
Efficient Compilation of Process-Based Concurrent Programs without
Run-Time Scheduling

Bill Lin
Electrical and Computer Engineering Department

University of California, San Diego, La Jolla, CA, 92093-0407

Abstract
Currently, run-time operating systems are widely used

to implement concurrent embedded applications. This run-
time approach to multi-tasking and inter-process commu-
nication can introduce significant overhead to execution
times and memory requirements – prohibitive in many
cases for embedded applications where processor and
memory resources are scarce. In this paper, we present a
static compilation approach that generates ordinary C pro-
grams at compile-time that can be readily retargeted to dif-
ferent processors, without including or generating a run-
time scheduler. Our method is based on a novel Petri net
theoretic approach.

1 Introduction
Software is playing an increasingly important role in

embedded systems. This trend is being driven by a wide
spectrum of embedded applications, ranging from personal
communications systems, to consumer electronics, to au-
tomotive. In many cases, the software runs on a processor
core that is integrated as part of a VLSI chip.

While high-level language compilers exist for imple-
menting sequential programs on embedded processors [11,
1, 16, 8, 13], e.g. starting from C, many embedded soft-
ware applications are more naturally expressed as concur-
rent programs, specified in terms of communicating pro-
cesses. This is because actual system applications are typ-
ically composed of multiple tasks. Communicating pro-
cesses have several attractive properties: they provide a
modular way of capturing concurrent behavior, a high-level
abstraction for data communication and synchronization,
and a natural level of granularity for partitioning over dif-
ferent distributed hardware-software architectures.

Currently, the most widely deployed solution is to use
an embedded operating system to manage the run-time
scheduling of processes and inter-process communication.
However, this solution can add significant overhead to
execution times and memory requirements. The execu-
tion time overhead is prohibitive in embedded applications
where performance is paramount. The memory overhead
often translates directly to silicon cost for many system-

on-a-chip applications where the program and data mem-
ories are partly on-chip. Handcrafted solution is another
commonly used approach where concurrent programs are
manually rewritten in terms of a sequential program by the
designer. This approach is tedious, timing consuming, and
hard to debug. The resulting code is often hard to read and
maintain, and is usually extremely difficult to modify to
accomodate specification changes.

Several alternative high-level approaches have been
proposed. Static data-flow solutions [3], successfully
used to design DSP-oriented systems, achieve compile-
time scheduling at the expense of disallowing condi-
tional and non-deterministic execution. Other researchers
have considered hybrid approaches [9, 17] that gener-
ate application-specific run-time schedulers to handle the
multi-tasking of conditional and non-deterministic compu-
tations. Reactive approaches, e.g. Esterel [2], rely on a
strong synchrony hypothesis that makes two fundamental
assumptions: the existence of a global clock abstraction
to discretize computation over instances, and computation
takes no time within each instance. This hypothesis is dif-
ficult to satisfy for distributed implementations and may
not match naturally to many applications from a specifica-
tion standpoint. In contrast, our work is based on a model
of asynchronywhere the concurrent parts can evolve inde-
pendently and only synchronize where specified.

In this paper, we present a new software synthesis
approach for implementing asynchronous process-based
specifications without the need for a run-time scheduler.
The input specification is captured in a C-like program-
ming language that has been extended with mechanisms
for concurrency and communication. These extensions are
based on the CSP formalism [10], as introduced in Sec-
tion 2. From the input program, an intermediate interpreted
Petri net representation is first constructed. This interme-
diate representation is discussed in Section 3. A key ad-
vantage of this intermediate construction is that theorder-
ing relationsacross process boundaries are madeexplicit
in the derived Petri net model. This partial order infor-
mation is used in the software synthesis step to synthe-
size at compile-time an ordinary C program that can be

readily retargeted to different processors, without requir-
ing a run-time kernel. Process-level concurrency is stati-
cally compiled away while retaining as much partial order
information as possible so that maximal freedom is given
to the subsequent code generation tools to optimize the
scheduling of instructions. This Petri net theoretic synthe-
sis method is detailed in Section 4. In Section 5, initial re-
sults from an encryption example are presented to demon-
strate the potentials for significant improvements over cur-
rent run-time solutions.

