
Stream Communication between Real-Time Tasks
in a High-Performance Multiprocessor

Jeroen A.J. Leijten1,2, Jef L. van Meerbergen1, Adwin H. Timmer1, and Jochen A.G. Jess2

1 Philips Research Laboratories, WAY4, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
2 Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands

Abstract

The demands in terms of processing performance,
communication bandwidth and real-time throughput of
many multimedia applications are much higher than
today’s processing architectures can deliver. The PROPHID

heterogeneous multiprocessor architecture template aims
to bridge this gap. The template contains a general purpose
processor connected to a central bus, as well as several
high-performance application domain specific processors.
A high-throughput communication network is used to meet
the high bandwidth requirements between these processors.
In this network multiple time-division-multiplexed data
streams are transferred over several parallel physical
channels. This paper presents a method for guaranteeing
the throughput for hard-real-time streams in such a
network. At compile time sufficient bandwidth is assigned
to these streams. The assignment can be determined in
polynomial time. Remaining bandwidth is assigned to
soft-real-time streams at run time. We thus achieve efficient
stream communication with guaranteed performance.

1 Introduction

Multimedia applications require the execution of a large
number of tasks on a variety of multimedia data. The
amount of processing power demanded by such
applications is very large, typically dozens of GOPS [7].
The performance of single processor solutions exploiting
fine-grain instruction-level parallelism is insufficient to
meet such demands. Much higher performance is obtained
by making use of coarse-grain task-level parallelism. This
enables parallel execution of large independent tasks and
can be exploited in powerful multiprocessor solutions.

The granularity of tasks depends heavily on the
application domain. Normally, this granularity is chosen
such that the complexity of each task is manageable for the
application designer and that efficient reuse of tasks and
modular design are possible. An example of a task of
typical granularity is variable length decoding (VLD) in
MPEG. With such a granularity, the required intertask
communication bandwidth may be as high as dozens of
Gbits per second. Common single-bus and shared-memory

solutions fall short in providing such large bandwidths at
reasonable costs.

For different tasks different timing constraints with
respect to throughput and latency may exist. Often these are
real-time constraints, which must be met under all
circumstances. However, some tasks may have more
lenient timing constraints using fall-back mechanisms, and
can be regarded as soft-real-time tasks, with less strict
deadlines. In a typical multimedia application, these
different types of tasks coexist.

This paper is concerned with guaranteeing the
throughput of streams with hard-real-time constraints in the
PROPHID multiprocessor architecture [5][6], while mixing
these streams with soft-real-time streams. To increase
hardware efficiency, resource sharing is supported via
multiplexing of processing and communication resources.
We will show that real-time throughput under such
circumstances can be guaranteed by using some ideas from
the field of digital switching [8], normally used in, for
example, telephony networks. We will extend these ideas to
the PROPHID multiprocessor architecture.

2 PROPHID architecture

Figure 1 shows the PROPHID heterogeneous
multiprocessor architecture template [6]. This template can
be instantiated for a given target application domain. This
means that the number of processors and the type of each
processor may be different for each IC implementation.
Basically, the architecture is aimed at high-throughput
applications, requiring about 20 processors each delivering
1 GOPS, with a total interprocessor communication
bandwidth of about 40 Gbits/sec.

The template consists of two main parts. First, a general
purpose microprocessor (CPU) is responsible for control-
oriented tasks, such as the interaction with the
environment, and possibly low to medium performance
signal processing tasks. Secondly, a number of application
domain specific (ADS) processors implement the time or
power critical tasks. These processors can span a wide
range of programmability going from fixed-datapath-like
units at one end to fully programmable processors at the

other end. A central bus connects the CPU to the ADS
processors. A second communication network is used to
meet the required intertask communication bandwidth of
dozens of Gbits per second. The high-throughput signal
data of the ADS processors is sent through this
communication network.

Figure 1 PROPHID heterogeneous high-performance
multiprocessor architecture.

Both parts of the architecture have access to a shared
background memory via a dedicated memory arbiter that
efficiently arbitrates between the more or less randomly
distributed central bus requests and the primarily periodic
requests from the high-throughput communication
network.

