A Model for System-Level Timed Analysis and Profiling

A Allara (1) W. Fornaciari (2,3) F. Salice (3) D. Sciuto (2)

(1) ITALTEL, Central Research Labs, CLTE, 20019 Castelletto di Settimo m.se (M), Italy.
(2) Politecnico di Milano, Dip. di Elettronica e Informazione, P.zza L. Da Vinci 32, 20133 Milano, Italy
E-mail: {fornacia, sciuto}@elet.polimi.it
(3) CEFRIEL, via Emanueli 15, 20126 Milano (Ml), Italy, E-mail: salice@mailer.cefriel.it

Abstract

Fast evaluation of functional and timing properties is becoming a
key factor to enable cost-ffective exploration of mixed hw/sw design
alternatives for embedded applications. The goal of this paper is to
present a modeling strategy to specify functionality and timing
properties of uncommitied mixed hw/sw systems. In addition, the
paper proposes a simulation algorithm able to perform fast high-level
simulation of the system by taking into account the initial bw vs sw
allocation of system modules. The related CAD simulation
environment allows the designer fo access profiling information which
can be useful 1o remodel the system to meet the functional/ timing goals
as well as to drive the following hw vs sw partitioning activity.
Experimental data obtained by reengineering an industrial design are
also included in the paper.

1. Introduction

The r1ise in global competition has dramatically
shortened the available product development time [1].
Mixed hw/sw architectures ate becoming common in ordetr
to tradeoff performance and cost and the borders among
the typical design flow activities are vanishing, frequently
partitioned in architecture definition, functional design,
independent hw and sw development, system integration
and global debug [3]. Unfortunately, this classical approach
suffers of a number of drawbacks, the most relevant one
being the shifting of a significant part of the system tuning
and debug at prototyping time.

Under the EDA point of view, the problems in
designing embedded systems cover the capturing of
constraints both on behavior and timing-related issues,
scheduling, hw vs sw partitioning, synthesis of CPU code,
mnterfaces and hardware parts. All these aspects, should be
supported by analysis, simulation and debugging activities,
possibly through methodologies easy to be integrated in
industrial CAD environments and in particular exploitable
during the eatly stages of the design.

At this time, for a variety of reasons (both technological and
economical), it is hard to find full functional hardware emulators
operating efficiently to simulate cooperation between the hw and
sw domains [2] [4]. Cutrent VHDL simulation environments are
good candidate to replace dedicated hardware emulators and the
leading edge of the research is proposing attractive solutions for
efficient low-level simulation of embedded software [5] [17].
However, as emerging by a market survey we carried out within
the ESPRIT- ESD project SEED (Software-hardware
Exploration, a European Demonstration Project) [11], the most
important value added from the designer’s perspective is the
possibility to roughly estimate at system-level, before committing
to a specific hw-sw implementation, the satisfaction of functional
and timing requirements and to evaluate the impact of moving
pieces of specs from hw to sw and wzceversa.

The goal of this paper is twofold: first to define a
specification technique allowing the specification of both
functional and timing requirements of embedded architectures.
The second goal is to define a verification strategy based on a
high-level simulation of such specification, while allowing
execution profiling.

The impact of the methodology onto a real test case has
been carried out during the SEED project, where an industrial
design provided by Italtel (the main Ttalian Telecom industry) has
been redesigned.

The embedded architecture considered is constituted by one
CPU core cell surrounded by some hw modules acting as
petipheral co-processors. The starting point of the system
analysis is a description captured by using the TOSCA editor [6]
producing a OccamlI-based description of the behavior, where
the original specification formalism has been extended to cover
also the representation of timing properties. The simulation of
the system proceeds by taking into account the hw vs sw
allocation of design subparts by estimating their execution times
according to the strategies desctibed in [7] [12] and by
considering also the overhead due to the bussed hw-sw
communication and the presence of only one executor (the CPU)
for the sw-bound modules. System evolution can be monitored
by quetying the simulation database through SimView™, a
graphical waveforms generator provided by Mentor Graphics. As
a result, system profiling information is obtained through ASCII
reports on the activities and constraint violations of the system

processes. A backannotation of such measures in the
graphical specification is also provided. Such information
will constitute the starting point to drive the design space
exploration where the system 1is reshaped, by exploiting
formal properties of the process algebra [13] [14] along the
guidelines recalled in [6].

