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Abstract layers without back-loops. There are no connections

A novel neural chip SAND (Simple Applicable Neurabetwe@ neurons of the same layer. The lagement of a
Device) is described. It is highly usable for hardwaréeural network is an artificial neuron described by
triggers in particle physics. The chip is optimized for a On O
high input data rate (50 MHz, 16 bit data) at a very low X = fgzlwli g +@S (1)
cost basis. The performance of a sin§fND chip is 200
MOPS due to four parallel 16 bit multiplieend 4 bit
adders working in one clock cycle. The chip is able
implement feedforward neural networks with a maximum
512 input neurons and three hidden layers. Kohon
feature maps and radial basis function networks may
also calculated. Four chips will be implementadaPCI-
board for simulation aneén aVME board for trigger and
on- andoff-line analysis

wherew; are the connection weights from neurgnso
tgeuroni. The input activitieso; are multiplied with the
SfJnnection weights, accumulated and transfergd ab
?fgriinearactivation function to the output activitigs

9. 1)' flow of data

1. Introduction

Currently at FZK, in collaboration with IMS, the neuro-
chip SAND (Simple Applicable Neural Device) is under
development for on- and off-line data analysis as well
first and second level triggers in astrophysics experimen o
(KASCADE, MILAGRO, AUGER). Mawy sophisticated artificial neuran forward network
methods were proposed and implemented during the last
decade to reveal the characteristic of extensive air showers. s 411 neurons of one layer are regarded (Fig. 2), the

But one drawbacksi sill present - the absence of angqtion of the complete layer can be described as a
‘intelligent’ adaptive hardware trigger and on-line datz?'natrix/vectormultiplication

analysis. Usuajl it is a multiplicity or sum-energ trigger = f(W*

with very simple logic, requiring some channels exceeding X= (V—V _O) @)

the chosen threshold value. Wdetailed simulations of an Whereo is the input vector an@ the weight matrix which
Extensive Air Shower (EAS) developing in the atmosphet¢eeps all connection weights between two related layers.
and the response of the apparatus will be used to train B¢ sigmoidal function
Artificial Neural Network (ANN). This allows one to f(x) = 3)
implement sophisticated pattern recognition tasks for first 1+ e

level trigger and event builders in modern EASs mosty used as the activation function in feedforward
experiments, like KASCADE in Karlsruhe, measuring agetworks.

mary parameters of a single event as possible. Information Feedforward networks are yepowerful when using
from thousands of electronic channels has to be procesgg or more hidden layers. The structure or topotdghe

in a vey short time. The fast primprenery and primary network determines the class of geomefor pattern
particle type estimators will be trainegt imulations and  recgnition, function approximatioror transformation to
implemented for on-line analysis. be describedbthe neural network (see Fig. 3). With one

used. In feedforward networks neurons are arranged in

n

Sig. 1: Model of an Fig. 2 : Part of a feed-




neuron divides the input space into two regions. If thapplicatios sich methods will not improve the
sigmoidal function is assumed to be wesharp (witha  performance. A general acceleration isyopbssible with
being vey large) the function of an output neuronyrize parallel processing.
visualized ly a separation line (in a 2-dimensional input At the Research Center Karlsruhe neural networks are
space) or a hyperplane (in an n-dimensional input spacesed not onl for trigger purposes but also for some
Non-linear problems cannot be solveg this type of industrial applications. One application uses surface
network. In Fig.3 we can see that a two-layer network mcoustic waves to detect and analyze unknown gases.
able to solve all convex tasks. Even non-convex objectgother project determines gas concentrations with a
may be separatedybone hidden layer networks if the resistor arrgof 40 g& ®nsitive resistors. Neural networks
problem is given in a pixel doodean representation, but are also used in pattern recognition tasks of pipeline crack
mary neurons are required in general. Pmiith three detection. There is a varjebf different applications each
layers arbitray complex structures can be recognized witlof them demanding for their own criteria an effective
a reasonable number of neurons. hardwaresolution.

