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Abstract
This paper presents a proposal for enabling VHDL to

better support reuse and collaboration. Base idea is passing
on the adequate information to partners working in an
object-oriented hardware design environment. Appropriate
subgoals for achieving this are:

- an optimal mix of necessary abstraction and
sufficient precision,

- a formal description consisting of implementation
constraints and knowledge requirements, and

- the non-formal concept of mutual consideration.
Several loans are made from
- the software domain: Java interfaces, type models,
and the request for habitability,

- the VHDL Annotation Language.
This is not an experience report, for the idea of

adopting the mentioned software concepts to hardware
design is new. It is rather a guided tour to some “panorama
views”. Although they may not seem related to each other
at first glance, they turn out to altogether support a
common goal: understanding and communicating VHDL-
based designs better.

0. Introduction

There are a number of object-oriented (OO) languages
which do not distinguish between modeling and
programming or only do so inadequately. C++ [22], for
example, is one of these languages. There are other
languages which in theory can make such a distinction but
in practice they tend to blur the two processes because
they state too many details for modeling. An example of
the second type is, say, Eiffel [15]. Although, on one
hand, it has a well thought out mechanism based on pre-
and post conditions, referred to as “Programming by
Contract” [23, 14], with which the role division between
the supplier and user can be described, on the other hand,
multiple inheritance for classes is permitted and the
modeller must give a complete specification of the classes
before compilation can take place.

(This article will not discuss Ada'95 any further; see
eg. [2] for this language.)

The inability to distinguish between modeling and
programming referred to above is a pity because it is
precisely the principle of object orientation, rather than
conventional techniques, that would provide the best basis
for supporting teamwork and reuse if more attention were
paid to the modeling phase. On the other hand, proposals
for an OO extension of VHDL [19, 18], currently at the
draft stage, have a good chance of turning out well in this
respect because VHDL, the base language, is slanted
towards modeling.

To prevent any misunderstandings, a fundamental
difference should be made clear: While it should always be
possible to run a model in a VHDL-based hardware design
environment, this only rarely applies to the software
technology. “Soft models” can only be run if there is a
tool capable of running the model as a prototype for the
selected model description language. Generally speaking,
this is only the case in simulation or animation
environments.

However, this differentiation does not bring us any
further. The crucial principle for the effective support of
teamwork and reuse - in both hardware and software design
environments - is the provision of the right amount of
information.

Two submechanisms ensure that an adequate amount
of information is supplied: Abstraction and precision.
There is nothing mutually exclusive about these
objectives. I can be very precise at a relatively high degree
of abstraction (see Fig. 1). Whereas    abstraction    means the
deliberate omission of (currently)    unneeded    knowledge, it
is the sufficiently    exact    formulation of    essential   
knowledge that is crucial for the second art - precision - of
effective communication between partners in a team. The
same also applies to reuse: Here it is not just passing on
important information to the participants in a    single   
project, but the provision of potential participants in any
future projects.
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1. The Java Interface Concept

A language in which the distinction between essential
knowledge and (currently) unnecessary knowledge is
almost built-in as a feature is Java [21]. This language is
neither a superset or subset of C++, even if many
constructs are strongly reminiscent of the currently most
popular representative of OO languages. The feature in
Java which explicitly makes this distinction possible is
the interface concept. In Java, an interface is a promise or
a contract that is fulfilled by a class. This concept was
originally found in ObjectiveC [13] and Modula-3 [12].

The most remarkable features of the Java interface
concept are as follows:

1.1 Model Nature of an Interface

Interfaces are "only" a (usually not runnable) model of
a class.

This means that,
- the class does not have to be fully specified at the
compilation stage and

- the Java compiler also accepts this.
This is not just a model on paper nor a runnable

model because the interface

- can be integrated in its entirety as a compiled entity
in a hierarchy - like the class hierarchy (see Section
1.2) and

- does not need to be recompiled at a later date, as it is
completed by the user of the interface (= "honorer” of
the contract) in a separate class.