The paper is organized as follows. The next section
presents the modeling strategy adopted to represent the
system behavior, with particular emphasis on the timing
extensions, while giving appropriate references for readers
more Interested in syntax details. Section three discusses
how the high-level timing characterizations of the various
actors of system -hardware software and communication-
have been considered. The simulation algorithm on which
the system-level analysis is based, 1s presented in section
five, which shows how the hw-sw communication, and
CPU process scheduling have been taken into account.
Section six contains a brief presentation of the related CAD
simulation environment, where some results extracted from
an actual industrial design of Italtel used as benchmark for
the SEED ESPRIT project, are shown. Some conclusions
will be drawn in section seven, together with an outline of
the ongoing research activity.

2. The timed system specification

A valuable design environment for real-time systems,
should provide the user a modeling strategy able to capture
the functionality and the timing constraints both on
* performance, to specify bounds on response time;

* behavior, to specify the rate at which the external stimuli
have to be applied.

In current practice, global timing constraints are
known a priori, since usually they represent a significant part
of the design requirements and have to be carefully
considered during the hw vs sw partitioning task. By
considering an event as a external stimulus, as well as an
observable response of the system, according to [8] three
different timing restrictions can be envisioned between
events: maximum, minimumi and duration (of a given event).
Hence, the possible combinations of max/min timing
constraints are:

o Stimulus-stimulus. max/min admissible
between two stimuli;

o stimulus-reaction:

delay

max/min delay between the
stimulus and the corresponding system reaction;

* reaction-stimulus. max/min insensitivity time
among a system reaction and the following stimulus;

* reaction-reaction: max/min time between two
system reactions.

Other approaches, such as [9] [3], addtess the
definition of timing properties by considering rates and
min/max constraints Zed to the gperations characterizing the
events, instead of them. We followed a similar approach, by

extending the expressiveness design representation of

TOSCA (based on a Occam IT graphical editor) through the
possibility to anchor 7zgs (labels) to processes and to specify the
following constraints:
MAXDELAY OF <tag> IS <value>
MINDELAY OF <tag> IS <value>
MAXDELAY FROM <tagl> TO <tag2> IS <value>
MINDELAY FROM <tagl> TO <tag2> IS <value>
MAXRATE OF <tag> IS <value>
MINRATE OF <tag> IS <value>

As shown in the example of figure 1, all the constraints are
gathered within a constraints definition section grouping all the
properties defined over the labels.

INT a,b Declaration of a communication channel
CHAN OF INT in,out:
SEQ
a:=0
WHILE TRUE
TAG A: Tag definition
SEQ
a=a+l
out!a
TAG B:
in?b

MAXDELAY FROM A TO B IS 10:

Timing constraints defined on
MAXRATE OF A IS 100:

the communication channel
Figure 1. Definition of timing constraints within a TOSCA
system description.

The Occam II description is composed of simple processes
(e.g., a simple addition) as well as processes acting as a “host” for
others (see SEQ statements in figure 1), more details on the
Occam II system representation can be found in [6]. Apart the
above timing extensions, the system description contains
information on the hw or sw allocation of processes, which can
be defined at different granularity levels: simple process, host
process, procedure. To reduce the complexity of exploring
alternative allocation schemes, and according to the feedback
from the interviews performed to industrial designers within the
framework of the SEED ESPRIT project, it has been decided to
consider the procedute as a “monolithic block” not to be further
decomposed. Moreover, it has been introduced the possibility do
define vector of procedures (whose number is statically defined)
and the restriction to avoid global wvariables. The latter
assumption, imposes the procedures to access external variables
through the parameters interface; in such a way, it is easier to
identify the effects of moving procedures from hw to sw (and
viceversa).