Following criteria are considered to be crucial for
choosing theight hardware:

type class of XOR banana general 1.both applicable as a PC-board and stand-alone
geometry problem problem example 2.cheap
Llayer | naifplane 1VO_ 3.few peripheraldevices
¢ (linear 4.sufficient precision (at least 16 bit)
_ _ Z?§§?£S Lo © The PC-board is necesgao provide a user friendly
0 11y programming tool for development. The stand-alone
2 'a}’efs convex @) solution facilitates the use of the hardware acceleration in
simple . applications independent of the platform of development.
Q Cfggi%ffsed o) The second criterion is decisive for industrial applications.
' i This criterion applies, e.g., to the gas analyzers introduced
3 layers o o 0O I in the former section. Point 3 is crucial for micro-systems
| complex b with small space and verlow power consumption. In
,Q’;’,, structures second level trigger of particle physics experiments (e.g.
i O Q calorimeters) a sufficient precision is needed because of the

Fig.3: Capacity of multi-layer feedforward networks high dynamic range of signals.
There are especigll three neuro chips available
To increase calculation speed of a neural networRjlfilling partly the given selection criteria. The MA16 of
neurons have to work in parallel. On the other hand a higiemens [1], CNAPS of Adaptive Solutions [3] and
flexibility concerning the structure of neural networkETANN of Intel [6]. MA16 mainy fails criteria 1 and 3. In
should be ensured. To grant both demandsy nelrons the meantime SYNAPSE with four MA16 is available as
within the same layer are processed in parallel, whereas th@-board [10]. To make a stand-alone solution yraher
various layers are processed sequentially. The architectateps and a micro-controller are necessary. CNAPS and
of the chips and the design criteria of the system aEelANN fail criterion 4. CNAPS is working with 8 bit
described. accuracy, or 16 bit with less than half the rate. Even worse,
the analog ETANN computes with approximgté bit
accuracy. Sometimes poor accyratay be compensated by
2. Selection of Neural Hardware non-linear data transformations. But for on-chip training of
the neural network a minimal data length of 16 bits seems
With different methods it is possible to reduce theo be necessary to find the global optimum.
computation efforts while executing neural networks. One |n the following sections the alternative neuro chip is
example is an implementation of the non-linear sigmoidatroduced to meet better the presented four criteria.
activation function in a lookup table. Mermyaccess can be
done simpler and faster (less than 20 ns) than ti% Design Criteria of SAND
computation of an exponential function  with
multiplications and additions. In the same direction it is SAND is a cascadable, systolic processoryedesigned
possible to reduce the network sizediiminating useless for fast processing of neural networks. The neurochip
neurons and weights near to zero. When executing tB&AND may be mapped on feedforward networks, radial
network thg need nb to be computed. With some basis function networks (RBF) and Kohonen feature maps.



Due to these most common neural network types, SANWIith a grey shadow. The four processors are symbolized by
covers about 75% of all important applications. Thiga circle, a pentagon, an octagon, and a square, respectively.
estimation is result of an analysis of 154 applications fourltl can easy be seen that four processors compute 16
in the literature. In the following the idea of themultiplications within 4 cycles. In ewercycle ony one
organization of the neural processor is given for theeight and one activity have to be transfered.
feedforwardnetwork, mostly used.

Looking at the matrix/vector multiplication introduced
in the first section, it i®bvious, that the weight matrix can
be separated into severalwovectors, see Fig.4. These
vectors can be multiplied in parallel with the activation
vectoro. Each rev i of the weight matrix corresponds to
the weights connecting transmitter neurons with one
receiver neuron. If a layer consistsnefneurons, a systolic
array with m parallel working processing elements is 2. cycle m=4 patterns
required to get full use of a parallel architecture. One
important disadvantage of this solution is the neednof " e O O m .
weight memories. This fact causes high costs in peripheral War @ Was . Oz Oy
components and a huge area for busses. We can think of @ Wiy Wag 0y 0Op Os Oy
another solution where gnlbne weight memgris used.