2 Programming Model
In this work, we use a process-based specification as the

user-level programming model. Our programming model
looks like a C program: the syntactic structure and ex-
pression syntax are nearly identical. However, our pro-
gramming model provides language mechanisms not found
in C for specifying processes and channel communica-
tions, based on the CSP formalism [10]. In addition to
its expressive power to handle parallelism and communi-
cation, CSP has a rigorously defined semantics along with
a well defined algebra to reason about the concurrent be-
havior, which lends well to formal verification. This sec-
tion presents a brief overview of our programming model
by means of examples.

c1

c2

system

pongping

Figure 1: Process model.

Our programs are hierarchically composed of processes
that communicate through synchronizing channels. A sim-
ple program is illustrated and depicted in Figure 1. This
example is composed of two processes calledping and
pong .

1 /* this is a process */
2 ping (input chan(int) a, output chan(int) b)
3 f
4 int x;
5 for (;;) f
6 x = <-a; /* receive */
7 if(x < 100) x = 10 - x;
8 else x = 10 + x;
9 b <-= x; /* send */
10 g
11 g

12 /* this is another process */
13 pong (input chan(int) c, output chan(int) d)
14 f
15 int y, z = 0;
16 for (;;) f

17 d <-= 10;/* send */
18 y = <-c; /* receive */
19 z = (z + y) % 345; /* send */
20 g
21 g

22 /* this is yet another process */
23 system ()
24 f
25 chan(int) c1, c2;
26 par f
27 ping (c2, c1);
28 pong (c1, c2);
29 g
30 g

Channels are declared using thechan statement, as ex-
emplified inLine 2 . The unary receive operator,<- , re-
ceives data on the channel specified as its right operand.
The received value may then be manipulated by other op-
erators, e.g. it can be assigned to a variable, as exemplified
in Line 6 . The send operator,<-= , transmits the result of
the expression provided as its right operand on the chan-
nel specified as its left operand, as exemplified inLine

9. Basic control-flow constructs, likeif-then-else ,
for-loops , andwhile-loops , and basic arithmetic and
relational operators, like+, - , * , %, and>, >=, ==, != , are
the same as in C.

There is also analt construct [10], not used here, that
provides a mechanism for non-deterministic execution.

Finally, processes can be hierarchically composed
to form larger systems, as exemplified by the process
system . Thepar statement executes the statements in its
body in parallel and joins the threads of execution at the
end by waiting for all processes to terminate before pro-
ceeding. This construct provides a mechanism for invoking
concurrency.

3 Intermediate Model
In this section, we first provide basic definitions of Petri

nets. We then informally, by means of examples, illustrate
how an intermediate Petri net representation may be hier-
archically constructed from a program of communicating
processes.
3.1 Basic definitions

Let G = hP; T; F;m0i be a Petri net [14], whereP is
a set of places,T is a set of transitions,F � (P � T) [

(T �P) is the flow relation, andm0 : P ! N is the initial
marking, whereN is the set of natural numbers.

The symbols�t and t� define, respectively, the set of
input places and the set of output places of transitiont.
Similarly, �p andp� define, respectively, the set of input
transitions and the set of output transitions of placep.

A placep is called aconflict placeif it has more than
one output transition. Two transitions,ti andtj are said to
be inconflict, denoted byti#tj , if and only if�ti\�tj 6= ;.

A state, or marking,m : P ! N , is an assignment
of a non-negative number to each place.m(p) denotes the
number of tokens in the placep. A transitiont can fire at
markingm1 if all its input places contain at least one token.
The firing of t removes one token from each of its input
places and adds a new token to each of its output places,
leading to a new markingm2. This firing is denoted by

m1

t
! m2.

