
A Macroscopic Time and Cost Estimation Model Allowing Task Parallelism and
Hardware Sharing for the Codesign Partitioning Process.

J.A. Maestro, D. Mozos, H. Mecha
Dpto. de Arquitectura de Computadores y Automática

Universidad Complutense - 28040 Madrid, Spain
E-mail: maestro@eucmax.sim.ucm.es

Abstract1

This paper describes a method to estimate the
implementation cost of the hardware part in a mixed
hardware/software system, as well as the related
performance. These estimations try to avoid the use of
many implementation details in order to keep the
complexity order of the process under control. The
concepts of hardware sharing and parallelism are
exploited to make a picture of the whole hardware cost
associated to a given partition.

1.- Introduction.

The current demand of embedded systems, formed by
a standard processor supporting a software program, and
one or several hardware specific circuits (ASIC) grows
quickly, making their time-to-market shorten
progressively. As the manual design task becomes harder,
an automation process is required, aiding to overcome
this problem in a reliable way. The embedded systems
have the important characteristic of being hybrid, that is
to say, of being formed by a hardware and a software
component. Thus, it is not advisable to use specific and
single design techniques, but to integrate them in order to
satisfy the implicit necessities of both parts.

The set of steps leading to perform a simultaneous
and automatic design of these hardware and software
elements is known as Codesign [1]. The main task within
this process is partitioning [2], which decides whether a
module is going to be assigned to hardware or to
software. This task depends on the intrinsic necessities of
the problem, mainly time and area constraints. So the
main goal of the partitioning is to get a design that meets
all these constraints while minimizing the area.

Most partitioning algorithms use an iterative process
that, starting from an initial state, and moving
functionalities through software and hardware, tries to

This work has been granted by CICYT TIC 96/1071 and HCM CHRX-

CT94-0459

get at a solution accomplishing the design goals. To
guide this movement of functionalities, it is necessary to
determine if a design is better than others, by means of an
estimation process. The more realistic the estimations
are, the better they will reflect the intrinsic capabilities of
the system.

In the partitioning process, the software cost and
performance are determined by the chosen architecture
and memory hierarchy models, that are usually fixed in a
previous stage. So, the main goal during this process is to
estimate both parameters of the hardware part. Talking
about this, and given a functionality, there exist several
features that must be considered for a good estimation:
• It is possible to obtain several valid hardware
implementations of this functionality with different
values of area and performance by carrying out the inner
scheduling and allocation in distinct ways. So, the
partitioning algorithm not only has to decide where to
place every module, but also which implementation
should be used in case it is assigned to hardware.
• The hardware cost does not increase or decrease in a
linear way by moving functionalities through the
hardware and software partitions, since it depends, at any
moment, on the particular distribution of the system. In
other words, the cost of two single functionalities
implemented in hardware does not correspond with the
sum of the individual costs. This consideration is based
on two basic concepts, hardware sharing and parallelism.
Sharing implies that a module’s functionality can be
implemented with part of the hardware of a previous one.
Parallelism means that two modules may be executed
simultaneously and therefore, no hardware could be
shared between them in that case.
• Finally, the estimation process has to consume as
little time as possible, since this task is to be repeated
many times. That is why most of the partitioning
algorithms perform the estimation process in a quite
unrealistic way, without considering the hardware
sharing or the several possible hardware implementations
for each module.

There are several Codesign systems that try to
accomplish this estimation process. Some of the best
known are:
In Castle [3], an environment for the Codesign process,
the estimations are calculated by analyzing the basic
blocks contained in the specification. The possibility of
hardware sharing and parallel execution is not
considered. Thus, a simplistic view of the whole system is
applied to the process.
Cosmos [4] is a Codesign environment destined to an
interactive performance of the partitioning task.
Internally, it works with a set of interconnected
processes, extracted from the initial specification. A
certain parallelism degree among them is allowed, but
nothing is said about how estimations are carried out.
The possibility of sharing hardware is not available in an
automatic way. What is more, the manual effort that the
designer must do leads to a lack of efficiency in the
process.
Cosyma [5], a well known Codesign system, performs the
estimations without taking the hardware sharing or
parallelism among tasks into account. The partitioning
process is carried out by means of the Simulated
Annealing algorithm, and then, and outer loop is
executed in case that the obtained results do not match
with the expected ones. This loop is to be executed too
many times, due to the unrealistic estimations, with a
considerable time consumption.
In [6], an Integer Programming approach is used to
perform the partitioning process. When estimating the
functionalities, the sharing possibility among them is
allowed. Nevertheless, only modules that are equal can be
considered, leading to an excessive simplification of the
problem. Besides, nothing is said about the several
implementations that a single module can have.

