Generation of Interconnect Topologies for Communication Synthesis*

M. Gasteier’

tDarmstadt University of Technology
Institute of Microelectronic Systems

Karlstrafle 15
D-64283 Darmstadt, Germany

Abstract

One of the key problems in hardware/software co-
design is communication synthesis which determines
the amount and type of interconnect between the hard-
ware components of a digital system. To do so, com-
munication synthesis derives a communication topol-
ogy to determine which components are to be connected
to a common communication channel in the final hard-
ware implementation.

In this paper, we present a novel approach to cluster
processes to share a communication channel. An iter-
ative graph-based clustering algorithm is driven by a
heterogeneous cost function which takes into account
bit widths, the probability of access collisions on the
channels, cost for arbitration logic as well as the avail-
ability of interface resources on the hardware compo-
nents to trade-off cost against performance in a most
optimum fashion. The key aspects of the approach are
demonstrated on a small example.

1 Introduction

The rapidly growing computational power of micro-
electronic components like microcontrollers and pro-
cessors together with increasing integration densities
for ASICs enable hardware realization of highly com-
putationally intensive applications as they occur for
example in the area of real-time image-processing.
However, as it turns out one of the main obstacles in
obtaining full benefit of such high performance com-
ponents is the problem of communication. Most of
these computationally intensive applications have to
deal with an immense amount of data. Not the pro-
cessing component itself, but the quality of the in-
terfaces and throughput of connections between the
components is often the main bottleneck of the system

*This work was supported by the DFG under grant
Gl1144/11-1 and G1144/11-2

M. Miinch#

M. Glesner!

{University of Kaiserslautern

Institute of Microelectronic Systems

Erwin-Schrédinger-Strafie
D-67663 Kaiserslautern, Germany

[1, 2]. Designing appropriate communication connec-
tions becomes a design task of its own [3], where the
designer has to analyze a wide variety of possible im-
plementations ranging from dedicated point-to-point
connections to a single global bus in order to select
a solution most appropriate for the requirements of
the system and additional constraints [4]. The final
performance of the system can only be assessed by ex-
tensive simulation or, as for many mechatronic appli-
cations, after implementation of a prototype. There-
fore, manual evaluation of all possible implementation
alternatives is usually not practical. Communication
synthesis tries to automatically determine cost effi-
cient communication connections, where the notion of
“cost” is usually expressed in terms of a weighted sum
of the number of buses with their required bus width,
costs for intermediate storage and area for peripheral
devices like arbitration logic or interfaces.

The problems to be solved during communication
synthesis can be grouped according to the level of ab-
straction they appear on: On topological level we clus-
ter processes into sets such that data transfers exe-
cuted between processes within the same set are suited
to share a common communication channel. This re-
quires a global view of the connection topology where
all transfers executed within the system have to be
considered. On this level we do abstract from most
physical implementation details of the communication
structure used to execute transfers between processes
within the same cluster. We will therefore in the fol-
lowing use the term logical channel for such a con-
nection. On channel level the implementation details
have to be evaluated for each logical communication
channel. This can be done without knowledge of the
global topology, information about the transfers exe-
cuted between the processes assigned to the current
channel is sufficient. Tasks to be solved on this level
include selection of a protocol to be used as well as
assignment of priorities or, in case of buses without

arbitration, scheduling of accesses [5, 6, 7].

An optimal solution to the problem of communica-
tion synthesis can only be found if the problems on
both levels, global and local, are simultaneously con-
sidered since they depend on each other. However,
in order to reduce the complexity of the problems to
be dealt with, we decided to use a divide-et-impera
approach which determines a global topology without
considering local implementation details. We propose
a graph-based approach for clustering of processes on
topological level which relies on basic transfer infor-
mation only, i.e. which processes communicate with
each other and how much information is exchanged.
An initial solution, where each transfer is assigned its
own logical channel, is optimized iteratively by merg-
ing logical channels.

After the optimization process, the resulting logical
channels can be converted into descriptions of physical
buses by applying techniques as for example presented
in [8].

There are only few publications related to commu-
nication synthesis on topological level. In [1], a greedy
approach is used to map a multi-process description
onto one or more buses. A new bus is successively
added whenever the expected delay of an existing bus
exceeds a given threshold. Thus, bus selection and as-
signment is executed locally while we propose a more
global view to achieve buses with a more balanced
load. In [9], four different implementation alternatives
for communication based on global and local memory
and buses are classified. Selection of the model to be
used is up to the designer. The selected model is then
implemented by an automatic refinement procedure.