3. The hardware-software model

The crucial issue in designing a mixed hw-sw system is the
allocation of functionalities to the hw or sw domain according to
a set of user criteria. Possible strategies may consider the quality
of a solution by moving down to the synthesis [16] [15] and then
backannotating the result at the higher levels of the design flow.
Other approaches, aiming at deeply and quickly spanning the
space of possible solutions while accepting less precise results,
found the decision on some estimations to be computed either
by inspecting properties of the system description or by analyzing
the system behavior through simulators working at the higher
levels of abstraction (e.g. queue models).

Our strategy is a meeting in the middle approach. In fact,
we developed a simulation strategy allowing the designer to:
1. debug the system behavior at the system level without

the necessity to pass through the implementation steps;

2. take into account characteristics of the final
implementation concerning the software
implementation domain of the submodules composing
the system, and the media which will be actually used for
communication (system bus, memory variables,
dedicated hw lines);

3. verify the meeting of timing requirements when the
specification is mapped onto the target architecture,
with a sufficient confidence to make possible tuning

possible alternative

hw or

and comparisons among
implementations.

The strategies adopted to estimate the execution time
and the cost of each module composing the system are out
of the scope of this paper, more details can be found in [5]
[7]. The rest of this paper is devoted to the description of
the simulation algorithm built on top of such estimations,
and how those basic results have been mapped onto the
Occamll operators (and the extensions we introduced),
available in TOSCA to desctibe the system.

Delays and latencies of the specification take into
account the same basic timing composition opetations
defined in [9], e.g., sequential, parallel and mutual exclusive.
In addition, our proposal solves the problem (at simulation
time) of considering the side-effects on the execution times
of the software-bound operations due to the split of the
microprocessor computational power among the running
sw processes. In fact, a basic assumption in evaluating the
actual effects of the target architecture is related to consider
the availability of a single CPU shared by all the sw-bound
processes, and the presence of multiple hw co-processots,
each implementing a hw-bound module (the extension to
cover different architectures is anyhow possible). Under
these assumptions, the presence of a scheduler for the
sw-processes 1s simulated, assuting fazruess in distribution of
the CPU time. The extension to consider different
scheduling policies is straightforward, requiting only to
modify the formulas calculating the number of active
processes running on the CPU (see below).

The intrinsic time necessary to carty out each basic
operation according to the hw or sw partition it belongs,
can be gathered from a project technology file which has been
automatically compiled by the TOSCA environment: for
the sw operations the analysis considers the amount of
instructions of a machine-independent assembler-like
format, called VIS (Virtual Instruction Set) [5] [10],
necessary to implement each Occam IT construct [6]. The
computation of the execution times for the hw-bound
operations is based on the strategies presented in [7]. It has
to be pointed out that the information on the hw or sw
partition is crucial, even for computing the timing
properties of a simple assignment; in fact the right-value of a
compound statement, such as a:=(b*c)+d/f , can be

treated by simply adding the #ming cost of each single operation in
case of sw-bound, while for hw-bound partitions the total
execution time has to be computed by recursively evaluating the
cost of each single operation of the expression. In general, for
the hw-bound statements, we consider the possibility of
evaluating two boundary cases: strictly sequential operations and
maximum parallelism. In the former case the execution time is
determined by simply adding the contribution of each single
operation:

texecution: top + tex.right+ tex.left

whete texrige and t evlere are the computation time for the right
and left operands of the gp operation. In the case of fully

parallelism, it becomes:

t execution= Lop max(t ex.right » texleft)