Another reasonable possibility is adapting the
estimation processes developed under the HLS systems,
in order to work on Codesign environments. In this way,
Kurdahi [7] carries out an interesting approach with the
SCALE system, which is able to estimate the area of a
circuit at the RT-level. Although the predictions of this
system are within 5% of the actual layout areas, the
execution times for medium-low sized examples are
unacceptable (5 to 226 seconds) for an environment of
these characteristics.

In this system, as well in other similar ones [8], the
greatest drawback arises when performing the area
calculation, as this process can only be made on single
hardware modules. Therefore, if some of these modules
are integrated into a larger system, it must be completely
designed to estimate its area, what consumes a great
amount of time. Instead, this estimation should be carried
out starting from the single modules’ area values, that

were previously found out, and with the consideration of
the possible parallelism and hardware sharing.

Our approach tries to estimate the hardware
implementation cost of several functionalities from a
macroscopic view, but considering all the relevant aspects
of the problem, as sharing and several possible hardware
implementations. By macroscopic, we mean that the
computation does not consider all the implementation
details, but only those aspects most relevant to the
problem.

2.- Problem definition.

The main pursued goal is to achieve a time and cost
estimation model for a Codesign system, able to provide
reliable values to the partitioner, and so fulfill this
process in a realistic way. It is necessary to exploit the
previous concepts of parallelism and hardware sharing to
get at the proposed model, since it is the only possibility
of succeeding in this purpose. According to our approach,
the Codesign problem can be stated as follows:

Given a Codesign graph G={N,E,S,I}, a sharing
matrix K, and a superset of individual estimation pairs P,
find the minimum execution time and the related
optimum cost.

N stands for the set of nodes, equivalent to the
different system tasks.

E is the set of graph edges, which can be classified
in several different types, and will be explained in the
next section.

S is the function
S : { i | i∈N} → Zi = { SW ,HW1 ,HW2 ,..., HWm(i)} ,

which assigns each node i to the software partition or
to one of the different m(i) possible hardware
implementations.

P is a superset { P1,...,Pi,...,Pn } containing a set of

implementations {P Pi
SW

i
HWm i,..., () } for every node i,

1≤ i ≤ n, n = Card(N). Each element Pi
j , j ∈ Zi , is a

pair (_ ,)ex timei
j costi

j , which represents the different

possible implementation parameters, execution time and
cost, of the node i.

I is the function

I : { i | i∈N} → Pi
S i()

which assigns to each node the suitable
implementation parameters, depending on the node
implementation, S(i).

K is the sharing matrix κ[i1,j1],[i2,j2] , in which for every
pair of node and hardware implementation, [i,j], its
similarity with the rest of the pairs is stated as a real
factor between 0 and 1. The matrix K is formed by means
of a static analysis of the hardware implementations.

With all these considerations and trying to solve the
stated problem, a time and cost model is proposed. In
section 3 the time model is presented. In section 4, the
scheduling process is described. The explanation of the
cost model is in section 5. Finally, some experimental
results are offered in section 6, and the conclusions and
future work appear in section 7.

3.- Time model description.

From the inner structure of the system, a timing
graph is extracted, whose description fits the previously
defined graph G. As it was said, the graph’s nodes are
equivalent to the functionalities contained into the initial
specification. Now, the set of edges must be defined, in
order to give the right structure to this graph.

The graph has to be a support to study and calculate
the system execution time, taking all the possible
parallelism degrees enclosed in the design into
consideration, as it was explained in the introduction.

