, d), and
• the database management for IP libraries (step d).

3 Libraries with reusable components

3.1 Definition of libraries
In generalised understanding of a standard library of

devices (typical gates), the elements of an IP library have to
be described by two components: first by a behaviour spec-

ification on an intermediate level (e.g. register transfer
level) and second by a script (design flow) for the transfor-
mation of this specification to the destination level (e.g.
gate level). In Jha and Dutt [10] this abstraction to a high-
level library is classified as a key for reusing during circuit
design.

Consequently, we describe alibrary LIB of IPs by a
library LB of parameterised specifications and a library LF
of parameterised design flows.

Any element B = (KB,VB, DB) of library LB = {B} of
behavioural specifications consists of a parameterised
specification KB of the behaviour to be synthesised, of the
set VB of parameters of the specification and the set DB of
allowed parameter values. Any value dB of DB defines a
parameterless specification KB(dB).

For two specifications b and b‘ we define the following
relations:

• they areequal (b = b‘) if the specifications are describ-
ing the same behaviour, and

• b‘ is anextension of b (b≤ b‘), if the specification of b‘
is containing the specification of b.

Any element F = (KF,VF, DF) of a library LF = {F} of
design flows consists of procedures KF for synthesis and
environments for verification, a set VF of specification
parameters and set DF of allowed parameter values.

Two design flows f and f‘ of KF areequal (f = f‘) con-
cerning a specification b, if the application of both design
flows f and f‘ to b leads to the same circuit f(b) = f‘(b). Any
value dF out of DF is the base for a parameterless design
flow KF(dF).

On the base of two libraries LB and LF alibrary
LIB = {I} of IPs is defined. Any IP I = (KI,VI,DI) of LIB
consists of

• a pair KI = (KB,KF) of parameterised specifications for
the behaviour KB and parameterised design flow KF for
synthesis and verification,

• the set VI = VB∪VF of parameters, and

• the set DI of allowed values of the parameters.

DI is a subset of all possible values for parameter set VI,
since not any combination of specifications of LB and
design flows of LF will make sense. In the following we
suppose VB∩VF=∅, then relation DI ⊆ DB×DF holds. By
every value (dB,dF) of DI a parameterless IP (b, f) with
b = KB(dB) and f= KF(dF) is defined. If design flow f is
applied to specification b, the specification b‘ = f(b)
describes a synthesized circuit at destination level.

3.2 Relations and terms
For circuit design with reuse components every IP

I = ((KB,KF),VI,DI) is allocated to the class S(I)

={f(b) |∀(dB,dF) ((dB,dF)∈DI∧b = KB(dB)∧f = KF(dF)}
of circuits synthesisable by IP I.

de
si

gn
 fl

ow

ar
ch

iv
e

library of designs &

applicable results

problem description

no
yes

in
st

an
tia

te

Fig. 1: Reuse cycle

retrieve &
identify

design &
adapt

design flows

selected IP

instantiated IP
synthesised IP

generalised IP

specification&
constraints

Thus for a pair (I,I‘) of IPs two relations can be defined:
• I and I‘ areequal (I = I‘), if S(I) = S(I‘) and
• I‘ is anextension of I (I ≤ I‘), if S(I) ⊆ S(I‘), i.e.,I can

be substituted by I‘.

Furthermore, in [2] asimilarity function is defined. E.g.,
the specification of a 32-bit adder and a 16-bit adder are
very similar. Thus, it is much easier and faster to design a
VHDL specification of a 32-bit adder adapting a code of a
(likewise defined) 16-bit adder. By doing so, for the assign-
ment of an IP to a given specification, a threshold must be
defined to decide whether the calculated value for the simi-
larity will be sufficiently high to map the specification to
the IP.

The elements of the libraries LB, LF, and LIB consist of a
triple (K,V,D), where K is thekernel of the element. Set V
of kernel parameters is noted asconfiguration, and D is a
domain oftuples of valued parameters. A library element
is namedcomponent. The pair (V,D) of configuration and
domain characterises theenvironment of the component.