2 Problem Description

We specify the system to be realized as a set of
n communicating processes pi,pa,-...,Pn [10]. Two
processes p; and p; exchange data with a certain fre-
quency which we characterize by a so-called commu-
nication density d;;. The density d;;, 0 < dj; < 1is
defined as the quotient of the number of clock cycles
in which at least one transfer from process p; to pro-
cess p; is performed and the number of clock cycles
executed in total. A density d;; of zero means that
no data transfers occur from p; to p;, whereas a den-
sity of one denotes that transfers are executed in each
clock cycle. Such values can for example be derived by
co-simulation, as described in [11]. Please note that
the density does not specify the temporal distribution
of transfers but just the number of transfers executed
over a certain time interval.

Each process p; is executed on a hardware com-
ponent which communicates via a port interface with

other processes. If the process is implemented in soft-
ware executed on a standard component, for exam-
ple a microcontroller, the number and widths of ports
available are fixed. While most microcontrollers have
n ports of a single width m there are also some types
which provide ports of different widths. The number
and widths of logical channels this component is con-
nected to must not exceed the available port resources,
otherwise forcing merging of channels.

We assume the temporal distribution of transfers
to be non-deterministic. This means that the delay in
terms of clock cycles between two transfers cannot be
predicted in advance. Consequently, we have to use
buses with arbitration logic for implementation of a
logical channel since we cannot exclude multiple ac-
cesses at the same time. Applications for which this
assumption does not hold can also be realized using
the approach presented here. However, more efficient
results are usually achieved when applying techniques
as presented in [7] where buses without arbitration im-
plement the required connections. It is also possible
to mix both approaches if the execution times of data
transfers are predictable for only a subset of the pro-
cesses. In this case the processes in the subset can
be treated as a single process for which a bus without
arbitration is used for internal communication. Com-
munication with processes not in the subset is then
handled by the approach presented in this paper.

The main problem for efficient clustering under the
given assumptions is the heterogeneity of the target
function. This function has to control the clustering
process in a way that, first, all port violations are re-
moved and afterwards a performance/area trade-off
is performed. Reducing hardware costs is achieved
by channel merging, the degree of which needs to be
traded off against the probability of access conflicts on
the channels which in turn reduce their communica-
tion throughput.

3 Graph-based Clustering
3.1 The Graph Model

In a first step we derive a directed, cyclic graph
GV, &, w,p,b) which models the system to be real-
ized. Each process is modeled by a vertex v; € V. To
each vertex v; we assign a priority p(v;) which charac-
terizes the number of port violations. Port violations
occur if the number and/or width of logical channels
assigned to a vertex exceed the port resources available
on the corresponding hardware component. As long as
p(v;) > 0, logical channels connected to v; have to be
merged. For hardware components p(v;) can initially
be set to zero. However, it is also possible to specify
a port capability for hardware components in order to

optimize the interconnect cost of a component.

An edge e;; = (vi,v;) € € indicates that data is
transferred from the process associated with vertex
v; to the process associated with vertex v;, i.e. that
dij > 0. To each edge e;; we assign a weight w(e;;)
which denotes the degree of efficiency with which the
transfers between v; and v; can share a common chan-
nel with transfers between other vertices. The density
di; is a good indicator for the weight of an edge be-
tween two processes. Transfers which are executed fre-
quently, i.e. which own a d;; close to one would with a
high probability block a bus for other transfers, while
transfers with d;; close to zero block a bus with a low
probability only. We therefore set w(e;;) = di;. In
addition, each edge e;; is attributed with the number
b(e;;) of bits required to execute the corresponding
transfers. b(e;;) can be derived from the maximum
width of all data transferred from v; to v;.

Merging of transfers into logical channels is per-
formed by assigning edges e € £ of graph G to clusters
C;. A cluster C; is defined as a set of edges from G,
an associated weight w(C;) which describes the total
communication density and a bit width §(C;) which
describes the required bit width for the logical chan-
nel represented by this cluster. Since each edge e € £
is contained in exactly one cluster Cj;, the set C of all
clusters C; describes a partitioning of £:

c={Ci||JCi=€ AVi,j:i#j:CinC;=0}.