The execution time of a system can be defined as the
time interval in which there exists any kind of active
information related to that system. By information is
understood any of the two kinds of existing dependency
flows, namely data and control flows. So, both of them
must be reflected in the graph, to study the possible
starting and ending time instants for each node. The
different types of edges in this graph are:
a) SW Data and Control edges: There is a predefined

sequential order for the software nodes, forced by the
impossibility of a parallel execution in the processor.
So, there exists an associated control dependency
flow, which can also be a data dependency flow, as
the order of the nodes must respect the different data
needs.

b) HW Data edges: Within the hardware part, there is
also a set of data dependencies representing the data
flow among the different hardware nodes.

c) HW Control edges: Apart from the loop and
conditional control dependencies, that are not
considered in this first approach, it does not exist any
natural hardware control dependency, since any
parallelism degree is acceptable. Nevertheless, there
may be some forced control dependencies, obliging to
the sequential execution of two nodes. This could
cause an increase of the hardware sharing factor, and
therefore, a reduction in the system cost. As the
number and position of these control edges is
arbitrary, a certain freedom degree is presented in the
process, making the possible design space wider.

d) HW-SW Data edge: When two adjacent nodes are
assigned to different partitions, the interchange of

variables between them is performed by means of the
system bus. This communication introduces a data
dependency, with an associated time consumption.

With all these sets of edges, the formed timing graph
is complete, that is to say, it contains every information
flow, without any kind of redundancy. A typical Codesign
problem is depicted in Figure 1, which represents an
Intelligent Vision System modeled into generic tasks,
with a certain bipartition previously given by the
partitioner. The equivalent dependency graph is shown in
Figure 2. The white nodes represent the software
partition and the shaded nodes, the hardware partition.
The bold lines are the active communications, with their
related time overhead. The timing graph can be seen in
Figure 3, together with the four explained set of edges. It
is important to notice that in this graph, there is not any
kind of control dependencies between hardware and
software, since the parallelism between them is always
exploited.

Given a timing graph as described before, the
minimum time to execute the whole set of operators is
defined by the critical path time. In order to execute a
node, two different information flows must be taken into
consideration: the data and control flows. That is to say,
an operation cannot start until all the needed data have
been produced by its predecessor, and the control, or
permission to be executed, has been received.

As it was said, the timing graph contains in its edges
all these information flows. So, taking the maximum path
this information has to go through, means the
impossibility of facing any piece of information with a
higher life-time. So, since the global execution time was
defined as the interval in which any data or control is
active in the system, it will correspond to the critical path
time.

S(1) = SW I(1) = (100, 0)
S(2) = HW2 I(2) = (40, 15)
S(3) = SW I(3) = (45, 0)
S(4) = HW1 I(4) = (25, 65)
S(5) = HW3 I(5) = (10, 130)
S(6) = HW1 I(6) = (12, 95)
S(7) = SW I(7) = (75, 0)
S(8) = SW I(8) = (90, 0)

Table 1
Values of function S and I:

Status and Parameter definition

1
Data

 Acquisition

7
Item

Identification

6
Color

Definition

Scenery
Recognition Shape

Recognition

5
2

4
Chroma
Study

3
Low-level
Transform.

8
Image

Recognition

Figure 1

Before performing the timing study, it is necessary to
define the topologic order (t.o.) of a graph. The t.o. is an
ordered list of nodes, in which all kinds of dependencies
are respected, and therefore all the predecessors of a node
appear before it on the list, and all their successors are
after it. Although the t.o. is not unique, the order of the
software nodes given by the compiler is a valid one.

First, two time instants must be defined for each
node, a Sooner Start time (SS) and a Later Start time
(LS). Notice that these two parameters are similar, but
not equal, to the scheduling times in HLS, as in the latter
there were several discrete steps to schedule an operation,
and in the former there exists a continuos time range. To
compute these parameters, it is necessary to calculate the
maximum and minimum time in which information can
flow. The proposed algorithm to find out the SS values is:

1.- Assign to the first node in t.o., α, the time 0:
SS(α) := 0

2.- For every node i, in t.o., calculate SS(i) as:

SS i max SS j ex time comm j i

i j

j i
j
S j() { () _ • (,)}

()

()= + +

=




∈Pred
β

β
1

0

 if and are in different partitions

 otherwise

comm(i,j) is the time to transfer parameters from
node i to j, using the system bus, and it is only active
when both nodes are assigned to different partitions.