The remainder of this paper will focus on the
high-performance part of the architecture, that is, the ADS
processors and the high-throughput communication
network. In particular, we will describe how the throughput
of hard-real-time streams is guaranteed in the
communication network. In Section 7 we will explain how,
after these bandwidth requirements have been satisfied, the
remaining bandwidth can be used to transfer soft-real-time
streams. First, however, we will introduce our model of an
ADS processor.

3 High-performance processing

The high-performance signal processing part of an
application can be represented by task graphs, in which the
nodes represent large autonomous tasks and the edges
represent stream communication between these tasks
[5][6][10]. To obtain high performance, concurrent
execution of tasks is exploited by using multiple
autonomous ADS processors that can perform tasks
independently, and thus in parallel with other processors
(see Figure 1).

Because high-throughput tasks require large amounts of
data, buffering of data on communication channels is an
important issue. Due to bandwidth limitations such
buffering cannot be implemented in shared background
memory. Because the stream concept implies that the order
of the communicated data is preserved, a natural
implementation of a communication channel between ADS
processors is a first-in-first-out (FIFO) buffer.

To increase hardware efficiency, multiple tasks can be
executed on the same processor. These tasks must be

executed time-interleaved, in order to keep buffer sizes to a
minimum. On each ADS processor time-interleaved
execution is possible for all tasks that originate in the
application domain for which the specific ADS processor
has been optimized. Since the rate of high-throughput
multimedia data is of the same order of magnitude as the
clock rate of any feasible implementation, the number of
tasks that can be executed interleaved on the same
processor is limited, typically to a number between one and
five.

Processors that perform time-interleaved execution of
different tasks have to be able to save the state of a
suspended task and restore the state upon resumption of
that task. In the case of high-performance signal processing
where the data rate is proportional to the clock rate, little
time and bandwidth are available to save or restore state.
Therefore, the state of suspended tasks cannot leave the
processor to be stored elsewhere, for instance in
background memory. Fast context switches can be achieved
only by using local memory inside the processor to
temporarily save state. This leads to processors with
multiple state spaces for storing data and shared logic for
performing computations on the data. Our model of an
ADS processor is given in Figure 2. Here, for a processor

, and are defined as the set of input terminals
and the set of output terminals, respectively, and is
defined as the number of state spaces. With state
spaces a maximum number of tasks can be executed
interleaved on the processor, without external context
saves. Depending on the costs, the exact implementation of
the model may be different for each ADS processor,
without violating the model.

Performing a context switch without penalty is possible
if the context to be saved is zero. Therefore, the same state
space can be reassigned to another task if the state of the
task which is currently using that state space is zero. For
example, many video algorithms have zero state during the
vertical blanking. Hence, it is possible to reassign processor
state spaces to new tasks in the blanking. In this way a
switch to a completely different set of tasks can be
performed.

When several tasks want to use the same processor
hardware, conflicts may occur. To avoid this, a controller in
each processor decides which task is to be activated. This
means that each processor has local control over
processing. To guarantee that all the tasks are completed on
time, such a controller must ensure fair scheduling of
processing tasks. To enable fair scheduling and prevent
starvation or deadlock, the order in which data belonging to
different streams must be processed may be different from
the order in which streams arrive at a processor input
terminal. Therefore, each processor state space requires its
own input and output FIFOs. Accordingly, FIFOs

CPU

mem

central bus

communication network

m
em

ar
bi

te
r

ADS
proc

ADS
proc

ADS
procI$ D$

p Ĩ p() Õ p()
m p()

m p()
m p()

m p()

are connected to each terminal of processor in Figure 2.
Later on we will show that several FIFOs may share the
same on-chip memory.

Figure 2 Processor with input terminals,
output terminals and state spaces.

4 Communication network

The function of the communication network is to
provide high-throughput connections between all the ADS
processors. We can define this function more formally as
follows. We define as the set of FIFOs connected to
processor output terminals, and as the set of FIFOs
connected to processor input terminals. can also be
regarded as the set of input terminals of the communication
network, and as the set of output terminals of the
communication network. The function of the
communication network is to provide connections from
FIFOs to FIFOs . For a set of
ADS-processors the total numbers of input terminals
and output terminals of the communication network are
given by

, (1)

. (2)

The problem of creating connections between input and
output terminals for periodic, or continuous, data streams
has been thoroughly studied in the field of circuit switching
[8]. A network is said to be nonblocking if a free input
channel can always be connected to a free output channel,
irrespective of other connections. To limit the number of
switches required in a network, without losing the
important nonblocking property, multiple switching stages
are used. In these stages combinations of so-called time
division (T) switches and space division (S) switches
usually are used.