By fixing the value d = (dB,dF) of DI an IP
I = ((KB,KF),VI,DI) is allocated to an instantiated IP
I(d) = (b, f) where b =KB(dB,dF) and f =KF(dB,dF).

Moreover, we use the following definitions:
• An IP I = (KI,VI,DI) is configurable, if the set DI con-

tains more than one element, i.e., |DI| > 1.
• An IP I = (KI,VI,DI) is aninstance, if the set DI con-

sists of exactly one element, i.e., |DI| = 1.
• If we treat the mapping process of a specification to an

IP I = (KI,VI,DI), we understand the terminstantiation
as the task of selecting a distinct tuple d out of DI. The
result is I(d) = (KI,VI,{d}) or K I(d). In the case of a
generic VHDL-description of an IP, the environment
(VI,{d}) is expressed by the keywordsgeneric and
port map. In this second form of description KI(d) all
parameters of the kernel are substituted by related val-
ues of the configuration.

4 Design by reuse

4.1 Mapping at a reuse library
The design by reuse comprises the following four steps:

• Analysis of the specification with regard to correctness,
ability of synthesis, and reusability.

• Decomposition of the specification to partial specifica-
tions P = (bP,cP), consisting of a behavioural specifica-
tion bP and relevant constraints cP.

• Design of partial specifications P, i.e., allocation of IPs
or complete new design, if an allocation is impossible.

• Composition of verified partial circuits (synthesised
partial specifications) to a complete circuit and valida-
tion of the overall behaviour. The reduction of the veri-

fication effort is a major advantage of the reuse concept
for electronic design [18].

For mapping to a reusable library three cases are to be
distinguished (c.f. Fig. 2):

• selection and instantiation transform the specification
into a partial circuit, which is itself an element of the
library,

• selection and generating lead to an instantiated IP, con-
sisting of specification and design flow,

• the partial specification could be an IP, thus no selec-
tion is necessary and after instantiation a circuit can be
created immediately by applying the related design
flow.

4.2 Utilising Reuse Components

The fundamental task for design of a partial specification
is the retrieval, i.e., the decision whether P can be mapped
to an element of the IP-library (c.f. Fig. 3). If this is possi-
ble, an IP I = ((KB,KF),VI,DI) is chosen with a kernel
KI = (KB,KF), consisting of a parameterised behavioural
specification KB and a parameterised design flow KF. After
that, a suitable instance (dB,dF) of DI is chosen under influ-
ence of constraint cP, having the property bP ≤ KB(dB). In
case such a mapping is impossible, a design flow fP should

partial
specific.

partial
circuit/ IP

problem solving:
circuit

problem
specification

composition
& verification

decomposition

se
le

ct
io

n
&

in
st

an
tia

tio
n

sy
nt

he
si

s
&

 v
er

ifi
ca

tio
n

se
le

ct
io

n
&

in
st

an
tia

tio
n

sy
nt

he
si

s

&
 v

er
ifi

ca
tio

n

instantiation

st
ar

t l
ev

el
in

te
rm

ed
ia

te
 le

ve
l

de
st

in
at

io
n

le
ve

l

instantiated
IP

partial
circuit

partial
circuit

instantiated
IP

partial
specific.

partial
specific.

Fig. 2: Mapping at a reuse library

be composed, dependent on the constraint cP.

The constraint cP may be consist e.g. of a set of so-called
SpecificationMappingControl rules (SMC) [5]. The appli-
cation of such rules performes plausibility checks and ena-
bles safe re-applicability of the multidimensional design
space of the given circuit. The result is an instantiated IP
(b, f) with b= KB(dB) and f= KF(dF) or b = bP and f = fP.
Finally, the application of design flow f to the behavioural
specification b leads to a circuit f(b) for the given partial
specification P (Fig.3).