In other words, the sooner time in which a task can
begin is when it receives all the needed information
produced by its predecessors.

The procedure to calculate LS is analogous. First of
all, let ω be the last node in t.o.

3.- The first step is
LS(ω) := SS(ω)

4.- For every node i, in reverse t.o., find out LS(i) as:

LS i min LS j ex time comm i j
j Succ i

i
S i() { () _ • (,)}

()

()= − −
∈

β

At the end, there will be a pair (SS, LS) for each
node.

Every node i in the critical path meets the following
condition:

SS(i) = LS(i)
So, the final execution time of the system would be:

T SS ex timeS= +() _ ()ω ω
ω

The results of the algorithm for the previous example
appear in Figures 4 and 5. These data show that the
critical path is formed by nodes 1, 3, 5, 7 and 8.

Two passes are done through the list of nodes to
determine the associated times. For each node, it is
necessary to check all its predecessors and successors, but
as the node connectivity is much lower than the number
of nodes, the latter operation is not relevant respect to the
former. Therefore, the complexity of this algorithm is
O(n).

For every node j, out of the critical path, SS(j) <
LS(j). So, it is possible to start its execution at any instant
of time in the interval

I1 = [SS(j), LS(j)].
In the same way, the moment in which the node

finishes its execution is contained in the interval

I2 = [SS(j)+ ex timej
S j_ () , LS(j)+ ex timej

S j_ ()].

We define the range of a node i, rg(i), as the interval

rg(i) = I1 ∪ I2 = [SS(j), LS(j)+ ex timej
S j_ ()].

This interval corresponds to the period of time in
which the node can be active. This definition is also valid
for the nodes in the critical path. The ranges obtained in
the example appear in Figure 6.

Now, for any node i, there is an associated range,
and except for the nodes in the critical path, it is
necessary to assign them an exact starting point, ti,
within I1. The selection of this point is quite relevant to
obtain the optimum system cost, as it will determine the
possible hardware sharing factors.

2

8

7

5 6

43
5

15

20

3

12 8

1

SW

HW

2
4

8

7

3

1

5 6

SW HW

(b)(c)

(d)

(a)

(a)

(a)

(d)

(d)

(d)

(d)

(d)

Figure 2 Figure 3
Data-dependency graph Timing graph

SS
1:0
2: 0+100+5=................105
3: 0+100=....................100
4: 0+100+20=..............120
5: max(100+45+3,

120+25)=.............148
6: 120+25=..................145
7: max(100+45,

148+10+12,
145+12+8)=.........170

8: max(170+75,
105+40+15)=.......245

Figure 4
SS calculation

LS
8:245
7: 245-75=...................170
6: 170-12-8=................150
5: 170-10-12=..............148
4: min(148-25,

150-25)=..............123
3: min(148-3-45,

170-45)=..............100
2: 245-15-40=..............190
1: min(100-100,

123-20-100,
190-5-100)=0

Figure 5
LS calculation

4.- Node scheduling.

Talking about the concept of hardware sharing, the
matrix K is the most clearly influent factor, which states
the similarity between any pair of nodes, taking any of
their possible hardware implementations into account.
The meaning of similarity refers to the percentage of a
node that can be shared to implement part of another
one’s functionalities. For instance, if two multipliers are
used to implement a node i, those two functional units
can be used by another node j, in a later instant of time.

This matrix is used to have available information of
the different nodes’ inner structures, without handling all
the scheduling details, not only for the huge storage space
necessary to keep them, but also for the elevated time
consumption in their processing.

As it was said, the estimation task must be simple
enough to keep the processing time within reasonable
limit bounds, and therefore, tackling this problem from
the previous orientation would break this principle. So, to
meet the proposed goals in a reasonable time, all the
inner scheduling information must be compacted into a
simpler data, making it easier to handle. Here is where K
makes sense within the design process.