This single memagr must be read at high speed times
higher compared to the previous solution), not possible 3. cycle
with available memories.
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Fig. 5 : Example of processed data (m=4 patterns)
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Lookup-
Table f(x)
vector of |1 .
output activities |2 4. Architecture of SAND
Based on the design considerations of the previous
m chapter, the architecture of SAND was developed. Looking
Fig. 4 : Architecture of a matrix/vector multiplier again athe example of Fig. 5 oe @n see that each of the

processor elements (PE) is working four cycles with the

A solution of this principal problem can be obtained bgame weight. Evgrfourth cycle the weighis updated so
adjusting the number of input activities to the number dhere is a continuous floof weights on the weight bus. In
weights. Then a maximal usage of hardware can WBee ®nsidere period d four cycles four activities are
ensured. This demand can be granted if several indagded into SAND’s processor elements. These activities
patterns are used instead of one. The activation vectorais transfered oveegisters from one PE to the next. There
replaced ¥ a matrix which consists ah columns. In the is a continuous fie of data on both the actiyitand on the
example in Fig. 5 withm=4 it is shown, hw incoming Wweight bus. Due to the mettiahia and commands are
activities are multiplied with the corresponding weightshandled the architecture of SAND is a systolic processor
Values which are alregdransfered into SAND are marked array. In Fig. 6 the architecture of SANB srown, which



consists bfour parallel processing elements each equiped In sonme @sest is importan to find extremal values in
with an ALU and an auto-cut module. The Blin Fig. 6 is the flov of output activities. Therefore, a postprocessing
used for the multiplication of vectors within themodule is used which can work in two modes: search for a
matrix/matrix multiplication. Due to the accumulation ofmaximum or a minimum. The appropriate activation
activities the width of words gwofrom 16 bit up to 40 bit, function f(x) is realized outside & dip with a lookup

if the number of input neurons is limited to 512 Te table. Some types of neural networks require both a linear
compatible with exterranemories (16 bit), and with the function f(x)=x and a non-linear function like the
width of activities outside # dip (16 bit), a winder of 16  sigmoidal function. Therefore SAND hasawutputs: one

bit must ke ait out of 40 bit. The position of this window for addresses of the lookup table and one for linear data.
may be influenced ¥ a user-defined selection of an  For the calculation of expression (1) a multiplier and an
appropriate weight range. €hut is done in the auto-cut adder are needed to perform a fast multiplication of
module which automaticallchecks if an over/underflow vectors. To increase speed both elements are placed within
occurs. To minimize th eror caused Y the awt, an a pipeline. As a first step input activities are multiplied
automatic adaption of the accuyats performed in a with corresponding weights and then added to previous

second step. values. Due to the fact that four patterns are processed, four
activties weights accumulation registers are required within the PEs. For
16 16 some neural networks it is also necegdarcalculate the
Y Y Euklidian distance between two vectors. Therefore SAND’s
! R1§ @- ALU is equipped with an additional adder, which is also
placed in the pipeline. This feature is essertiafied for
Kohonen Feature Maps or Radial Basis Function Networks
\ \%
@ T \ (RBF).
16 16 5. Structure and Operation of VME Board
V With the VME neural processor board a fast (up to 800
MOPS) aml wniversal artificial neural network (ANN)
processor, simple for programming, should be provided,
16 |r1s 16 easily and with lav expenses integrated into high energy
physics (HEP) experiments withwoexpenses. Analysis of
V applications of ANN hardware in HEP experiments
demonstrates that there are two large fields of such
40 [PEI 53 applications: the use of ANN processors for trigger systems
<> [2,4], and for preprocessing of multi-channel measurement
CCLC D data (e.g. FADC output [5]).
Auto-Cut In the first case the input data from a Data Acquisition
16 System (DAQ) of the experiment emerge sequegtealént
by event. In the same order theppear at the readout bus
M of the DAQ. In most of the applications the data are
Registerbank collected from different parts of the DAQ via some specific
busses and undergo preprocessing in a DAQ-specific
l r concentrator preprocessor unit. The concentrator will be
I connected to the neural processor module with a simple
16 16 116 ilﬁ and fast (up to 40 MHz, 2*16 bit) and non-expensive Front
Panel Data Port (FPDP channfd]. The second field of
Post-Processing applications represents the processing of results of multi-
Min-Max-Search channel measurements. In this case the daty bea
ijle ‘ble delivered via VME-bus. To spdeup receiving data, a
DMA-transfer faciliy has been provided on the VME

address  data neuralprocessor board.