5 Design of Components for Reuse

For the design of reusable components a specification b’
(e.g. a synthesised circuit) is to be generalised to a class of
behaviour specifications and design flows. The result
should be an IP I = (KI,VI,DI) with KI = (KB,KF),
VI = VB∪VF and DI ⊆ DB× DF which contains a tuple
(dB,dF) with b‘ = f(b) for b = KB(dB) and f = KF(dF).

The design of a reuse library component starts with a
specification P = (bP,cP) containing a behaviour specifica-
tion bP and some constraints cP as well as a fixed abstrac-
tion level (Fig.4). For the generation of IPs in [9], [16] it is
assumed that the behaviour is described in VHDL and the
set of possible design procedures is given by the Synopsys
design compiler [19].

The components of an IP I = ((KB,KF), VB∪VF, DI)
based on the behavioural description B = (KB,VB,DB) and
a design flow F = (KF,VF,DF) are as follows:

• KB - VHDL behaviour description based on generics,

• VB - set of generics used in the VHDL description,

• DB - set of allowed values of the generics,

• KF - design flow based on the Synopsys design com-
piler, possibly controlled by additional parameters,

• VF - set of switches and parameters of the compiler,

• DF - set of allowed values of those switches and param-
eters, and

• DI - subset of allowed values of DB×DF.

6 Database management for reuse libraries

In the future, engineering databases will carry parameter-
ised specifications, their documentation, and parameterised
design flows. Database frontends will take over the tasks of
IP-mapping.
In this respect, the following points are under development:

• data management of parameterised specifications on
different levels of abstraction,

• standardisation and data compression for retrieval,
• suitable procedures for retrieval, and
• design or adaptation of hierarchical searching mecha-

nisms.

These tasks can be solved in our work by combining the
classical data management technique of academic and
commercial CAD vendors [2], [6], [10] with CBR tech-
niques [1], [3], [4].

Fig. 3: Reuse of components

specification

IP-library

block-
library

P = (bP,cP)

recognizable
?

selected IP:
I = (KI,VI,DI)

with K I = (KB,KF)

specify an instance
(dB,dF) of DI for c P

define a design
flow f P for c P

yes

no

b = KB(dB)
f = KF(dF)

b = bP
f = fP

instantiated IP:
(b,f)

design of specification
b applying flow f

library of
design
flows

circuit for P
synthesized IP:

specification
P = (bP,cP)

for c P generalisation

library of

for design
procedures

fixing a
design level

of b P at the fixed level
by defining of:
1. KB, VB, DB

specifications,
2. KF, VF, DF

design flows, and
3. DI instances with

DI ⊆ DB×DF

generalised IP:
I=(KI,VI,DI)
with K I=(KB,KF)
and VI=VB∪VF

Fig. 4: Design of components

7 Application

The current implementation of the above mentioned data
model, knowledge base, and retrieval methods is performed
by READEE, developed in an interdisciplinary project of
the University of Kaiserslautern, Department of Computer
Science, Centre for Learning Systems and Applications.
READEE concentrates on two state-of-the-art problems:

• and innovative retrieval methods, and
• the parameterisable description of designs.

This program is designed as a generic database system
with the capability to easily add categories for retrieval
attributes. The process of retrieval and parameterisation is
shown in Fig. 5.

The process description of Fig. 5 is based on SADT [17].
The query entry can be formulated in plain keywords. They
could be derived by parsing specifications, written in a
hardware description language. After retrieval of an IP,
detailed specifications and/or constraints are added, based
on a given circuit-specific data sheet. This questionnaire
filling-in is controlled by a preliminary, mostly simple
plausibility check, using interactive SMC rule reaction [5].
The reason for a technical two-step process is that the
found circuit-specific data itself have to offer the detailed
rules of specification matching this class of topologies. Our
implementation strategy is based on a common visualisa-
tion of the two-stage retrieval and parametrisation process
(c.f. gray box in Fig. 5).

Since the user entries for retrieval and parameterisation
are of similar type, a method for their combination has the
advantage of user access homogenity. To implement this,
both activities - database query and questionnaire entry -
are integrated into one successively extended question-
naire. The application skill of the prototype READEE
regards DSP applications.