The details that are considered to calculate K may
vary, from a simple analysis to a more complex one. The
more thoroughly this analysis is performed, the better it
will reflect the sharing relationship among the nodes. Up
to the moment, only the number and type of the different
nodes are studied to perform this calculation, without
considering their relative scheduling time. This provides
an easy and quick method that can be carried out for
many different implementations in a reasonable time.

The question that arises here is whether ignoring this
information would lead to a significant error in the
estimation process. It is important to notice that once
several nodes have been assigned to hardware, the
possibility of sharing functional units depends on their
relative position and not only on their inner structure.

If there are two very similar nodes, even equal, but
whose starting points coincide, no hardware sharing is
allowed, as the parallel execution needs the duplication of
the functional units. But if those two nodes are executed
in different moments, the functional units could be
shared, leading to a higher occupation, and therefore, to a
reduction of the overall system cost. So, the possible node
coincidence, known as overlapping, must be considered,
as a basis to study the hardware sharing.

The overlapping degree of the node i over the node j,
σi,j, represents the percentage of node i that may coincide
in execution with any part of the node j. Basically, it can
be defined as:

σi,j =
rg i rg j

rg i

() ()

()

∩

Notice that as the overlapping degree represents a
relative size, it is not a symmetrical factor, σi,j≠σj,i. The
same consideration can be applied to K.

Basically, the similarity κ[i,S(i)],[j,S(j)] between two
nodes, i and j, has a positive impact on their possible
sharing degree, and their relative overlapping σi,j

introduces a negative effect. However, this assert should
be discussed, since it is possible to think of a particular
case in which a maximum overlapping between two
nodes allows a higher sharing than a partial one. Thus,
the inner scheduling of the functional units has a relevant
importance in this process, questioning the validity of the
proposed approach.

Nevertheless, a closer look at the problem shows that
this objection can be left aside within the overall problem
environment. Providing that the focus is being set on
Codesign typical applications, the nodes forming the
graph, as a reflect of the initial system specification, are
bound to contain a high number of operators. When the
design is complex enough, as it usually is, the granularity
chosen in a previous stage tends to be coarse, assigning to
each node whole functions with large portions of code.

With this consideration, the previous side effect is
not so influent, and the introduced relative error is lower,
since the general cost is much higher. Not only that,
these errors are supposed to compensate among them
through the whole process, as statistically, and looking
from a more abstract point of view, the extra cost
estimated in a particular moment will be canceled by a
negative error in a later one.

So, the macroscopic approach based on the shared
matrix K is intuitively justified, rather than the

5

1

2

3
4

6

7

8

0

100

145

120

148

105

158
162
170

230

245

335

5

1

2

3 4

6

7

8

0

100

145

120

148

158
162
170

202

245

335

150

Figure 6 Figure 7
Ranges of the nodes Exact starting points

microscopic technique dealing with a large quantity of
complex data difficult to handle. Then, as a conclusion,
to achieve an optimum cost, the overlapping factor
among the different nodes should be minimized. This is
possible by examining the different ranges of the nodes
calculated in the previous stage, which introduce a
certain freedom degree in the scheduling process. Thanks
to this, the overall cost can be optimized, assigning a
suitable starting point, ti, to every node.

Among all the possibilities, the more similar two
nodes are, the more interesting to decrease their
overlapping degree, as the possible sharing would be
higher. So, the following factor should be minimized:

[] [] [] [](), , () , , () , , () , , ()σ κ σ κi j i S i j S j j i j S j i S i
j HWi HW

⋅ + ⋅
∈∈
∑∑

So, an algorithm based on list scheduling is
introduced to achieve this goal in a reasonable amount of
time. The main steps followed are:
1.- Schedule all the nodes in the critical path, as there is
no possibility of selecting their starting point.
2.- Select the hardware node i, with a higher factor

[] [] [] []()

()