Each cluster C; € C thus defines a logical channel
through which all transfers of the associated edges will
be executed and which will be realized later on by a
separate bus.

3.2 The Optimization Strategy

The algorithm we have developed to solve the prob-
lem described above follows an iterative approach.
The basic characteristics of this algorithm are:

e The number and bit widths of logical channels
connected to a component will not exceed the
component’s port resources.

e The average probability of access conflicts for
each logical channel is balanced and can be upper-
bounded.

o Transfers with widely differing bit widths will not
be assigned to the same channel in order to avoid
blocking of wide channels by transfers requiring
small bit widths only.

e The trade-off between performance and area can
be controlled by a single parameter.

Before describing the complete algorithm, we will
first present the basic concepts used. The initial so-
lution we start with assigns each edge between a pair
of processes (v;,v;) its own cluster or logical chan-
nel. The cluster weight is initialized with the edge
weight. We then optimize this initial solution by it-
eratively merging clusters, thus reducing the number
of logical channels. In order to achieve a feasible so-
lution, we first resolve any port violations by merg-
ing clusters connected to processes which exhibit such
violations. After resolution of all port violations, we
continue to optimize the clustering by executing a per-
formance/area trade-off as specified by a trade-off pa-
rameter in the cost function. The costs for a current
clustering C are calculated as follows:

£(C) =LY pwi)+ > B(C)
v; €V c;ec (1)

T (w(C5)) + Narp - costary

- max
VC;€C:|Ci|>1

At the beginning of the clustering process, resolu-
tion of port violations is forced by the first term. L
is a weight factor which should be set to a very large
value in order to introduce high costs in case of port
violations. Thus actions which will reduce port con-
flicts are preferred as long as port conflicts occur. The
second and third term are used for evaluation of area
and performance. The function §(C;) returns the bit
width required for the logical channel assigned to clus-
ter C;. Accumulating the bit widths for all clusters
gives us an estimate of the required area. The total
performance of communication is usually dominated
by the slowest bus within the system. We therefore
estimate the performance of a clustering by evaluation
of the maximum cluster weight of all shared channels,
i.e. clusters which contain more than one edge. ng.p
is the number of arbitration units which have to be
implemented when channels are shared. Each arbitra-
tion unit increases the costs by costgrp.

The trade-off between area and performance can be
controlled by the parameter ¢;. Since the sum of all bit
widths of the channels will usually be much larger than
the maximum density on the channels, ¢; should be set
to a value larger than the expected accumulated bit
width in order to assign performance a greater priority
over area. Setting ¢; to a lower value will generate
smaller channels with a higher probability of access
conflicts. Although the designer will often not be able
to come up with an optimal setting for ¢; the first
time the algorithm is executed, iterative adaption of
¢ allows adjusting the generated solution accordingly.

To improve the quality of the generated solution,
the algorithm applies a look-ahead technique before
merging two clusters in order to assess the potential
for further optimization. Therefore in each iteration
we not only evaluate the costs for all possible merges
of two clusters, but also check if there exist other clus-
ters whose associated vertices are all contained in the
clusters proposed for merging. In this case, a merge
with either of these clusters executed in the next iter-
ation will with a high probability significantly reduce
the costs, since additional arbitration logic will not
be required for merging in these clusters. To prefer
such merges over a merge which, from a local point of
view, would lead to a slightly better improvement but
without further optimization potential, we calculate
the resulting costs under consideration of the aver-
age improvement achieved in two steps. An example
which demonstrates the effectiveness of the applied
look-ahead technique is presented in Section 4.

The algorithm will always find a solution provided
that there are no transfers performed by a process
which cannot be handled by the hardware component
the process is assigned to due to port limitations.

3.3 The Algorithm

Algorithm 1 formally describes the clustering algo-
rithm. As described in the preceding section, the algo-
rithm starts with a solution of maximum cost which
is iteratively optimized by merging clusters until no
further reduction in cost can be obtained. An initial
solution of maximum cost obviously requires a sepa-
rate logical channel for each edge in &; this solution is
constructed in Line 1 of the algorithm.

To be able to reason about the set of hardware com-
ponents linked to a logical channel, we define a map-

ping

P:C—-V
P Cil—){’U|’UJ_Ci},

which maps a cluster C; onto the set of vertices v
adjacent to any edge in C;. The symbol L denotes
the adjacency relation. In the following, we will refer
to this set of vertices P(C;) as the “projection” of the
cluster C;.