For the remaining operators, the most important being:
assignment, parameter passing, input, arithmetic/logic
operations, conditioned branch, ALT construct, SKIP construct
(see also [6] [11] [13] for mote details), the computation is
performed in a similar manner:

t execution": = top.if + max(t ex.condition);
t executionWHILE = top.while + max(t ex.condition)

n cond'l

z max(t ex.conditiont tval.inpu]‘)

i=0

where t vainpue 15 the time necessary to verify the presence of

a datum ready on one of the input channels. Concerning the
procedure call, by calling 7 ..z the time necessary to transfer a
single bit, dim; the size of the array of parameters, # ;; the size of
each single location, it 1s:

texecutionALT = topant

n parameter§1
> max(dim; np; K)
i=0

where K is a factor transforming in seconds the elements of

t executionCALL = top.can

the sum.

The channeled communication, due to the blocking nature
of the rendez-vous mechanism, has been modeled by using three
different processing corresponding to the different phases of the
communication: input process, communication dummy process and
output process, since the datum producer has to wait until the
consumer will unlock it by performing a read operation on the
channel. The znput and output processes have an execution time
(t instrinsic) modeling the transfer of the datum from the memory to
the channel plus the actual transferring delay through the
channel. The time necessary to move a single bit is assumed to be
the same for the input and output processes, tinswinsic 1s evaluated
on the basis of the type of datum carried by the channel, by
multiplying its size for the number of bits constituting a given
type (ype, evaluating 1 for bits, 8 for bytes and 16 for integers)
and for the time necessary to transfer a single bit:

Uinstrinsic = Nvector.size tYP€ it
Of course, both input and output processes can belong to
different hw or sw partitions, in the latter case the process

becomes part of the CPU load, so that its execution time is

dependent on the activity of the other active sw-bound

processes.

As stated above, the actual communication i1s modeled
through a dummy process. Three different cases can be
conceived according to the domains to be connected:

o Sw-Sw this kind of communication is performed
through a direct call to the operating system, usually
such a time in not relevant and it can be neglected.

* Hw-Hw: if the processes ate located on the same ASIC,
the transferring time can be neglected under the
assumption to use dedicated lines, i.e. not engaging the
system data bus.

* Hw-Sw: in this case the data exchange takes place
between different partitions via the system bus, both
operating system routines and dedicated hw of the
co-processors are involved to carty out such a task. This
circumstance is modeled by a dummy process which is
aggregated to the CPU workload.

In addition to the process-to-process communication,
another type of interaction exists, at a lower level of
abstraction, between the process and the procedures it calls.
Such kind of interaction is very sensitive to number and
size of the passed parameters, and it is modeled similarly to
the interprocess communication:

* Hw-Hw: a dummy process is introduced to represent the
communication among hw partitions whose execution
time is:

n parameters 1

> (vector,.dimensiontype)

i=0

* Sw-Sw this is the classical case of a software procedure

t HW.comm = tbit.hw +

call, the modeling of the context saving is pertaining the
CALL process, which, running on the CPU affects all
the active processes. Hence, the call/return procedure
overhead 1is represented by a dummy

communication process whose execution time is:

SW-SwW

n parameters 1

> (vector,.dimensiontypg)
i=0

Hw-Hw: this case is modeled in the same way of the

t sw.comm™= Thitsw +

hw-sw communication among processes, a dummy process
mnsisting onto the sw partition is created to model the
context saving/restoring.

4. Putting it all together: the time stretching
algorithm

In order to speedup the simulation/verification of the
system behavior, an event-driven simulation strategy has
been develped. The kernel algorithm is based on a elastic
model of the time between events. The time proceeds by
considering a discrete time model, where an event can be:

* start or end of a process execution;

* start or end of one of the following activities: loading of a
datum on a channel, pick-up of a datum by a receiver
process, datum transfer on a channel;

* procedure call;

* start or end of the computation of a test condition.