At the modeling stage, it is sufficient to compile the
signatures of the methods offered by the interface (a
signature comprises the appropriate method name and the
types and names of the parameters). The philosophy
behind this is that interfaces are a kind of contract which
the creator of the interface offers. This contract comes into
force when it is accepted by the user of the interface. The
user is also referred to as the “implementer” of the
interface. A clear distinction is made between modeling
and implementation. The roles and tasks of the
participants are also defined: The interface creator tries to
provide a model interface that is as usable as possible; on
the other hand, the implementer is under an obligation to
actually “flesh it out”. Whether the user has honored this
contract is determined when the user class is compiled.

What is the origin of the term “interface”? On the one
hand, it is derived from the idea of collaboration between a
number of developers who keep to an agreed interface. On
the other, it also corresponds to the collaboration between
objects, here too the fulfillment (honoring) of certain
agreements being of prime importance [3].



1.2 Single Inheritance vs. Multiple Inheritance

The interface concept is based on the principle of
multiple inheritance and not just single inheritance as used
within the regular Java class hierarchy.

These are concepts of object-orientation, where you
can comfortably describe “is-a” relations like “An elephant
is a mammal” or “A RISC processor is a processor” -
elephant and RISC processor being subclasses and
mammal and processor being the appropriate superclasses.
Generally speaking, subclasses can inherit properties from
their superclasses. By simplifying the relation, we can
say: The elephant class inherits from the mammal class
the property of feeding the young with milk. Or: The
RISC processor class inherits from the processor class the
property of having an instruction set.

By the term single inheritance the following is meant:
A subclass can be in an “is-a” relation with    only        one   
superclass - eg. a motor-bike may be either a vehicle or a
pet but not both. In some OO languages that allow
multiple inheritance you can, however, define more
complex relations, namely “is-a” relations between a
subclass and     more       than       one    superclass - eg. a table may be
a furniture    and    a burnable thing    and    a tradable thing. While
the inheritance graph is always a tree with single
inheritance, this is not the case when multiple inheritance
is allowed. Much discussion has been going on in the OO
community for a long time about the necessity of
multiple inheritance. Some people say they cannot live
without it, others consider it harmful.

Java has solved the issue in its own way:
(1) A class can only be related to a single superclass,

so in the class world there is only single inheritance.
(2) An interface - consisting merely of method

signatures without bodies - can be related to several
superinterfaces, so in the interface world you have
multiple inheritance.

(3) Across the two worlds - one class can implement
several interfaces.

This will now be illustrated with a simple example.
    Note       the       different       keywords       interface             and       class      .   

interface Foodlike {
float  cal2joule(float calories);
float  joule2cal(float joule);
void  decay(DecayType afterSomePeriod);
boolean  edible();
...

}

interface Fruitlike extends Foodlike, Healthy {
/* Philosophy: Eating is not necessarily healthy. On
the other hand, something healthy need not have
anything to do with eating - a walk can be healthy.
Fruit is both edible and healthy. */

void squish();
...

}

class Fruit extends Food {
...

}

interface Spherelike {
void toss();
void rotate();
...

}
class Orange extends Fruit implements Fruitlike,

Spherelike {
... // toss()ing may squish() me

}

This example shows that the classes Orange and Fruit
can only inherit from a superclass Fruit or Food, while the
interface Fruitlike inherits from the superinterfaces
Foodlike and Healthy, and the class Orange implements
the two interfaces Fruitlike and Spherelike.

The reason for this “2-class society” is the Java
designers adopting the following analysis: Multiple
inheritance is only highly prone to errors when complete
implementations     with       every       detail,    for example attributes
and method bodies, are inherited, in other words: in the
world of classes (Orange, Fruit, Food, ...). In the interface
world, however, only     models    are inherited, which cannot
have the following results:

- all of a sudden, it is impossible to determine
precisely where a particular detail actually “comes
from” or

- certain characteristics which have been inherited
from different parents are contradictory.

1.3 What about polymorphism?

However, polymorphism - another OO concept,
namely the ability of a variable to refer to objects of
different types - plays a subordinate role in the    interface   
hierarchy. Polymorphism via casting, as used in con-
junction with    class    hierarchies, only makes sense if two
methods in one superclass and one subclass have the same
signature but different bodies.