, , () , , () , , () , , ()σ κ σ κi j i S i j S j j i j S j i S i

rg i

⋅ + ⋅

respect to another hardware node j, already scheduled in
hardware. It is important to choose the nodes with
smaller ranges in an early stage, because they have less
chances to move, and therefore, when the assignation
map is too loaded, there would be more problems to avoid
the overlapping with the rest of the nodes.
3.- Study the relative position of i and j’s ranges, in order
to try to avoid their parallel execution as much as
possible. Find the intervals I1, I2 obtained by dividing the
initial range into two, as a result of the operation

I1 ∪ I2 = rg(i) - [rg(i)∩rg(j)]
The meaning of this is taking rg(i) out of the possible
scheduling space of j, and therefore, avoiding the
overlapping as much as possible. This operation is
repeated recursively in order to place i in the best possible
location. Whenever a node i is scheduled, the ranges of
all their predecessors and successors have to be
recalculated, in order to keep meeting the control and
data dependencies. After this operation, there is the
possibility that for some of these nodes, their SS and LS
become equal. In this case, they have to be scheduled
without any further consideration.
4.- Repeat the whole process, starting from 2.-, until no
hardware nodes remain unscheduled.
By this method, the ranges of the nodes are gradually
reduced, tending to move toward the areas with lower
presence of parallelism, until the nodes become fixed and
scheduled.

5.- Finally, all the remaining software nodes are
scheduled in their respective SS, as they have no
influence in the hardware sharing.

The result obtained for the previous example appears
in Figure 7. The complexity of this algorithm, since it is
based on list scheduling, can be bound by O(n2·log(n)).

At this point, when a starting time has been assigned
to every node, it is the moment to calculate the overall
system cost.

5.- Cost model description.

When a starting point, ti,, has been assigned to every
existing node, i, the related range, rg(i) is reduced to the

interval rg(i) = [ti, ti + ex timei
S i_ ()]. As it is going to

remain without changes until the end of the process, it is
possible to calculate the matrix Σ=σi,j , ∀i,j∈N. Basically,
it represents the actual overlapping degree for every pair
of nodes, that will be used to compute the overall system
cost. If the scheduling process has been accurately
performed, the relative positions of the nodes will lead to
a maximum sharing factor, for the minimum allowed
execution time.

The basis of this operation lies in sharing among
various nodes some functional units implemented in
hardware. Thus, the total number of them is reduced, and
so is the system cost. As it was said before, the sharing
degree between two nodes will be higher when:
a) their similarity, κ, is higher, as the possible number of
common functional units will increase.
b) their overlapping factor is lower, as the parallelism
degree will decrease, allowing to share more units.

Therefore, given two nodes, i and j, and the
mentioned parameters, it is possible to calculate the
sharing degree of the node j over the node i, ρj,i.

A simple observation of the previous conditions
makes that degree be

[] []ρ σ κj,i = − ⋅(), , () , , ()1 i j j S j i S i

It is important to notice the subindex order. In the
case of the overlapping degree, it is the projection of i
over j, rather than the opposite, the one that should be
taken.
Therefore, the total cost of both nodes will be

c cost (1) costi
S(i)

j,i j
S(j)= + − ⋅ρ

As it was expected, the resulting cost is lower than
the sum of the individual costs. Now, a cost estimation
technique for more than two nodes has to be proposed.
The idea is the same that the one explained before.
When the cost of adding a node i to the hardware
partition has to be calculated, all the sharing degrees with
the rest of the nodes are found out, {ρi,j}, ∀j∈N, j≠i.

As it is obvious, no sharing factor can be higher than
1, which would correspond to the case in which all the
needed functionalities for a particular node are already
implemented and can be shared by it to perform its
execution. Therefore, it is not suitable to add all the
sharing factors, {ρi,j}, to obtain the general one, as the
result would probably be higher than 1. So, each ρi,j has
to be weighted by a factor, proportional to the part of the
node that still remains without implementation, to finally

obtain the actual sharing degree, ρ i j
act
,

Let i be the node whose sharing factors are going to
be calculated, and let {α, β, γ, ..., ψ, ω}, be the set of
nodes implemented in hardware, from which some units
are going to be shared.