Fig. 6 : Architecture of SAND A block diagram of the module is presented in Fig.7.
The module consists of a ‘Processing Core’ built of up to
four neural processor chips SAND, a Command Sequencer



performing control on execution of ANN algorithms, amany SAND chips are plugged in.

controller of the input data streams ‘In_data Control’ and During automatic execution of the ANN algorithm with
input data buffer ‘FIFO_in’, a controller of the output datancoming data, three independent processes are running
streams ‘Out_data Control’ and output data buffesimultaneously: acception of input activities for the next
‘FIFO_out’, a VME controller with configuration computation cycle, execution of the ANN algonthn the
memories and an FPDP amrdan ECL port. The VME processing core, and transfer of output activities of the
controller allows to operate the module on the VME-bus asevious calculations to the chosen output port (VME or
slave or as master (on power-on the controller is configur&LL). Finally the type of output is selected (continuous 16
automaticaly as VME slave with the base address set Hyit or with yes/no-threshold).

jumpers). Four FIFO_in reorganize the input ‘event by

event’ data stream into a data stream of interleavdable 1: Different types of VME-transfers

activities of four events. Four FIFO_out’'s perform the Transfer Transfer | Transfer Type
reversdransformaion of the output data. Mode Rate

To prepare the module for automatic execution of th&MBLT64 73 Mbl/s Block Transfer
ANN algorithm, a VME host computer must load the¢BLT32 40 Mb/s _
‘ANN configuration’ RAM with a description of the ANN | D32 20 Mb/s Single Cycle
be processed. The description represents a series of 32-5it- PIVIE Protocol
words, describing each layer of the ANN, one dvger
layer. The configuration word contains the information — @
about the number of input activities of the layer, the YBUSA vV )
number of nodes in the layer, the type of operation |c¢ s T 7 T 1
executed on the input activities (multiply-accumulate, f,’qeq WRAML
square-accumulate or search for min/max), the mode of mu \Tl M%MZI ME‘fMJJ MEfMAJ
_transformatlon of the accumuldt&0bit rgsul_t into 167b|t nn | sano I sano - sano — sano
integer values, and the type of the activation function for dg #1 #2 #3 #4
the layer (linear or nonlinear, stored in the lookup table). . v ¥ v
Moreover, the VME-host must load the weight matrices of
all used layers into the WRAM's. The procedure of loading
looks quite straight forward and simple, because the YRUS Ol ro g

sequencer takes care of distributing the weight matrices fig. g : Block diagram of SAND processing engine
among the WRAM'’s and the user needs$ twoknov how
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Fig. 7 : Block Scheme of a VME board for the KASCADE - experiment supporting four SAND chips.



5.1 Data stream controller
FIFO_B and stdrthe @lculation of the next 16 activities.
The control of the input/output data streams arkput activities for the calculations are taken from FIFO_A.
configured and organized in a data stream controllén a similar manner the processingeamputes activities
implemented in one ASIC, see Fig.7. The data streaofithe nex layer. The total calculation time of a network
controller contains controllers, configuration and statusonsists of the time necesg&o read input activities for all

registers for input/output data streacisSAND: the segments of the network.
* VME-DMA input/output configuration The architecture of SAND was adapted for processing
» FPDPinputcontroller four events in parallel. When ehontroller of input data
« ECL/NIM output controller stream sends less events for processing, missing events are

The input data source mae VME-DMA or FPDP. For replaced $ dummny data. The results of processing these
the output, similar options mgabe chosen (VME or dummy data are not pushed into the FIFO_out.
ECL/NIM). FPDP data input allows for multi-source data .
collection via one multi-wire flat bbon cable of maximum 6. Technical Data and Performance
1mlength.