The analogy between T-switches and S-switches is
shown in Figure 3. In an S-switch physical switches are
used to connect input wires to output wires, thus creating
physical links between input and output channels. In a
T-switch, a single physical line is used to transport the
different streams to be switched. To this end these streams
are grouped into service cycles, with samples of different

streams stored in separate time slots within such a service
cycle. A T-switch changes the order of time slots within a
service cycle and thus creates links between input and
output channels. In the example of Figure 3 stream is
transported from input channel to output channel
and stream is transported from input channel to
output channel .

Figure 3 Analogy between (a) switching in the space domain
and (b) switching in the time domain.

A well-known three-stage switching network is the
T-S-T network. The first and third stages of this network
consist of T-switches, whereas the second stage consists of
a time-shared S-switch, in which new physical connections
between input and output channels are created for each
time slot. The time-sharing of physical communication
lines is obtained by dividing time into service cycles, where
each service cycle consists of a set of time slots (see
Figure 4).

Figure 4 Definitions of time.

With being the set of time slots available on the
time-shared S-switch in the second stage, is the
maximum number of time slots that can be used by streams
sharing the input of a T-switch in the first stage, or the
output of a T-switch in the third stage. Naturally, it is
required that

. (3)

Clos [2] derived the condition for a three-stage network
to be nonblocking, which is given by

. (4)

This requirement stems from the assumption that
existing connections cannot be reconfigured when a
connection is added, because this would temporarily stall
communication transfers. In regular T-S-T networks, such
as telephony networks, this is a valid assumption. However,
this assumption is not necessary for the PROPHID

communication network. In fact, we will show in Section 5
that is sufficient if all the connections in the
communication network may be reconfigured each time a
new connection is needed. First, however, we will explain

p

shared
logicst

at
e

st
at

e

input FIFOs

output FIFOs

input terminals

output terminals

local
control

processor p

Ĩ p()1

m p() m p()1 1

m p()

1

Õ p()1

m p() m p()1 1

p Ĩ p() Õ p()
m p()

A
B

A

B

a A b B P
A

B

A Õ p() m p()
p P

=

B Ĩ p() m p()
p P

=

s1
a2 b3

s2 a4
b2

b3

a2

a1

a3

a4

b1 b2 b4

s2

s1

s2 s1

time

frame frame

frameframe

time

s1

s1

a1 a2 a4 a3a1 a2 a4

b3b1 b2 b4 b3b1 b2 b4

s1

s1s2

s2

s2

s2

a3

(a) (b)

K

service cycle

time slot
time

1 |K|

K
n

n K

K 2n 1–

K n=

how, by analogy with the concepts of a T-S-T network, a
three-stage time-shared network limits the cost of the
PROPHID high-throughput communication network.

Since an ADS processor and the communication
network are autonomous units, the order in which a
collection of FIFOs is accessed by these units may differ.
Such behaviour at the boundaries of a collection of FIFO
buffers corresponds to the functionality of a T-switch. In
fact, we can create T-switches by grouping FIFOs and
connecting them to a single terminal of a time-shared
connection network, that is, an S-switch. This is done as
follows.

We define and as the set of input terminals and the
set of output terminals, respectively, of the connection
network. Let be the set of all the processor
terminals, where

and

are the set of input terminals and the set of output
terminals, respectively, of all the processors. Let for FIFO

, be the processor output terminal and
 be the connection network input terminal to

which this FIFO is connected. Similarly, let for FIFO
, be the processor input terminal and

 be the connection network output terminal to
which this FIFO is connected (see Figure 5).