The “severeness” of a port constraint violation of a
vertex v is expressed by the function p(v): the higher
p(v), the higher the difference of the number of logi-
cal channels to which v is connected and the number
of ports on the associated node processor. A vertex
v for which p(v) = 0 holds does not violate its port
constraints. A more rigorous, mathematical definition
of p would require taking into account various other

Algorithm 1 Clustering of transfers
1: C = {{e,-j} | eij € g},
2: COSteoyry 00;
3: repeat
4: if Juv; € V: p(v;) > 0 then

5: X « {v; €V : p(v;) max.};

6: else

7: X« {}

8: end if

9: COStimpr < O0;

10: for all {C;,C;} €C?: X CP(C;)NP(C;) do
11: COStmerge <~ fc(C[Ci,Cj]);

12: Ccostyq

: Con)
ckecm(ck?élvr:l(ci)up(cj){fc(1€:,C51,641)> %3

13: COStpew — min{w, COStmerge 13
14: if costpew < cOStimpr then

15: M1 (—Ci; MQ(—C]';

16: COStimpr < COStpew;

17: end if

18: end for

19: Improved + FALSE;

20: if costimpr < cOstoyrr then
21: C(—C\Ml, C(—C\Mz,
22: C + CUmerge(M;, My);

23: c08teyrr +— fe(C);
24: Improved + TRUE;
25: end if

26: until I'mproved = FALSE;

parameters (such as the bit width of each port) and
is therefore omitted in this paper for the sake of sim-
plicity.

The outer loop of the clustering algorithm (Line 3—
26) checks whether there are still vertices whose port
constraints are violated. If so, the vertex with the
worst violation is selected in Line 5. If this vertex
cannot uniquely be determined, we randomly select
a vertex with maximum p(v). The selected vertex is
stored in the set X’; this set remains empty if the port
constraints for all vertices are satisfied.

In the inner loop (Lines 10-18), we investigate each
pair (C;, C}) of clusters and determine the cost of the
new topology assuming a merge of these clusters. In
doing so, we require X’ to be a subset of the intersec-
tion of the projections of clusters C; and C; (Line 10),
thereby constraining potential merges to those which
would resolve open port constraint violations. Since
the empty set is a subset of any set by definition, the
selection of cluster pairs is not affected if no more con-
straint violations are present.

Let C; ;) denote the resulting cluster of merging

clusters C; and Cj. Let Cic,,c;) denote the set of clus-
ters derived from C by merging clusters C; and Cj.
To compute the cost of the resulting overall configu-
ration, the cost parameters of the merged cluster are
derived from those of its parent clusters as follows:

w(Ciz) = w(Ci) +w(Cj) (2)
B(Ciiz)) = max{B(C;), B(Cj)}- (3)

Based on these, we now re-compute in Line 11 the cost
of the clustering after a merge using the cost func-
tion described in Section 3.2 and assign this cost to
COStmerge-

To alleviate the problem of getting caught in a local
minimum, we then perform a one-step “look-ahead”
as discussed in the preceding section. We consider
all clusters Cy whose projections are subsets of the
union of projections of the clusters currently being in-
vestigated. Such a cluster C} has the property that
the corresponding channel only accommodates trans-
fers which could also be assigned to the channel of
the merged cluster C(; ;). As described in the preced-
ing section, merging C}, into the latter could therefore
be beneficial for reducing the overall cost of the bus
topology. The best cost achieved by a two-step merge
is assigned to cost;, in Line 12. In the following line,
we then compute the “effective new cost” after merg-
ing the clusters currently under consideration. Note
that a successive merge that seems promising is in-
corporated in the value cost,e,.- The purpose of the
if-clause in Lines 14-17 is to store the best cluster
pair encountered so far in M; and M.

After having investigated all potential clusters to be
merged, the best clusters are selected and effectively
merged in Lines 19-25. The algorithm then iterates
until no further improvement can be obtained.