    Example   :

class Foo {
   public void f ( ) { // Method of the

// superclass
      System.out.println ("Foo's f ( )");

// Body of Foo.f()
   }
}

class Bar extends Foo {
   public void f ( ) { // Method of the

// subclass
      System.out.println ("Bar's f ( )");

// Body of Bar.f()
   }
}

public class PolymorphCasting {
   public static void main (String [ ] args) {
      Foo myFoo = new Foo( );
      Bar myBar = new Bar( );
      Foo [ ] myFooArray = new Foo [2];

      myFooArray[0] = myFoo;
      myFooArray[1] = myBar;

      for (int i = 0; i<myFooArray.length; ++i) {
         myFooArray [i].f ( );
      }
   }
}

The methods used for interfaces, however, do not have
any bodies.

Also, the second type of polymorphism via
overloading - also referred to as ad-hoc polymorphism - is
not appropriate. It would be implemented by having
several methods with the same name but with different
signatures within one and the same interface. However,
this is more of a hindrance for the designer of the class
which implements the interface, as he/she would always
be forced to implement at least two methods whether (s)he
needed them or not.

Using the method cal2joule as an illustration, we will
now demonstrate that it is essential for the designer of the
Foodlike interface to ensure that every implementation of
the interface realizes a corresponding method properly.
About the “how”, however, nothing is said at this point.

On one hand, the advantage of this saying nothing is
that the designer does not need consider what is involved
in an early stage, but on the other hand the cal2joule
example below indicates a decisive disadvantage and shows
what could go wrong in a case like this if the
implementation cannot be checked using certain
plausibility criteria.

The method cal2joule could be realized like this:

float cal2joule(float calories) {
return 0.2 * calories; // Not quite what the

// designer intended !
}

This situation will be discussed in more detail in the
next Section.

2. Critique of the Java Concept

As we have seen, although the Java interface concept
is well-suited to supporting teamwork and reuse because of
its ability to handle    abstraction   , there is still a crucial step
missing as far as    precision    (x-axis in Fig. 1) is concerned.
Occasionally, the signature of a method can leave all too
much unstated. Under these circumstances, it would be
important for the    implementer    to have a clearer idea of the
expectations the interface supplier had of him/her. Also, it
would often be beneficial for the    supplier    if (s)he could
justify his/her expectations more precisely - even just to
himself/herself.

For example, it would be useful to be able to state the
following in the interface Foodlike:

float cal2joule(float calories);  "... but ensure that the
conversion factor is between
4.17 and 4.20."

The designer of the class which implements the
interface can then still decide how accurately (s)he wants to
specify the conversion factor: 4.2, 4.19 or 4.1868.

With this feature, it is not a question of a
precondition or a postcondition but rather a constraint of
the interface designer. (S)he passes it on to the designer of
the class which implements the interface. We, therefore,
refer to this concept as an implementation constraint. By
this we mean a Boolean expression p in an interface S,
where the class C, which implements interface S, must
ensure that p is always true in C.

There is a further concept which represents a
somewhat weaker requirement to be fulfilled by the
implementer. We call it knowledge requirement. This is a
requirement that the implementer (= user) must have a
certain level of knowledge about the intentions of the
interface designer (= supplier).

For example, a lot more could be known about the
intention of the supplier, if, in addition to the methods

void  decay(DecayType afterSomePeriod);
boolean  edible();

in the interface Foodlike, there were some information
relating to what the supplier thought about the context,
say



void  decay(DecayType afterSomePeriod)
 // | {
 // |     allowedPeriod = afterSomePeriod;
 // | }
 ;

boolean  edible()
 // | {
 // |     if (new Date().getPeriod() >
productionDate.getPeriod() + allowedPeriod)
 // | /* new Date() = today */
 // |   return false;
 // | }
 ;

It can then be deliberately left open as to what is
specifically meant by “period”. In the case of crispbread
this might be several months, but with bottled milk only

a few days. In the first case, getPeriod() should be replaced
with getMonth() and in the second by getDay().

We have chosen the symbol “//|” similarly to that of
VAL (VHDL Annotation Language) [1] where “--|” is used
as a symbol for this kind of pseudo-comment.

This example may seem trivial, but the basic idea can
be extended from food to more complex processes like
autopilots or power station control.