Note that although multiple FIFOs can be connected to a
single processor terminal, the entire bandwidth available to
that processor terminal can, in an extreme situation, be
conveyed via a single FIFO to the same connection network
terminal. Therefore, to count the minimum amount of
bandwidth needed by a connection network terminal, we
must sum the bandwidths required by all processor network
terminals that have access to that connection network
terminal via one or more FIFOs. For each processor
terminal we define as the maximum amount of
communication bandwidth in terms of time slots per
service cycle needed by . Let and be the total
number of time slots per service cycle required at network
terminal and , respectively, that is

, (5)

. (6)

Equations (5) and (6) state that the number of time slots
required at a network terminal is equal to the sum of the
number of time slots required by all the processor terminals
connected to that network terminal via one or more FIFO
buffers. The T-S-T network parameter is determined by
the maximum number of time slots required by any
network terminal, hence

(7)

Given a specific application domain, designers can
choose a network configuration in the range of networks
with and . Here, the extreme

 implies a fully shared single bus solution,
whereas the extreme with and implies
a fully connected S-switch without sharing. Given the
chosen set of input terminals and output terminals of
the S-switch, groups can be made of arbitrary FIFOs, to
construct T-switches. By cleverly choosing groups, an
optimum configuration with comparable bandwidth
requirements on each physical channel can be determined.
Note, however, that the bandwidth of the S-switch may not
be exceeded, that is, condition (3) should hold. If this
condition is not satisfied, one of the following three
measures must be taken:

choose a different grouping of FIFOs resulting in a
lower , such that ,

increase the clock frequency of the communication
network, thereby increasing the amount of bandwidth
available per time slot and thus decreasing , and
consequently , such that ,

increase the clock frequency of the communication
network as well as the number of time slots per
service cycle, thereby increasing the amount of time
slots while keeping the amount of bandwidth per time
slot constant. Then remains constant, while
increases such that .

In the next section we will show that, given a network
configuration that satisfies condition (3), time
slots on the S-switch are sufficient to be able to assign
adequate communication bandwidth to all hard-real-time
streams.

Figure 5 T-S-T network configuration.

5 Time slot assignment

5.1 The problem

The problem of finding a time slot assignment can be
mathematically formulated as follows. Given is a set of
hard real-time streams. Let for stream , be
the FIFO connected to the connection network input
terminal , and to be the FIFO
connected to the connection network output terminal

 between which stream must be transferred.
The binding of streams to FIFOs is performed at compile

X Y

R I O=

I Ĩ p()
p P

= O Õ p()
p P

=

a A o a() O
x a() X

b B i b() I
y b() Y

r R c̃ r()

r c x() c y()

x X y Y

c x() c̃ r()
r O :a A r o a()= x a() x=

= for all x X

c y() c̃ r()
r I :b B r i b()= y b() y=

= for all y Y

n

n max c x() x X{ } c y() y Y{ }()=

1 X A 1 Y B
X Y 1= =

X A= Y B=

X Y

n n K

c̃ r()
n n K

K

n K
n K

K n=

processor

processor
FIFO

FIFO

ao(a)

x(a)
b

y(b) i(b)

connection
network

T

T
S

Sh
s Sh a s() A

x a s()() X b s() B

y b s()() Y s

time, so that each stream is mapped onto a unique FIFO
attached to a connection network input terminal and a
unique FIFO attached to a connection network output
terminal.

In our applications some streams may require more
bandwidth than others. Therefore, we assume that several
time slots can be assigned to the same stream. For each
stream the bandwidth required for communication
between and is given in terms of a
number of time slots .

We define and to be the sums of time slots
required by streams that are mapped onto
connection network terminals and ,
respectively, that is

, (11)

. (12)

For any application the number of time slots required at
a single connection network terminal may not exceed the
maximum bandwidth that can be offered by such a
terminal. If more bandwidth is required by an application,
the application does not fit and is not feasible for the given
instance. Therefore, for any feasible application,

, (13)

. (14)

with and given by equations (5) and (6),
respectively. Therefore, after applying equation (7) the
following conditions can be derived:

, (15)

. (16)

The assignment problem for the available bandwidth can
be described as follows. Determine for all , a set of
time slots , such that

, (17)

, (18)

. (19)

Equation (17) states that the bandwidth obtained in terms
of time slots must correspond to the required bandwidth.
Equations (18) and (19) state that an input or output
terminal of the connection network may not be assigned
twice in one and the same time slot.