4 Example

In the following, we will walk through a small ex-
ample to illustrate the main features of our algorithm.
Fig. 1(a) shows the initial graph G. Four processes
modeled by vertices v; to vy exchange data. While
three of them (v, v2 and v3) communicate with each
other, the fourth process (v4) is connected to a single
process (v3) only. The edge weights w(e;;) are de-
rived from the communication densities as indicated.
We assume that a bit width of eight is used for all
transfers to simplify the example. However, later on
we will also explain how a different bit width affects
the results we achieve. We also assume that v3 is im-
plemented on a microcontroller providing two eight bit
ports, such that a port constraint violation occurs as
long as more than two channels are connected to vs.

To demonstrate the influence of the trade-off factor c;
on the cost function f.(C) we will calculate costs for
¢t = 10, ¢; = 20 and ¢; = 40. The corresponding costs
will be referred to as f;10(C), fe,20(C) and f;40(C),
respectively.

The initial clustering derived from G is depicted
in Fig. 1(b). The cluster weights w(C;) (denoted in
italics) are set according to the edge weights w(e;;).
If we assume a port violation cost of 8000 (p(v;) = 8,
L = 1000), calculation of the initial costs using the
cost function (Eqn. 1) returns a value of f.(C) = 8040
independent of ¢;.

In the following we will describe the clustering pro-
cess. The costs for a arbitration unit are assumed to
be 10.

Iteration 1:

In the first iteration, the algorithm only compares
merging of clusters which contain vertex vs, since this
vertex exhibits a port violation. Thus, the following
candidates are evaluated: pair (Cs3, Cy), pair (Cs,C5)
and pair (C4,Cs). The resulting costs for a merge
of the pair (Cs, Cy) are shown in column 1 of Table
1. The first column describes the costs after the first
merge, as calculated in Line 11 of the algorithm.

The cost for ¢; = 40 is, for example, computed as
follows:

feao(Ces,cag) =1000) " p(wi) + > B(C)

v; €V CiEC[C3,C’4]

+40 (w(Cy))

. max

VCi€Cloy, 0,411 Ci|>1
+ Narp - COStarp
=1000-0+4-8+40-03+3-10
= T74.

If the merge is executed, two clusters exist whose
vertices are a subset of the merged cluster C3 4) and
therefore examined during look-ahead: C; and Cs. Cs
will be selected for look-ahead because the lower clus-
ter costs incur lower total costs. The look-ahead costs,
as calculated in Line 12, are listed in the second col-
umn of Table 1. The average costs are shown in col-
umn three while column four contains the effective
cost which will be assigned to costpey-

Merging pair (Cs,C5) results in the same costs
€OStmerge as for merging pair (Cs, Cy) since the cluster
weights w(Cy) and w(Cs) are identical. However, no
look-ahead costs cost;, are calculated since there is no
other cluster C; such that P(C;) C P(C(35)). Thus,
€08lpey Will be set to costmerge-

0.3 C’.I.
//&1& o3 &) S
0.1
@ 0.1 @ 0.1 @ @ O.('f4
(a) Graph G
@
C
o C2.3.4)
0.4

@ @ @

(d) Clustering after second iteration

0.2
Q@ cou @

(b) Initial clustering C

&

0.1
@ ¢, ® ¢ @

(c) Clustering after first iteration

G

0.3 0.3

@
Ca,2,34)

0.7

(V) Q@ ¢ @

(e) Clustering after third iteration

Figure 1: Clustering example

|| COStmerge | costy, | Average | COStpew

fe,10(Cres,ca)) 74 70 72 72
fe20(Ciey,cu)) 68 62 65 65
Je10(Crey,ca)) 65 58 61.5 61.5

Table 1: Costs after merging pair (Cs3, Cy)

For a merge of pair (Cy,C5) the following costs for
COStpey are achieved: fc 40(C) = 70, f;20(C) = 66 and
fc,lO(C) = 64.

This step demonstrates the benefit gained from
look-ahead. Although merging (Cy, Cs) leads to lower
costs for a single merge, as indicated by the value of
€08tmerge, the minimum costy.,, are achieved by merg-
ing (C3,C4) for ¢; = 20 and ¢; = 10 because the fu-
ture optimization potential is larger. The effect of ¢;
is also shown: for ¢; = 40 (Cy, Cs) would be chosen.
This would also be the final solution since no further
improvement can be achieved. Furthermore, if the ini-
tial solution did not exhibit port conflicts, no merges
would be performed since all merges exceed the initial
cost of 40. The result of clustering assuming ¢; = 20
or ¢; = 10 is shown in Fig. 1(c).