Given a Petri netG, the reachability set ofG is the set
of all markings reachable inG from the initial markingm0

via the reflexive transitive closure of the above firing rela-
tion. The corresponding graphical representation is called
a reachability graph.

A Petri netG is said to besafe if in every reachable
marking, there is at most one token in any place. In this
case, we can simply represent each markingm : P !

f0; 1g as a binary assignment.
3.2 Intermediate construction

In [5, 19], a process algebra was developed for con-
structing a Petri net model from a program of communi-
cation processes. Among other operations, the process al-
gebra defines operators for sequential composition, choice
composition, recursive composition, and parallel compo-
sition. The reader can refer to [5, 19] for details. Here,
we intuitively illustrate by means of examples how these
operators are used to build up the Petri net intermediate
representation.

Consider again the example shown in Fig. 1. The de-
rived Petri net models for processesping and pong are
shown in Fig. 2(a) and Fig. 2(b), respectively, along with
their initial markings. These Petri nets can be derived
by mapping each leaf operation to a primitive transition.
Each transition corresponding to acomputation actionis
assigned a separateaction label (e.g. b, c , d, and f in
Fig. 2). Forcommunication actions, all communication
actions along the same channel are assigned the same la-
bel (e.g.c1 andc2 in Fig. 2). These primitive transitions
can be mapped to a Petri net by iteratively applying the
sequential, choice, and recursive composition operators on
them.

Concurrent processes can be composed viaparallel
composition. In parallel composition, communication ac-
tions in fact formsynchronization pointsand are joined
together at their common transitions. In Petri net theory,
parallel composition is essentially a Cartesian product of
the two Petri net processes along common labeled actions.
This is illustrated in Fig. 2(c).

Observe that once two Petri nets are composed together,
all internal communicationsbetween the two nets disap-
pear. The actual send and receive operations are elimi-
nated. Instead, they are replaced withsimple assignment
statements, thus eliminating the communication overhead.
Synchronization is represented byexplicit partial order-

p1
p2

(a) (b)

c2c2

b

c d

c1

c1

f

p1

b

c d

p2

f

(c)

c2

c1

(a) (b) (c)
c2: x=<-a c2: d<-=10 c2: x=10
b: (x<0) c1: y=<-c b: (x<0)
c: x=10-x f: z=(z+y)%345 c: x=10-x
d: x=10+x d: x=10+x
c1: b<-=x c1: y=x;

f: z=(z+y)%345

Figure 2: Derived Petri net representations: (a)ping (b)
pong (c) system = ping k pong

(a) (c)

p1

a

b

c

(b)

p2

d

b

e

p1

a

c

p2

d

e

b

Figure 3: Another example: (a)P (b)Q (c)PkQ

ings at the Petri net level. This is a key property since
ordering relationsacross process boundaries are madeex-
plicit in the derived Petri net representation. This ordering
relations can be used to statically schedule the operations
accordingly at compile time, as discussed in Section 4.

For example, in Fig. 3, two seemingly independent pro-
cesses can be composed to form adata-flow-likemodel for
synthesis, with the previously hidden data dependencies
across the processes now made explicit.

4 Static Compilation
This section describes a software synthesis procedure

that works from an intermediate Petri net representation. It
is divided into two parts: We first introduce some basic no-
tions and the concept of an expansion, which corresponds
to an acyclic Petri net fragment. We then describe how
code can be synthesized from the expansions.

4.1 Expansions
Before proceeding, we need to introduce several no-

tions.

Definition 4.1 (Expansion) An expansionis an acyclic
Petri net with the following properties:

� There are some places, at least one, without input
transitions.

� There are some places, at least one, without output
transitions.

� There are no transitions without at least one input
place or one output place.

The places without input transitions are calledinitial
places. The places without output transitions are called
cut-off places.