The controller of the input data stream can organize the SAND is manufactured in a Quy CMOS process,
autonomous collection of input activities from several DAQSING a sea-of-gates technofogith almost 5K Gates.
slave modules situated in the same VME-crate togethEP€ packaging of SAND is a PG#ith 120 signal-pins.
with the neural processor module. In this case the DMA SAND has four parallel work@n processing elements
master capabilit of the VME controller is used. The (PE) on oe dip, each equipped with a 16 bit ftkgoint
configuration of the DMA channels, each including thénultiplier and a 40 bit adder in a pipeline. Data coming
VME-starting address, local starting address, type &om the input is passed through clocked registers from one
transfer and block length must be loaded from a VME-hoEE 10 the next (Fig. 9). To make use of the parallel
during initialization of the module. To avoid a VME- Structure, four epoches of activities are processed in one
timeout, the module must requeke VME-bus and start cycle. In this wg a matrix/vector multiplication is replaced
readout of the DAQ slave modules pmhen data of the by a matrix/matrix multiplication, insuring a permanent
whole event are present. Since the maannot perform @and full use of the parallel procesginnits and yielding
a check of reagflags of the slave DAQ modules via VME- 200 MOPS per chip operation speed at a cycle time of 20
bus, the @ntroller of the input data stream needse fed NS _ o o
via afront panel LEMO- connector with an Event_ready The non-linear activation function is calculdtdy the
signal (taken from a supervisor of the DAQ, for example}iSe Of a fee programmable look-up table allowing for a
The data transferate via VME bus depends on the timgnaximum & flexibility. A controller chip, the memories,
response of the slave modules and on the type of VME1€e lookup table and the SAND chip are arranged as a

transfer (see Table 1). fixed modular unit guaranteeing the tighming for up to
50 MHz operation (Fig. 8).
52 Command Sequencer and proceSS”‘]g core There are two well known applications of d|g|ta| neural

netwolk processors in second lévigiggers: CNAPS[3] in

On receiving a request fro the input data stream H1 [2] and MA16 [1] in WA92 [4], see Tab. 2. The neural
controller, the sequencer (see Fig. 8) reads tHEOCessor module based on SAND demonstrates throughput
configuration of the first layer from the ANN configurationsimilar to the CNAPS-board and succesgfutompetes
RAM and organizes a segment Segment calculation of With it when the dat acquisition systen is equipped with
the layer activities. Stre @ch SAND has four ALU's, the an event buffer. Moreover, the module allows processing of
processor board containing four SAND chipsymaanage higher accurac input activities. The SANDprocessor
16 neural ung smultaneously. During the processing offnodule shows higher throughpthan the trigger module
the first 16 nodes of the firdayer (first segment of the based on MA-16 due to the simultaneous processing of four
layer), the input dat ae taken fron the FIFO in and €vents and thkigher clock frequency &AND board.
pushed into a circular buffer FIFO_A. Here the data are The throughput of the VME Neural processor module is
available for calculation of the next segment of the layelimited by the time necessptto real data fran the DAQ
Simu|tane0u5|y, with mov'g] data, the procesaip units Systen into the module andybthe @lculation time (tlme
compute 16 activities of the segment. After the laput SPent ly SAND chips for tle alculation of output
activity has been taken from FIFO _in, the procegsinits activities). The last one depends oe thnfiguration of the
Comp|ete te a@lculation of the first Segment, push th@etwork. Solid lines in Flg 9 shothe alculation time
results via lookup table into the buffer of the hidden layer against the amount of input activities (N) for differréno-



layer feedforward networks (N:16:16, N:32:16 ancnery physics, it can afs be used for acceleration of
N:64:16). Dashed lines in the figure shthe readoutime neural simulations within software packages like
for different data transfer channels (DMA or FPDP) an&tuttgarter Neural Network Simulator (SNNS). Other
different modes of the transfer. In ¢h@ase of processing a graphical front end tools are under development.
feedforward network N:32:16, dnusing a VME bus for