The simulation algorithm is able to szeh the intrinsic
execution time of processes according to the CPU workload. The
algorithm goes on by applying two different transformations on
time (expansion and contraction) to incrementally find out the
system latency and any violation of the timing constraints:

* The expansion is applied to a process due to the presence of
mote processes executed in parallel.

* 'The contraction petforms the opposite action: giving an
expanded timing axis (originated for example by an
hypothetical parallel execution of sw-bound processes), the
time is condensed so that each process has an elapsed time
corresponding to the case where each one of them is the only
CPU owner.

Let us in introduce some preliminary notation that will be
used to describe how the simulation algorithm works.

* Thue time instant corresponding to the actual behavior of the
system under simulation;

* tinrindc execution time of a process by considering unlimited
resources in case of hw-bound and a dedicated CPU in case
of sw-bound,;

® tremaining' time to complete the execution in the case it is the
only active process;

* 1, number of sw-bound processes simultaneously active;

* To context switching time;

* T commutation period;

* 0y number of sw-bound idle processes;

* Ty spooling period;

* T; duration of the spooling process;

* M: time interval between the events 7 and /+7.

The reference point of the algorithm is the absolute time,
which is the value visible to the user. The simulation proceeds
until the first event, after that it is incremented by M according to
the hw and sw processing being executed. M is computed as the
minimum interval before the arrival of a sw or hw process with
an expanded time. Sw processes are considered expanded to
mimic the effect of the CPU scheduling algorithm, in such a way
it is possible to estimate in a realistic manner which is really the
first event among all the ones triggered by the active system
processes. The remaining time is the time necessary to complete an
instruction, for a sw process it 1s determined by contracting the
time already expanded, ie. it is the difference between the
previous remaining time and the ratio between the increment M
of the absolute time and a coefficient of expansion. In case of hw
processes it is the difference between the previous remaining
time and the interval M, without any necessity of contraction.
This mode of operation is applied again after introducing new
processes to be executed in parallel, and by computing new
values of M (based upon the remaining times of the processes

partially executed and on the execution time of the new
processes).
The execution time of a sw process is determined on
the basis of three main factots:
1. The number #z, of active processes, which allows the
estimation of the virtual wotrkload of the CPU where the
sw processes are being executed.

2. The context switching time T, modeling the saving of
variables and memory configuration of the process to
be interrupted. The swap among processes is assumed to
occur at a given rate whose period is Tc ; under these

. T .
assumptions (1, —l)?C is the overhead due to the context
C

switch of the n, active sw processes (which in many
cases can be irrelevant in comparison to ‘I¢).

3. The number of processes (iInput or output) waiting to
communicate because the datum they are waiting for is
not available yet. These processes are managed by a
spookng operating system demon which periodically (rate

Tir) vertfies idle

(consuming T, seconds) the

L L . .
communication processes, so that 7 _T'H is the time
7

component necessary to test the #r, idle processes.
In summary, the expansion of each sw process is
determined as follows, where ty is the intrinsic time to
execute the given statements (in clock cycles) on the CPU.

. T T
tsw.expanded™ dty being d=n+(ny {L)ﬁ + n"SWT_iIH

For instance, the assignment of a byte takes one clock
cycle, while two clock cycles are required in case of
assignment of an entry in a vector. As it can be understood
by analyzing the above formula, it has been implicitly
assumed a software scheduling algorithm granting the same
CPU sharing to all processes. To cover the case of different
policy, the algorithm requires some minor changes in the
formula computing the factor of expansion 4 A
pseudo-code description of the algorithm is reported in
figure 2.

t remaining (0) = tinginsic ;
loop:

if Oprog,, then tinpw=;

M = min (t,, of the expanded sw processgg,df the hw processes)
/* modeling of the execution activities (corresponding to M) */

T =T +M;

absolute’ absolute

. - : : M
Clactive prog,, itis tremanng(+1) = temanng() -
Lo e
N, + (rE '1) Tc+anw T\H
0 active proG,, , itis tremaining(i+1) = tremaining () - M ;
activation of new processes (if any);
endloop;

Figure 2. Pseudo-code of the Time Stretching (TS)
algorithm.