Definition 4.2 (Maximal expansion) LetG be a Petri net
and letm be a marking ofG. Themaximal expansionof
G with respect tom, E, is an acyclic Petri net with the
following properties:

� The initial places correspond to the set of places
marked bym.

� The cut-off places correspond to the set of places en-
countered when a cycle has been reached.

� E is transitively closed: for eacht 2 E or p 2 E,
all preceding places and transitions reachable from
m are also inE.

m is referred to as theinitial marking.

Intuitively, the maximal expansion ofG with respect to
a markingm corresponds to the largestunrollingofG from
m before a cycle has been encountered. Consider the ex-
ample shown in Fig. 4(a). The corresponding maximal ex-
pansion withm = hp1; p2i is shown in Fig. 4(b).

Definition 4.3 (Cut-off markings) Let G be a Petri net,
and letE be a maximal expansion ofG with respect to the
initial markingm. A markingmc is said to be acut-off
marking if it is reachable fromm and no transitions are
enabled to fire. The set of cut-off markings is denoted by
CM(E).

For the example shown in Fig. 4, there are two possible
cut-off markingsmc1 = hp10; p20i andmc2 = hp30; p4i,
shown respectively in Fig. 4(c) and Fig. 4(d).

Our synthesis procedure works by generating code from
a maximal expansion segmentE obtained by using the ini-
tial markingm0 as the initial marking for the expansion.
Then from each cut-off markingmci 2 CM(E), a new

p1 p2

a

b

c e

d

f

g

h

i

j

k

l

p3

p4

p1 p2

a

b

c e

d

f

g

h

i

j

k

l

p3

p4

p3’p2’p1’

p1 p2

a

b

c e

d

f

g

h

i

j

k

l

p3

p4

p3’p2’p1’

p1 p2

a

b

c e

d

f

g

h

i

j

k

l

p3

p4

p3’p2’p1’

(b)(a)

(c) (d)

Figure 4: (a) Petri net example. (b) Its maximal expansion.
(c) A cut-off marking. (d) Another cut-off marking.

maximal expansion segmentEi is generated usingmci as
the initial marking. This iteration terminates when all cut-
off markings have already been visited. This convergence
is guaranteed since there are finite number of markings.
Typically, very few expansions are required.

p1

a

b

c e

d

f

j

h

i k

l

p3’

p4

p4’

p2

g

p3’

p1

a

b

c e

d

f

j

h

i k

l

p3’

p4

p4’

p2

g

p3’

p1

a

b

c e

d

f

j

h

i k

l

p3’

p4

p4’

p2

g

p3’

(a) (b)

Figure 5: (a) Maximal expansion. (b) Cut-off marking.

Consider the example shown in Fig. 2. In this example,
only one expansion segment needs to be considered since
the only cut-off marking reachable from the initial marking

is the initial marking itself (i.e.m = hp1; p2i)1. For the ex-
ample shown in Fig. 4, only two expansion segments need
to be considered. From the initial markingm = hp1; p2i,
the only cut-off markings reachable aremc = hp1; p2i and
mc = hp3; p4i. However, fromm = hp3; p4i, the only cut-
off marking reachable ismc = hp3; p4i itself, as shown in
Fig. 5.

The pseudo-code for the overall algorithm is shown be-
low.

soft-synt (G, m0)
f
EM = fm0g;
push (m0);
while ((m = pop()) 6= ;) f

E = maximal-expansion (G, m);
code-synthesis (E, m);
foreach mc 2 CM(E) f

if mc 62 EM f
EM = EM [mc;
push (mc);

g
g

g
g

The code-synthesis step is applied to each expan-
sion segment to produce the actual code.

4.2 Expansion-based code generation
We believe that detailed processor-specific optimiza-

tions can only be achieved by optimizing code genera-
tors that have been highly optimized to a particular pro-
cessor architecture. This is because most modern proces-
sors employ very sophisticated pipelining and superscalar
execution schemes that differ from processor to processor.
We take an intermediate approach. Our software synthe-
sis method aims to produce, as intermediate output, plain
C code that retains a high degree of parallelism so that
the subsequent processor-specific code generation step can
produce efficient executable machine code for the target
processor.