MBLT64 DMA transfer of the data, processing time isTab. 3 : SAND commands

limited by the alculation time for lov values of N and by | command explanation
the readout time for larger N (thick line fiig.9). init_netcfg loads and activates the configuration df a
neural network
Tab. 2 : Comparison of existing MA16 and CNAPS data init_wram loads the weight matrix into the weight
with SAND _(from simulation menory
ANN input computation | latency init_lut loads the lookup table with a non-lingar
structure | activities time time activation function
CNAPS 8bit/20MHz 8us un- init DMAcfg | loads the DMA configuration
64x64x1 known Id data sends activities to SAND
SAND 16-bit/40MHz | 5.1us 27ps rd_result after processing has finished, data| is
MA-16 16-bit/8MHz | 5.5us 8us transfered back to host
16x5x1 ld CMD load commands
SAND 16-bit/4A0MHz | 0.5us 3.6us rd STAT read status
us Processing
time/event .
100} N:64:16 8. Conclusion
N:32:16
VME, Depending on the application several design criteria for
- MBLT64 ANN chips have d be met. These are partdifferent,
especial in respetto the size and the type of the neural
network. SAND performs feedforward networks, Kohonen
5.0 T g feature maps and radial basis functions with comparable
" epDP speed. Tk central processing unit of the chip was designed
- '32bit,25MHz in a way that ony few additional devices are required
compared to previous designs. To facilitate a stand-alone
1ol operation of SAND, the neuron activities are buffered.
' Because of the modular structureperformance

ié 32 o4 128 256 N improvements mabe achieved yadding more processing
Number of input nodes of the feedforward net. elements. Furthermore, a VME (see Fig.11) and PCI board
supporting four chips of SAND (addjnupto 800 MOPS)
are under development.

It is the main goal of this paper to stimulate the
discussion for a rve generation of digital neural chips.
Future developments of general purpose micro-processors
like pentium P55C from INTEL, K6 from AMD, M2 from
Cyrix and others haveotbe regarded carefully. Their

With the help of several software drivatsis eay to . . .
integrate the SAND VME-board into existing applicationsMMX"nStrUCt'OnS and the use of pardliateger units on

The drivers are sets of C-functions which are adapted (Eglp enable  these deviceso twry fad matrix

operating systems like LYNX-OS and LINUX. The:nultlﬁ)llcatflodnst. _Up to ki;lw thettrl.r;deper;ﬁlwer:t pne:rallel
following table gives a brief overwe of functions riﬂs 320 afa IS anpro ?mSSA(\)ND eyBca 0 Cofprenen
supported bBAND's software. wi e performance o . Because o any

Currenty a C++ class librar is under development restrictions the internal pipeline organization is not

: : : . . appropriate for the fast computation of neural networks.
which allows usersothuild easily neural applications using . . .
the SAND VME-board. tlis not necessgtto have detailed Other processors (from MIPS with MDMX-instructions) or

knowledge of SAND hardware because the softwarlge digital signal processor TMS320C80 from Tl aim to the
integrates the board as an intelligent co-processor. Besi 8[ € ?#ecuon dr;ealmg with similar problems.t B near
the possibily of using SAND as a trigger module for high uture this may change.

Fig. 9 : Network sizes related to various data transfers

7. Software



At FZK for medical and industrial applications, and at
particle physics experiments for trigger purposes and orl?]
and off-line data evaluation, compugirpower for neural
network operations in the range of 1000 MOPS and more is
demanded. A first silicon implementation for SAND, a
semi-custom chip with 200 MOPS, is expectgdhe end  [3]
of 1996. Tke dip is produced pIMS?, Stuttgart, the PCI-  [4]
board with four SAND chips is coming from INGO [5]
Leipzig and for the VME-board, also with up to four 6]
SAND chips, STRUCK is responsible. Faster versions
using full-custom design and supporting a fast hardware
learning features are under development. 7
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