5. CAD environment and experimental results

The presented algorithm has been implemented in C++ and
it is now linked to the TOSCA TCL/TK-based user interface
[11]. The analysis of the system behavior can be carried out in a
twofold manner:

* by inspecting the fext#al information concerning the evolution
of all the processes, the violation of the timing constraints,
variable monitoring, etc, contained in the simulation reports
produced by the tool;

* by using the graphical user interface, which performs queries
on the simulation database through SimViewl], a waveform
tracer by Mentor Graphics

The user can ensure the semantic correctness of the
specification under the functional point of view by using both
interfaces, the first being particularly useful to verify the meeting
of the real-time design constraints. In any case, apart from the
purely functional debug of the system, a valuable source of
information is represented by the simulation treport which,
among the other data, provides:

* process duration and execution frequencies (or latency); for
each value the max, min, mean and variance over the simulation
petiod is provided;

* violations of the timing constraints (possibly ordered by
severity);

* profiling of process execution;

¢ dead-code and variables never accessed;

* list of processes remaining idle at the end of simulation,
which may be suspected to be involved in deadlocks;

This allows the designer a better awareness of the critical
sections of the code under the timing and computational points
of view.

Concerning the
extensively stressed the system by modeling toy benchmarks and

performance of the simulator, we
a real component (called ILC16), commercialized by Italtel, used
as test vehicle for the SEED Esprit project. By using a
SPARCstation 20 running at 85MHz, we observed an average
simulation rafio around 16-18. This means that, to simulate a
system characterized by 24K events/s, the simulator is able to
process 1.5K events per CPU second. The first implementation
delivers a throughput already good enough to enable its effective
use for developing real-size designs. In particular, such a type of
analysis seems to be two orders of magnitude faster than the
low-level strategy [18], presented in [5], based on the use of
VHDL models for both the hw and the sw.

The ILC16 component, is a data-link controller for sixteen
asynchronous/synchronous data streams based on the HDLC
protocol. The original design allocates the managing of the
channels to a RISC CPU core cells, while the HDLC protocol
processing is hw-bound; both section are embedded in the same
integrated circuit.

The system has been reverse engineered by using the
TOSCA environment and validated through the simulator here
presented, the specification is composed of more than 4K
Occamll lines of code. Each of the sixteen links is composed of:

one in/out HDLC module, implementing the ISO/OSI
level 2 functionality;
one FIFO buffering the incoming/outcoming data
streams;
a DMA controller to transfer the data on the local bus
interface.

In the Occamll specification, the FIFO is in between

a producer and consumer processes (see figure 3).

gL Wais Bdilar - Midgrar Wi
[e Eoi Qoneide merd Optione Teskmroh feoag e
EREC-EFT T EREE =)
;-u..:"|____ _ il
b "'ll T -
FEY o, Bt el TaF 1 5;,4:||n.|..|3-.,|'-.a..|.|_| 5
T ., - A
| -\.\. . p . I|
'._. "'._-:,.‘q,-,"hqlrliﬂe'-t i _|.-|'=i'.-|" s
% " v o a
. ..,____.- r"’: :"\' ._____.-' ;
o, S| ok 4 “":’7"" [TL ™
x'ﬂ-..___ _nl‘ L -

A

-

Figure 3. Graphical Occamll specs of the FIFO

sub

system.
One of the bottlenecks of the architecture is

represented by the transferring rate of the data from the

FIF
the

O to the consumer process, a low value with respect to
rate of the producer process will result in a FIFO

overrun error. To model such a constraint, the statement
MINRATE OF Write IS 3 has been added to the
Occam specification, where Write is a 7ag located on the
process moving data from the FIFO to the consumer, and

31s

the

a frequency expressed in Hertz.
Other serious problems may arise from the latency of
process devoted to manage the case of FIFO overrun.