The concept of the type model, which originates from
Desmond D'Souza [4], seems to be a suitable solution
which goes beyond informal documentation and can be
automatically checked. This gives the supplier of the
interface the opportunity of passing on significant
information to the user about certain attributes and
knowledge requirements which the supplier intends - going
beyond method signatures - and to check that they have
been met.
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Fig. 2:
The class Circle implements the interface Shape [6]

For example, an interface Shape is to be defined in
two-dimensional space and it is expected that it will be
implemented by all classes which are two-dimensional
geometrical figures with a certain shape (Shape). The two
methods that are offered (see Fig. 2):  move (= translate
figure by a specified vector) and resize (= change the size
of the figure by a certain percentage) are then performed by
each implementation class in the way that is the most
efficient for the figure in question.

With Java, however, it is not possible to pass on
additional formal information beyond that offered by the
signatures of the methods. In this case, for example, the

supplier of the interface Shape might also want the
implementer of the interface to ensure that the abstract
concept

"Figure covers point" or "Figure does not cover
point"

is implemented in a suitably specific form.
For this reason, a test mechanism referred to as

retrieval was proposed in [5]. Apart from allowing the use
of type models when describing interfaces (see box
Boolean covers (Point) in Fig. 2), it checks whether the
implementer is actually in agreement with this ex-
pectation. In our example, the user can unburden himself



of this task by introducing | p - center | < radius as a
condition and so implement the corresponding abstract
condition using    his/her       own    concrete means.

The orthogonality of abstraction and precision which
was mentioned in the introduction is achieved in this case.
The interface designer states as abstractly as possible but
with sufficient precision what his/her intentions were
when (s)he was designing the interface and what (s)he
expects from all implementers. This is a step towards the
shall-prototype-test principle, which has been postulated
in a general form in [11]. The knowledge requirements
considered in this Section (see above) are elements of the
set of “shalls” defined in that paper.

3. On the Way to Design Habitability

“Habitability” of program code is a concept that has
been discussed for a long time by the OO-Community [9].
This is a way of referring to a new type of “mutual
consideration” where the writer of a piece of code always
bears in mind the users of his/her code and their knowledge
and expectations:

- What must they know?
- What do they not need to know?
- How do I provide them with the relevant
information?

This means that the code writer tells the user,
- what the piece of code does,
- what it does not do,
- where “traps” might occur,
- where it is relatively easy to make modifications
[10],

- what effects do these modifications have.
Until tools are available to give support in this area,

say in the form of pre-processors, comment lines are the
only way of passing on this information.

Even in this relatively primitive form, under the most
favorable conditions, the user feels “at home” in the
program section, hence the term “habitability”.

By “user” we do not just mean the person who calls
the piece of code, but also the person who reads the
listings and has to decide whether (s)he can reuse the code.
The person who has written the code can also take on this
role, if he or she wants to understand his or her own code,
say, four weeks later.

In my opinion what has been said about making code
“habitable” also applies to the work produced by designers.
In this case too, it is essential to produce results in a form
that the user not only understands, but also feels “at home
with” to a certain extent. This feeling of well-being can be
increased even further by creating a “virtual pleasant
environment” in which the user feels happy because (s)he

sees that the designer has been considerate enough to think
about the “poor guy/girl” who might have to understand
the architecture or certain design decisions [17].

4. Conclusions relating to an OO-
extension of VHDL

We have made a wide curve stating some ideas which
mainly stem from the area of software design. But as we
already mentioned in [8], it is always wise to look to the
“other side”. So now let's summarize what we have learned
on this curved trip.

As VHDL already supports teamwork and reuse very
well at present [20], an essential goal for the designers of
object-oriented extensions of VHDL should be to increase
the power and scope of this support even further. The
following models are available

- firstly, the Java interface concept which provides
suitable approaches to abstraction and

- secondly, the type-model concept as an instrument
for obtaining precision and an aid to honoring
contracts.

As has been shown, the two subgoals of abstraction
and precision are not mutually exclusive. They could also
be very useful coordinates for an OO-extension of VHDL
as

- this language already has an adequate basis
mechanism in the form of the principle of separation
in entity and architecture,

- there are analogies between VHDL structure
descriptions and the object-oriented approach [7] and

- in the case of VAL (VHDL Annotation Language), a
number of decisions have already taken it along the
path towards constraint handling (assume, assert,
finally, eventually, sometime) [1]. A concept of
contract honoring (see above) can be constructed on
these developments.
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