5.2 Solution

The assignment problem described above can be
transformed into a bipartite multigraph matching problem.
Consider a bipartite multigraph , with the

set of vertices constituted by the set of input terminals
and the set of output terminals , and being the set of
edges between and . The set of edges is constructed
as follows. For every time slot required between a pair of
input and output terminals an edge is added, that is, for
each , edges between and
are added to . Note that the number of edges between two
vertices may be more than one. According to (15) and (16)
the maximum degree, that is, the maximum number of
edges attached to the same vertex, in the bipartite
multigraph is . Therefore, the maximum number of edges
between two vertices is also equal to .

The original assignment problem can be restated as
follows: find a -colouring1 of the edges in the bipartite
multigraph with . Then, every colour represents a
single time slot to which different streams are assigned. To
prove that a -colouring with always exists, we use
a corollary deriv Hall theorem [3].

Corollary. In a bipartite multigraph , there
exists a matching that saturates2 all the vertices with
maximum degree.

From this corollary the following theorem can be derived.

Theorem. The chromatic index3 of a bipartite multigraph
 with maximum degree is .

Proof. From the corollary above, graph
contains a matching that saturates every vertex of degree

. Colour the edges in with the first colour. Next,
consider the bipartite multigraph ,
constructed by removing all the edges in from . The
maximum degree of is . Graph contains a
matching that saturates every vertex of the degree .
Colour with the second colour, and proceed with

. On repetition of this procedure,
all the edges of will be coloured, using colours.

Since the maximum degree of graph is we
conclude from the above theorem that a colouring of graph

 with a maximum of colours exists. Hence, the
theorem proves that time slots are sufficient to
transport all streams. Thus, the connection network can
have a minimum size and the available time slots can be
fully utilized.

1. A -colouring of the edges of a graph is
defined as a partition of the edge set into subsets that are
matchings. A matching of is defined to be a set of
edges such that no two edges of are adjacent, that is, no
two edges are attached to the same vertex [1].

2. A vertex is said to be saturated by a matching
if an edge of is attached to [1].

3. The chromatic index of a graph is defined as the
smallest number of colours needed to colour the edges of
such that no two adjacent edges have the same colour [1].

s Sh
x a s()() y b s()()

d̃ s() 1 2 … K, , ,{ }
d x() d y()

s Sh
x X y Y

:x X d x() d̃ s()
s Sh x a s()() x=

=

:y Y d y() d̃ s()
s Sh y b s()() y=

=

 :x X d x() c x()

 :y Y d y() c y()

c x() c y()

 :x X d x() n

 :y Y d y() n

s Sh
K̃ s() K

K̃ s() d̃ s()=

 :s1 s2, Sh x a s1()() x a s2()()= s1 s2
K̃ s1() K̃ s2() =

 :s1 s2, Sh y b s1()() y b s2()()= s1 s2
K̃ s1() K̃ s2() =

Q X Y E, ,()=

X
Y E

X Y E

s Sh d̃ s() x a s()() y b s()()
E

n
n

q

q G X Y E, ,()=
E q

G E0 E
E0

q n

q q n

G X Y E, ,()=

v X Y E0

E0 v
q G() G

G

G h q G() h=
G X Y E, ,()=

E0
h E0

G0 X Y E E0–, ,()=
E0 G

G0 h 1– G0
E1 h 1–

E1
G1 X Y E E0– E1–, ,()=

G h

Q n

Q n
K n=

The complexity of finding a maximum matching in a
bipartite multigraph with is

 [4]. For the time slot assignment the
number of edges in the bipartite multigraph is at
most and the number of matchings to
be found is at most . Therefore, the complexity of
finding a time slot assignment is .

6 High-performance architecture

An implementation of the PROPHID high-performance
architecture part is given in Figure 6.

Figure 6 High-performance part of the architecture.