ρ αi
act
, = ρ αi ,

ρ βi
act
, = (1 - ρ αi

act
,) · ρ βi,

ρ γi
act
, = (1 - ρ αi

act
, - ρ βi

act
,) · ρ γi ,

...

ρ ωi
act
, = (1 - ρ αi

act
, - ρ βi

act
, - ... - ρ ψi

act
,) · ρ ωi ,

Then, the overall sharing factor of i, ρ i
tot , will be

ρ i
tot = ρ αi

act
, + ρ βi

act
, + ρ γi

act
, + ... +ρ ωi

act
,

Now, every factor is comprised in the interval [0,1].
In short, the previous calculation is formulated:

ρ ρ

ρ ρ ρ α

ρ ρ

α α

α

α

ω

i
act

i

i j
act

i r
act

r

j

i j

i
tot

i j
act

j

j

, ,

, , ,

,

()

=

= − ⋅ ≠










=

=

−

=

∑

∑

1
1

 , if

Therefore, the real cost associated to i would be

cost_ actual (1) costi
S(i)

i
tot

i
S(i)= − ⋅ρ

Apparently, with these considerations the cost model
would be complete, but there is still a slight detail to
think about. Let assume a node j that shares part of the
functionalities of another one, i. This fact produces an
undesirable side effect, that is necessary to eliminate from
the model. The utilization of this set of functional units
makes impossible to every node k, whose execution has a
certain parallelism degree with j, to use them, as a
structural conflict would arise. This leads to a decrease of
the sharing capability of k respect to i, that has to be
taken into account for later calculations. So, if j

sharesρ j i
act
, from i, let us define the occupation factor of

i’s functionalities during the execution of j,

[] []

[] []
ω ρ

κ

κi
j

j i
act i S i j S j

j S j i S i

= ⋅,
, () , , ()

, () , , ()

The quotient of both κ is associated to the relative

cost of both nodes. Thanks to that, ω i
j is a proportional

factor to i and not to j, as ρ j i
act
, is.

Now, for every node k whose execution has a certain
parallelism with j, the following correction has to be
applied to their sharing factors:

[] [] [] []κ κ ω σk S k i S i
act

k S k i S i i
j

k j, () , , () , () , , () ,: ()= ⋅ − ⋅1

The results of the cost estimation process for the
previous example are shown in Figure 8.

Since to calculate the cost of a node it is necessary to
examine the rest of them already implemented in
hardware, the complexity of this algorithm is O(1 + 2 +
... + (n-1) + n) = O(n·(n+1)/2) = O(n2). As the number of
nodes executed in parallel with another one is much
lower than the overall number of nodes, n, the complexity
of modifying κ is not relevant respect to the previous one.

6.- Experimental work.

Once the time and cost models are presented, we
offer some results obtained by performing the estimation
process on several Codesign graphs. The advantages
attained by the new model are compared with the time
and cost parameters achieved with the standard
estimation technique, ignoring the parallelism and
sharing factors.

The experiments have been carried out on several
sets of graphs, with a number of total nodes between 5
and 20, and a number of hardware nodes between 2 and
10. Each set contains 5 different graphs, which gives an
overall number of 80 results.

Every graph has been created following the intrinsic
Codesign characteristics, and so, the obtained results are
relevant. The sharing parameters among nodes, κ, have

ΣΣ 2 4 5 6
2 - 0 0 0
4 0 - 0 0
5 0 0 - 0.80
6 0 0 0.67 -

ΚΚ 2 4 5 6
2 - 0.80 0.35 0.30
4 0.95 - 0.80 0.30
5 0.45 0.55 - 0.60
6 0.65 0.20 0.45 -

ρρact 2 4 5 6
2 - 0 0 0
4 0.95 - 0 0
5 0.45 0.30 - 0
6 0.50 0.07 0.04 -

Overall cost = 15 + 4 + 33 + 38 =90

Figure 8
Cost model results

cost_actualHW
2

2 = 15

cost_actualHW
4

1 = 4

cost_ actualHW
5

3 = 33

cost_actualHW
6

1 = 38

been generated by means of a random process, which
makes the experiment have a wide value range.