Give an expansion segmentE, represented as an acyclic
Petri net fragment, our software synthesis method performs
a pre-orderingof the operations in that segment. Dur-
ing pre-ordering, alevelassigned to every operation inE.
More formally, a pre-ordering is defined as follows:

Definition 4.4 (Pre-ordering) LetE be an expansion seg-
ment. ti is said toprecedetj in E, denoted asti � tj , if
there is a directed path fromti to tj . Let� : T ! N , be
a pre-ordering functionthat assigns a non-negative integer
�(t) 2 N to everyt 2 E. A pre-ordering is said to be
valid iff it satisfies the following condition:8ti; tj 2 E, if
ti � tj , then�(ti) < �(tj).

1Here, we do not distinguish betweenpi andp0

i
because they simply

denote different instances of the same place.

To illustrate this process, consider the expansion seg-
ment shown in Fig. 6(a) (corresponding to the example de-
picted in Fig. 6). Two valid pre-orderings are shown in
Fig. 6(b) and Fig. 6(c). Although this pre-ordering step is
closely related to the traditional scheduling problem [4, 6],
we do not yet perform any detailed scheduling of instruc-
tions or any detailed resource allocation here. That is de-
ferred to the final code generation step. However, we can
make use of similar heuristics in determining a good pre-
ordering. It is not the intention of this paper to discuss in
details the different possible scheduling heuristics. The in-
terested reader can refer to [4, 6] for a survey of example
techniques.

(b)

(a)

(c)

p1 p2

a

b

c e

d

f

g

h

i

j

k

l

p3

p4

p3’p2’p1’

pc1

pc2

p1 p2

a

b

c e

d

f

g

h

i

j

k

l

p3

p4

p3’p2’p1’

pc1

pc2

p1

a

b

c e

d

p4

f

p2’p1’

pc1

p2

g

h

i

j

k

l

p3

p3’

pc2

Figure 6: (a) An expansion segment. (b) A valid pre-
ordering. (c) Another valid pre-ordering.

Given a pre-ordering�, a control-flow-graph fragment
is constructed. In contrast to the traditional scheduling
problem, where typically onlydata-flow blocksare con-
sidered, the control-flow-graph mapping step is much less
straightforward. This is because we can have complex con-
current conditionals where thefiring of a transition is de-
pendent on the concurrent conflow flow and must obey
Petri net firing rules. Essentially, the control-flow-graph
generation step is based on a traveral ofE, but we mod-
ify the Petri net firing rules so that we proceed in accor-
dance to the levels defined by�. For example, the pre-
ordering shown in Fig. 6(b) will result in the control-flow-
graph fragment depicted in Fig. 7(a). Similarly, Fig. 7(b)

shows the resulting control-flow-graph for the pre-ordering
shown in Fig. 6(c).

(a)

a

b d

g

h

ec

k

l

i

j

f p3p4

p1p2

pc1 pc1

pc2pc2

(b)

a g

lj

f
p3p4

p1p2

b h hd

c i c k ie ke

pc1 pc1

pc2 pc2 pc2 pc2

Figure 7: (a) An control-flow-graph fragment. (b) Another
control-flow-graph fragment.

4.3 Enhanced cut-offs
The control-flow-graph generated in Section 4.2 is es-

sentially areachability graphfor the Petri net with a modi-
fied firing rule to consider the pre-orderings. When travers-
ing an expansion segmentE, it is possible that certain
markings have already been visited when traversing ear-
lier expansion segments. Such previously visited markings
can also serve as acut-offcondition.