In the architecture the first stage of T-switches is formed
by the boxes containing the FIFOs of set . Special router
units form the interface between these FIFOs and the inputs
of the communication network, depicted in grey. A
programmable connection network, which in this case is a
switch matrix, contained in the communication network,
forms the time-shared S-switch. Finally, the third stage of
T-switches is formed by the boxes containing the FIFOs of
set . In the example shown in Figure 6 three ADS
processors with several terminals and state spaces are
depicted. Here, the T-S-T configuration has been chosen
such that a connection network terminal has been created
for every processor terminal, so and .
FIFOs are grouped so that all FIFOs of a single processor
terminal are connected to the same T-switch. With this
configuration the T-S-T parameter is uniquely
determined by the maximum communication bandwidth
required by a single terminal of any processor. In cases
where the maximum communication bandwidth
requirement of all the processor terminals is of the same
order of magnitude this is a viable option. This is the case
in many video applications.

The communication network is controlled by a special
communication arbiter that provides instructions to the
network. These instructions determine in each time slot
which FIFOs in are connected to connection network

input terminals in , which connection network input
terminals in are connected to which connection network
output terminals in , and which FIFOs in are
connected to connection network output terminals in .
This means that the communication arbiter has global
control over the creation of connections in the
communication network.

7 Mixing hard and soft real-time streams

7.1 Hard real-time streams

The time slot assignment obtained using the
-colouring method of Section 5 can be represented in the

form of a table (see Figure 7). The rows of this table
represent different time slots. Furthermore, three
groups of columns represent instructions for the
communication network in each time slot. The first group
defines for each input terminal of the connection network
from which FIFO it may read data. The second group
defines for each output terminal of the connection network
to which input terminal it is connected. Finally, the third
group defines for each output terminal of the connection
network to which FIFO data may be written. Each time a
new time slot starts the corresponding row in the time slot
table is selected by the communication arbiter as the active
row. Switching to a new row costs zero clock cycles.
Therefore, no bandwidth is lost between time slots. Such a
bandwidth efficiency would not be possible with regular
bus protocols, which are usually optimized for random
traffic instead of continuous streams. The overhead
involved in the setup of bus connections using regular bus
protocols seriously complicates guaranteeing real-time
throughput.

Figure 7 Time slot assignment table.

At compile time the terminals and FIFOs to be used by
each stream in a set of task graphs are fixed and a time slot
assignment is calculated for hard real-time streams. In the
field blanking of a video signal this binding and the
corresponding time slot assignment is loaded into the time
slot table. By reloading the table a new set of task graphs
can be activated in each blanking.

7.2 Soft real-time streams

Time slots that remain unused by real-time streams can
be used for streams that have no hard real-time deadlines.

G V E,()= V X Y=
O E V+() V()

E Q
1 2⁄() X Y+() K

K
O X Y+()3 2⁄ K 2()

st
at

e1

st
at

e2

lo
gi

c

st
at

e1

st
at

e2

lo
gi

c

processor

lo
gi

c

st
at

e

b B

FIFO

input terminal

output terminal

FIFO

input terminal

output terminal

programmable
connection
network

communication
arbiter

T

T

S

a A

router

T T

T TT

x X

y Y

A

B

X O= Y I=

n

A

X
X

Y B
Y

q

K

FIFO input terminal FIFO
x y

b

y

a x

tim
e

sl
ot

input terminal output terminal output terminal

To this end the communication arbiter uses an additional
instruction row that is filled at run-time (see Figure 8). By
merging the active row of the time slot table and this soft
real-time row, the instruction code for the network is
obtained. During the merging, entries in the active row of
the time slot table have the highest priority to ensure that
the bandwidth for hard real-time streams is guaranteed.
Common bus arbitration schemes are suitable for filling the
soft real-time row. The details of filling this row are
however beyond the scope of this paper.

Figure 8 Merging hard and soft real-time streams.

A typical application for PROPHID is multiwindow
television. In this application video streams must be treated
as hard real-time streams, while teletext pictures may be
treated as soft real-time streams. The field blanking of the
video streams leaves sufficient unused bandwidth to
schedule soft real-time streams, such that, for example, the
scaling of a teletext picture takes only a few video frames
to complete.