In fact, the stall has to be removed (by a dedicated process)

as

reptesented by MAXRATE OF Full IS 4 (KHz)

soon as possible. In this case, the constraint is

>

where Full is a 7gg anchored to the process of data
refusing, and 4 is the max frequency expressed in KHz.
Finally, a MINRATEconstraint has been added to supervise
a ALT process modeling the spooling of the processes
communicating with the FIFO.

nitt

The various components of the system have been
ally allocated to either hw or sw domains and then

simulated to verify the functionality and the fulfillment of

the

timing constraints. The trend of some of the timing

constraints versus the rate of the producer process is
reported in figure 4.

Different scenarios have been considered before

committing to the final hw/sw implementation, ranging
from the fully hw and fully sw solution. Apart from the
above considerations on the functional/timing propetties,

the

system specifications have been modified trough a set

of transformations according to the computation of some
metrics evaluating the guality of the system [6], but this aspect is
out of the scope of this paper. Different alternatives in terms also
of microprocessor clock frequency have been taken into account.

—eo—freq. of ALT
60 A Y NAAASES A SESSRRRA S
40 —m—freq. of
consumer
20
e — e,
0 skickiiokisiion: producer
-1 O O o O O O O
® ~ 3 948 38 9 freq. of FULL

Figure 4. Trend of some timing constraints versus the data
production rate of the consumer process feeding the FIFO.

The total manpower (excluding the synthesis stage) has been
allocated on the different design stages as follows:

Occam Language (tool learning) 4 weeks
ExplorationManager (tool learning) 1 week
Design Specification 8 weeks
Functional Debug 16 weeks
Design Space Exploration 2 weeks
Total week/man 31 weeks

This results are important in order to get a feedback of the
effectiveness of the proposed methodology for design entry and
design space exploration. We can identify two different type of
designer according to the level of confidence with the tool,
whose temporal characterization of the activities is depicted in
figure 5 and figure 6.

Design
Space Exp
Functional

Debug

Design
Spec

Exploration
Manager

Occam
Language

0% 10% 20% 30% 40% 50% 60%

Figure 5. Manpower partitioning for a starting from scratch
designer.

Design
Space Exp
Functional

Debug
Design
Spec.

0% 10% 20% 30% 40% 50% 60%

Figure 6. Manpower partitioning for a trained designer.

6. Concluding remarks

In many practical cases a significant value added is the
possibility to roughly estimate if a given mixed hw/sw
implementation fulfills both functional and timing
requirements, during the eatly stages of the design flow. In
such a way, once the primary goal of realizing a system not
violating the specifications is met, if is possible to pay more
attention in the design space exploration and the
time-consuming finer grain optimization steps.

The aim of the presented investigation has been to fill
the existing gap between the system-level uncommitted
functional analysis (necessary to verify/debug the system)
and low level simulation used to fine tune the architectural
characteristics. The paper presented a simulation strategy
based on a system level timing extension of a hw/sw
modeling environment based on OccamlI graphical system
descriptions. Such information, together with an initial
hw/sw pre-allocation of the modules composing the
system, constitutes the substrate on which an high-level
simulation algorithm is based. The resulting speed-up in
simulation time, while the monitoring of the meeting of
users defined timing constraints, allows the designer both
to validate the design behavior on a given target
architecture and to compare alternative solution in order to
meet other figures of merit. Benchmarking of the
stimulation strategy onto a real-size industrial example is
carried out as part of the activity of the SEED Esprit
project.

The simulation algorithm has been integrated within
the TOSCA codesign framework, and is now available to
drive the design space exploration task in addition to the
evaluation metrics and formal transformations presented in
[6] [7]. Current effort in devoted to better integrate the
evaluation metrics, the presented high-level co-simulation
the application of the available
transformations the wmbrella of the

formal
TOSCA

tool and
under

Exploration Manager.