In particular, suppose when traversing the expansions,
we add also the intermediate markings visited during the
traversal to the set of reachable statesEM in the procedure
soft-synt above. Then we can define anenhanced cut-
off criterionas follows:

Definition 4.5 (Enhanecd cut-off markings) Let G be a
Petri net,E be a maximal expansion ofG with respect to
the initial markingm, andEM be a set of markings (al-
ready visited). A markingmc is said to be anenhanced cut-
off markingif it is reachable fromm, and eitherm 2 EM

or no transitions are enabled to fire. The set of enhanced
cut-off markings is simply denoted asCM(E).

4.4 Benefits
The primary benefit of our synthesis approach is the

avoidance of overhead introduce by run-time multi-tasking
solutions. In addition, parallelism can be exploited across
processor boundaries. Another key benefit is the possib-
lity of code optimization across process boundaries. For
example, the C program below represents a possible solu-
tion to the example shown in Fig. 2(c) using our synthesis
procedure.

generated-program ()
f

int x, y, z = 0;
p1p2:

x = 10;
if (x < 10)

x = 10 - x;
else

x = 10 + x;
y = x;
z = (z + y) % 345;
goto p1p2;

g

Once synthesized into this form, well-studied standard
code optimization techniques can be applied [1, 16]. In this
case, the program can be reduced to a program that repeats
z=(z+20)%345 after constant propagation.

generated-program ()
f

int z = 0;
p1p2:

z = (z + 20) % 345;
goto p1p2;

g

Recall that this example, though simple, was originally
specified as two communicating processes. Such optimiza-
tions were not possible directly at the process-level speci-
fication.

5 Example
The synthesis method presented in this paper has been

implemented. The compiler is implemented as a pre-
processor that generates plain C, which can then be pro-
cessed by any available optimizing C compiler for a target
processor to produce the executable machine code. This
results in a highly portable solution. For comparisons,
we implemented a multi-tasking approach using a multi-
threading library as well. This multi-tasking approach is
implemented using a thread library in Solaris on a Sun
platform where each process is implemented as a separate
thread.

To evaluate the effectiveness of our new approach, we
applied it to an example derived from the RC5 encryption
algorithm that is widely used for Internet security appli-
cations [15]. RC5 is a fast symmetric block cipher that
is suitable for hardware or software implementations. It
provides a high degree of security, but yet is exceptionally
simple. A novel feature of RC5 is the heavy use of data-
dependent rotations. Since a full discussion of the RC5
algorithm is beyond the scope of this paper, the interested
reader is referred to [15].

The top-level view of the example is shown in Fig. 8. It
consists of two encryption-decryption chains. Each chain
reads a stream ofplaintextvia channel pt0 (pt1), applies
the RC5 encryption algorithm on it to produce a stream of

 core
system

 rc5
decrypt

 rc5
encrypt

 rc5
decrypt

 rc5
encrypt

monitor

ct0

ct1

dt0

dt1

pt0

pt1

Figure 8: RC5 encryption chain example.

ciphertextat channel ct0 (ct1), then applies the RC5 de-
cryption algorithm to decode the ciphertext back to plain-
text again, along channel dt0 (dt1). A monitor process is
introduced to merge the two deciphered streams for output.

size threads synthesis

40K 2.6 0.04
400K 26.0 0.33

4M 256.6 3.30

rate 15.4KB/s 1.21MB/s

code 87.08KB 8.49KB

Table 1: Comparing results for the RC5 encryption exam-
ple on a Sun Ultra-1 running Solaris.

We chose this example because it contains both data-
dependent loops as well as non-deterministic choices. Ta-
ble 1 compares the results of our method with a multi-
threading library approach. The first part of the table com-
pares the execution times of both approaches on different
size input streams. The first row corresponds to a 40K
bytes input file, the second row corresponds to a 400K
byte input file, and the third row corresponds to a 4M byte
input file. The CPU-times are reported in seconds on a
Sun Ultra-1 workstation running Solaris. The row labeled
“rate” summarizes the execution of the two solutions in
terms of bytes per second. Comparing CPU-times, the So-
laris thread based implementation is significantly slower
than our software code synthesis approach, due to the sig-
nificant overhead introduced by Solaris threads. The inclu-
sion of Solaris threads also introduced significant overhead
in code size. The last row of the table labeled “code” shows
the program size of each method.