References

[1] Aamont, A.; Plaza, E.: Case-Based Reasoning: Foun-
dational Issues, Methodological Variations, and Sys-
tem Approaches. AICOM Vol. 7, No. 1, March 1994.

[2] Altmeyer, J.; Ohnsorge, St.; Schürmann, B.: Reuse of
Design Objects in CAD Frameworks. Proceedings of
the International Conference on Computer Aided
Design, San Jose, California, 1994.

[3] Bergmann, R.,: Effizientes Problemlösen durch flexi-
ble Wiederverwendung von Fällen auf verschiedenen
Abstraktionsebenen. Dissertation Universität Kai-
serslautern, 1996.

[4] Bergmann, R., Munioz, H., Veloso, M.: Fallbasiertes
Planen: Ausgewählte Methoden und Systeme, Künst-
liche Intelligenz, 1/1996.

[5] Conradi, P.: Reuse-dominated Synthesis of electronic
designs, 4th biennial Baltic Electronics Conference,
Tallinn, Estonia, October 9-14, 1994.

[6] Conradi, P.: Information Model of a Compound
Graph Presentation for System and Architecture
Level Design. EURO-DAC ‘95, pp. 22-27.

[7] Frakes, W.B.; Fox, C.J.: Sixteen questions about soft-
ware reuse. Communications of the ACM, 38(6), pp.
75-87, June 1995.

[8] Girczyc, E.; Carlson, St.: Increasing Design Quality
and Engineering Productivity through Design Reuse.
DAC ‘93, pp. 48-53.

[9] Jerraya, A.A.; Ding, H.; Kission, P.; Rahmouni, M.:
Behavioral Synthesis and Component Reuse with
VHDL. Kluwer Academic Publishers, Boston/ Lon-
don/ Dortrecht, 1997.

[10] Jha, P.; Dutt, N.D.: Design Reuse Through High-
Level Library Mapping. European Design and Test
Conference, Paris, 1995, pp. 345-350.

[11] Kission, P.; Ding, H.; Jerraya, A.A.: VHDL Based
Design Methodology for Hierarchy and Component
Re-Use. EURO-DAC ‘95, pp. 470-475.

[12] Koegst, M.; Conradi, P.; Garte, D.; Wahl, M.: Analy-
sis and Classification of Reuse Strategies and Tasks
for the Circuit Design, IWLAS'97, Grenoble.

[13] Lehmann, G.; Wunder, B.; Müller-Glaser, K.D.: A
VHDL Reuse Workbench. EURO-DAC ‘96, pp. 412-
417.

[14] Nebel, W.; Schumacher, G.: Object-Oriented Hard-
ware Modelling - Where to apply and what are the
objects? EURO-DAC ‘96, pp. 428-433.

[15] Preis, V.; Henftling, R.; Schütz, M.; März-Rössel, S.:
A Reuse- Based Hardware Design Flow. EURO-
DAC ‘95, pp. 464-469.

[16] Reutter, A.; Mößner, B.; Kreutzer, I; Rosenstiel, W.:
Wiederverwendung komplexer Komponenten für
Synthese und Simulation unter Verwendung von
VHDL. 8. E.I.S.- Workshop,8.-9. Apr.1997, Ham-
burg, 105-114.

[17] Ross, D.T.: Applications and Extensions of SADT,
Computer, April 1985.

[18] Seepold, R.; Kunzmann, A.; Rosenstiel, W.: Eine
effiziente objekt-orientierte Wiederverwendungsme-
thode für den Hardware- Design. 8. E.I.S.- Work-
shop, 8.-9. April 1997, Hamburg, 125-131.

[19] „Synopsys Design Ware Developer Guide“, Synop-
sys Inc., Montain View, CA,97 1997.

parameter rules

SMC

database
query

questionaire
entry

CBR
generation
parameterrules

Fig. 5: Query and parameterisation technique

access
methods

selected IP:
I = (KI,VI,DI)

instance
(b,f)

specification b P constraints c P

valued parameter
(dB,dF) of DI

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