7. References

(1]

2]

3]

4]

(6]

71

(8]

91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

18]

D. D. Gajski, L. Ramachandran, P. Fung et al., 100-hour Design |
Cycle: A Test Case, Proceedings of the 31st ACM/IEEE Design
Automation Conference, 1994.

P.G.Paulin, C.Liem, 1.C.May, S.Sutarwala, DSP Design Too/
Reguirements for the Ninenties: An Industrial Perspective, Journal of
VLSI Signal Processing, special issue on “Synthesis for DSP”,
vol.9, n.1-2, January, 1995.

De Micheli G., Sami M. G. editors, Hardware/ Software Co-Design,:
NATO ASI Series, Series F: Applied Sciences - vol.310, Kluwer
Academic Publishers, The Netherlands, 1996.

Gil Lauder, Bridge The Emulator Gap For High-Performance Debugging,
Electronic Design, vol. 44, n.24, November 18, 1996, pp 130-140.
A.Balboni, W.Fornaciari, D.Sciuto, Co-synthesis and Co-simulation of
Control-Dominated ~ Embedded ~ Systems, Int. Journal Design
Automation for Embedded Systems, vol.1, n.3, July 1996, Kluwer
Academic Publisher, Norwell, MA, USA.

Balboni A., Fornaciari W., Sciuto D., TOSCA: a Pragmatic Approach
to Co-Design Automation of Control Dominated Systems,
Hardware/Software Co-design, NATO ASI Series, Series F:
Applied Sciences - vol310, pp.265-294, Kluwer Academic
Publisher, 1996.

A.Balboni, W.Fornaciari, D.Sciuto, Partitioning of Hw-Sw Embedded
Systems: a Metrics-Based — Approach, Integrated Computer-Aided
Engineering, to appear, John Wiley, 1997.

B.Dasarahy, Timing contrstaints of real-time systems: Construct for
excpressing them, methods of validating thew, in 1EEL Transaction on
Software Engineering, vol.11, Jan 1985.

RK.Gupta, G.De Micheli, Systerz Synthesis via Hardware-Software
Codesign, 'T'echnical Report CSL-TR-92-548, Stanford University,
October, 1992.

A.Balboni, W.Fornaciari, D.Sciuto, M.Vincenzi, The use of a Virtual
Instruction Set for the Software Synthesis of Hw/Sw Embedded Systems, In
proc. of IEEE ISSS'96, 9th International Symposium on System
Synthesis, La Jolla, California, USA, November 6-8, 1996.

SEED ESPRIT-ESD project n.22133, Reference mannal of the
Occam Graphical Lditor,
http://www.cefrielit/ eda/projects/seed/mainmenu.htm.
D.Gaysky, F.Vahid, S.Narayan, |.Gong, Specification And Design of
Embedded Systems, Prentice Hall, New Jersey, 1994.

Jifeng H., Page 1., Bowen J. Towards a Provably Correct Hardware
Implementation of Occam. 'l'echnical Report, Oxford University
Computing Laboratory, 1994.

Hoare C. A. Communicanting Sequential Processes, Prentice Hall,
Englewood Cliffs, NJ, 1985.

Gupta RK., De Micheli G., A Co-Synthesis Approach to Embedded
System Design Antomation, Design Auntomation for Embedded Systems,
Kluwer Academic Publisher, 1996, 1(1-2): 69-120.

Benner I, Ernst R., Henkel J. Hardware-Software Cosynthesis for
Microcontrollers, IEEL Design&T'est, 1993, 10(4): 64-75.

Paulin P.G., Liem C., May '1.C., Sutarwala S. Codesyn: A retargetable
Code Synthesis Systems, IEEL Proc. of Int. Symposium on High
Level Synthesis, 1994.

W.Fornaciari, F.Salice, D.Sciuto, A two-level Cosimulation
Environment, IEEE Computer, June 1997, pp. 109-111.

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