6 Conclusion
We described a new software synthesis approach to-

wards efficient implementations of concurrent programs
for embedded applications. Our approach differs from pre-
vious approaches for asynchronously communicating pro-
cesses in that it does not require or generate a multi-tasking

run-time operating system for execution. Instead, a plain C
program is synthesized at compile time that is readily re-
targetable to different processors. Besides producing a so-
lution that avoids the overheads associated with a run-time
operating system, our approach also makes order relations
across process boundaries explicit so that synthesis algo-
rithms can exploit the partial ordering information for op-
timization. Furthermore, the synthesized solution is highly
portable since it only requires the availability of a host C
compiler to support a particular processor.

References
[1] A. V. Aho et al. Compilers - principles, techniques, and tools, Read-

ing: Addison-Wesley, 1986.

[2] G. Berry et al. “The synchronous approach to reactive and real-time
systems”,IEEE Proceedings, 1991.

[3] J. T. Buck et al. “Ptolemy: A framework for simulating and proto-
typing heterogeneous systems”,International Journal on Computer
Simulation, January 1994.

[4] R. Camposano and W. Wolf (editors),Trends in High-Level Synthe-
sis, Kluwer Academic Publishers, 1993.

[5] G. de Jong, B. Lin. “A communicating Petri net model for the design
of concurrent asynchronous modules”,ACM/IEEE Design Automa-
tion Conference, 1994.

[6] H. De Man, F. Catthoor, G. Goossens, J. Vanhoof, J. Van Meerber-
gen, S. Note, J.A. Huisken, “Architecture-driven synthesis techniques
for VLSI implementation of DSP algorithms”,Proceedings of IEEE,
vol.72, no.2, pp.319-335, February 1990.

[7] P. Godefroid, P. Wolper. “Using partial orders for the efficient verifi-
cation of deadlock freedom and safety properties”,Lecture Notes in
Computer Science, 575(10):332-342, July 1991.

[8] G. Goossens et al. “Embedded Software in Real-Time Signal Pro-
cessing Systems: Design Technologies”,Proceedings of the IEEE,
special issue on Hardware/Software Co-Design, 1997.

[9] R. K. Gupta. “Hardware-software cosynthesis of microcontrollers”,
Proc. Codes/CASHE, 1996.

[10] C. A. R. Hoare. Communicating Sequential Processes. Prentice-
Hall, 1985.

[11] B. W. Kernighan, D. M. Ritchie.The C Programming Language,
Prentice-Hall, Englewood Cliffs, New Jersey, 1978.

[12] Z. Kohavi. Switching and Finite Automata Theory. McGraw Hill,
1978.

[13] P. G. Paulin et al. “Trends in embedded system technology: an in-
dustrial perspective”,Hardware/Software Co-Design, G. De Micheli,
M. Sami, Editors, Boston : Kluwer Academic Publishers, 1996.

[14] J.L. Peterson.Petri net Theory and Modeling of Systems, Prentice
Hall, 1981.

[15] R. L. Rivest. “The RC5 Encryption Algorithm”,Proceedings of the
1994 Leuven Workshop on Algorithms, Springer-Verslag, 1994.

[16] R. M. Stallman,Using and porting GNU CC, Free Software Foun-
dation, June 1993.

[17] F. Thoen et al. “Real-time multi-tasking in software synthesis for
information processing systems”,Proc. of ISSS’95, 1995.

[18] A. Valmari. “A stubborn attack on state explosion”,Proc. of
2nd Workshop on Computer-Aided Verification, pages 156-165, June
1990.

[19] S. Vercauteren et al. “Derivation of formal representations from
process-based specification and implementation models”,Proc. of
ISSS’97, September 1997.

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