The results, offered in Figure 9, are listed by the
number of hardware nodes. For every entry, the average
cost without sharing, c, with sharing, cs, and the
improvement percentage, 100 · (c - cs) / c, are depicted.
The latter factor corresponds to the relative error, e,
produced if the first set of parameters is used rather than
the second. Besides, a graphical representation of the
results is shown. It is clearly seen that, as the number of
hardware nodes is increased, the difference between both
models, with and without sharing, becomes greater. This
is a reasonable conclusion, since once there is a certain
number of functionalities in hardware, the necessary cost
to implement a new node is minimal because of the
functional unit sharing.

This justifies the use of the time and cost model
allowing parallelism and sharing, rather than the
classical and inexact estimation approach.

7.- Conclusions and future work.

In this paper, a new time and cost model for the
Codesign estimations has been proposed. The main novel
features introduced are:

• Possibility of working with any degree of parallelism
among tasks.

• Multiple hardware implementation for every node.
• Possibility of sharing hardware units among nodes.

A mathematical approach has been offered,
explaining with detail the three stages comprised into this
technique: time calculation, node scheduling and cost
computation.

Respect to the future work, the main lines that will
be followed are:

• To apply the present model to the Codesign
partitioning process, studying the repercussion on the
iterative algorithms. More specifically, the Fiduccia-
Mattheyses algorithm [9] has been used in our
previous approaches to partitioning [10]. From this
research, an improvement in the results and a
reduction of the time consumed by the process are
expected.

• To compare the results given by the model with real
measures provided by our High Level Synthesis tool
[11] and the Synopsys Behavioral Compiler. In this
way, a study of the K matrix calculation can be made
in order to improve this task and get the maximum
level of reliability.

8.- References.

[1] W. Wolf, “Hardware-Software Co-Design of Embedded
Systems”, Proceedings of the IEEE, vol. 82, nº 7, July 1994.
[2] C. J. Alpert, A. B. Kahng, “Recent Directions in Netlist
Partitioning: a Survey”, Integration, the VLSI journal 19, 1995.
[3] M. Theiβinger et al., “Castle: An Interactive Environment
for HW-SW Co-Design”, 3rd Intl. Workshop on
Hardware/Software Codesign, September’94.
[4] T.-B. Ismail, A. Jerraya, “Synthesis Steps and Design
Models for Codesign”, Computer Magazine, February 1995.
[5] D. Herrmann et al., “An Approach to the Adaptation of
Estimated Cost Parameters in the COSYMA System”, 3rd Intl.
Workshop on Hardware/Software Codesign, September’94.
[6] R. Niemann, P. Marwedel, “Hardware/Software Partitioning
using Integer Programming”, ED&TC’96.
[7] F.J. Kurdahi, “Evaluating Layout Area Tradeoffs for High
Level Applications”, IEEE Trans. On VLSI Systems, vol. 1, #1,
1993.
[8] H. Mecha et al., “A Method for Area Estimation of Data-
Path in High Level Synthesis”, IEEE Trans. On CAD, vol. 15,
#2, 1996.
[9] C.M. Fiduccia, R.M. Mattheyses, “A Linear-time Heuristic
for Improving Network Partitions”, DAC’82.
[10] J.A. Maestro et al., “Una Técnica de Particionamiento para
Reducir la Sobrecarga por Comunicaciones en Codiseño”,
DCIS’96.
[11] J. Septién et al., “FIIDIAS: an Integral Approach to High
Level Synthesis”, IEE Proceedings Circuits, Devices and
Systems, vol. 142, #4, 1995.

HW nodes c cs e
2 80 58 27.5%
3 190 92 51.6%
4 305 143 53.1%
5 315 104 66.9%
6 415 99 76.1%
7 490 100 79.6%
8 560 90 83.9%
9 670 94 85.9%
10 740 95 87.2%

HW nodes

e (%)

0

10

20

30

40

50

60

70

80

90

2 3 4 5 6 7 8 9 10

Figure 9
Experimental results

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