8 Implementation costs

We analysed the costs involved in implementing the
high-throughput communication network. We designed a
64 MHz, 1.9 mm2 communication arbiter in a 5-metal layer
0.35 micron technology using VHDL synthesis and
standard-cell layout. Using the same method and
technology we implemented a 64 MHz, 0.1 mm2 router
serving four FIFOs. Experiences with the Philips Video
Signal Processor (VSP) [9] have shown that a full switch
matrix provides a favourable ratio of bandwidth over area
cost. With the increased transistor density of today’s
semiconductor technology a standard cell implementation
of a switch matrix in a limited area is a good option,
especially since our multiplexing scheme limits the size of
the switch matrix. The cost of buffering will depend on the
number of time slots per service cycle and on the size (in
number of clock cycles) of a single time slot. By keeping
the size of a time slot small, it will be possible to keep
buffer sizes small, too. For example, a typical video
application uses a maximum multiplexing factor of 4 tasks
per processor, with a service cycle size of 4 time slots, and
a time slot size of 16 clock cycles. The corresponding
typical FIFO size is 32 samples. Furthermore, several
FIFOs sharing the same network and processor terminals

are never accessed at the same time for reading or writing,
and can therefore be mapped onto the same memory, which
limits the implementation costs of these FIFOs.

9 Conclusions

We have presented a method for ensuring real-time
throughput for data streams in a high-performance
multiprocessor architecture, which is part of the PROPHID

heterogeneous multiprocessor architecture template for
multimedia applications. Our method involves a
compile-time assignment of bandwidth for hard real-time
streams, using a bipartite graph colouring algorithm. This
is done by dividing time into service cycles consisting of a
number of time slots. In each time slot the correct links are
created in a shared programmable connection network. A
special communication arbiter schedules data transfers at
run time, using the compile-time assignments as a starting
point. Time slots that are not assigned to hard real-time
streams at compile time can be assigned to soft real-time
streams at run time by this arbiter. With these concepts, the
PROPHID architecture is capable of transferring multiple
hard real-time as well as soft real-time data streams
efficiently over a number of parallel physical links, making
optimal use of the available bandwidth.

References

[1] C. Berge, “Graphs”, North-Holland Mathematical Library,
vol. 6, part 1, 3rd rev., North-Holland, Amsterdam.

[2] C. Clos, “A Study of Nonblocking Switching Networks”, Bell
System Technical Journal, vol. 32, no. 2, pp. 406-424, 1953.

[3] P. Hall, “On Representations of Subsets”, Journal of the
London Mathematical Society, vol. 10, pp. 26-30, 1934.

[4] J.E. Hopcroft and R.M. Karp, “An n5/2 Algorithm for
Maximum Matchings in Bipartite Graphs”, SIAM Journal of
Computing, vol. 2, no. 4, pp. 225-231, December 1973.

[5] J.A.J. Leijten et al., “PROPHID: A Data-Driven
Multi-Processor Architecture for High-Performance DSP”,
Proceedings of the 1997 European Design & Test Conference,
March 1997.

[6] J.A.J. Leijten et al., “PROPHID: A Heterogeneous
Multi-Processor Architecture for Multimedia”, Proceedings
of the 1997 International Conference on Computer Design,
October 1997.

[7] B. de Loore et al., “A Video Signal Processor for
Motion-Compensated Field-Rate Upconversion in Consumer
Television”, Proceedings of the 1996 International Solid-State
Circuits Conference, pp. 248-249, February 1996.

[8] M. Schwartz, “Telecommunication Networks: Protocols,
Modeling and Analysis”, Addison-Wesley, 1987.

[9] H. Veendrick et al., “A 1.5 GIPS Video Signal Processor
(VSP)”, Proceedings of the 1994 Custom Integrated Circuits
Conference, pp. 95-98, May 1994.

[10]J.A. Watlington and V.M. Bove, “Stream-Based Computing
and Future Television”, Proceedings of the 137th SMPTE
Technical Conference, pp. 69-79, September 1995.

x1 y1

b1a1 x3

ac
tiv

e
ro

w

a2 b2x3a3 x1 b3

b3x1a3 a1 x3 b1

ne
tw

or
k

in
st

ru
ct

io
n

so
ft

-r
ea

l-
tim

e
ro

w

x2 x3 y2 y3 y1 y2 y3y4 y4

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