Iteration 2:

In the second iteration, there are six candidates for
merging since no more port violations have to be con-
sidered. When clustering any two of C1, C2 and C(3 4
costy, will be the same because the look-ahead extends
the two selected clusters by the third one. Considering
coStmerge, merging (Ca, C3,4)) will lead to the cheap-
est solution. Merging C5 with any of the other three

clusters is also too expensive since arbitration logic
has to be inferred for all four processes in these cases.
We therefore limit our analysis to the pair (Cs, C(3 4))-
The costs calculated for this merge are listed in Table
2.

|| CO8tmerge | costy, | Average | COStnew

fe20(Clon,0i.0)) || 62 60 61 61
fc,lO(C[Cz,C(SA)]) 53 55.5 55.5

Table 2: Costs after merging pair (C2, C(3,4))

For both trade-off factors, ¢; = 20 and ¢; = 10 the
resulting costs are lower than the best cost achieved
in the previous iteration. Therefore clusters Cs and

C(3,1) are merged, resulting in the clustering shown in
Fig. 1(d).
Iteration 3:

In iteration three, the following merges are possible:
(01,0(2,374)), (01,05) and (0(273’4),05). The first op-
eration yields the lowest cost, as shown in Table 3.
The resulting clustering is shown in Fig. 1(e).

|| (C1,Cla3,4)) | 01, Cs) | (Ci2,3,4),C5)
fe, 20 60 65
fea0(C 93 58.5

Table 3: Costs after third iteration

If the maximum bit width of the transfers in C; was
one, i.e. B(C1) =1, this merge would not be executed

for ¢; = 20 and ¢; = 10 in order to avoid blocking of
the eight bit bus by single bit transfers. For ¢; < 4,
however, the merged solution yields lower costs.

Iteration 4:

In this iteration, no further improvements can be
achieved. Merging the two remaining clusters results
in fC,QO(C) = 64 and fc,lO(C) = 56 which in both
cases exceeds the costs achieved in the previous it-
eration. The algorithm thus terminates, returning the
clustering generated in iteration three and depicted in
Fig. 1(e) as the final solution.

5 Conclusion and Future Research

In this paper we have presented an approach to
derive communication topologies for complex systems
from system-level communication characteristics. A
topology suited for cost efficient implementation is
constructed under consideration of port resources and
channel access probabilities, thus allowing comfortable
area/performance trade-offs. Due to the modest com-
putational complexity the designer can iteratively ad-
just the topology according to her/his needs.

Future research will focus on improving the accu-
racy of the cost function. Its quality can be enhanced
further by incorporating different classes of interface
and arbitration logic depending on whether the pro-
cess only writes to the channel, only reads from the
channel or is doing both, reading and writing.

References
[1] T.-Y. Yen and W. Wolf. Communication Synthe-
sis for Distributed Embedded Systems. In Proc.
of Intl. Conference on Computer-Aided Design
95, pages 288 — 294, San Jose, CA, November
1995.

[2] M. P. Marks. Future Directions in Microproces-
sor Technology. IEEE Journal of Solid-State Cir-
cuits, 30(4):371 — 374, April 1995.

[3] S. Vercauteren, B. Lin, and H. De Man. Con-
structing Application-Specific Heterogenous Em-
bedded Architectures from Custom HW/SW Ap-

[4]

[5]

[6]

[7]

(8]

[9]

[11]

plications. In Proc. of the 83rd Design Automa-
tion Conference, Las Vegas, NV, June 1996.

W. Wolf. Hardware-Software Co-Design of Em-
bedded Systems. Proc. of the IEEE, 82(7):967 —
989, July 1994.

S. Narayan and D. Gajski. Synthesis of System
Level Bus Interfaces. In Proc. of the Furopean
Design & Test Conference 94, pages 395 — 399,
Paris, France, February 1994.

P. Chou, R. Ortega, and G. Borriello. Syn-
thesis of the Hardware/Software Interface in
Microcontroller-Based System. In Proc. of the
ICCAD 92, pages 488 — 495, 1992.

M. Gasteier and M. Glesner. Bus-Based Commu-
nication Synthesis on System-Level. In Proc. of
the 9th International Symposium on System Syn-
thesis, pages 65 — 70, La Jolla, CA, November
1996.

A.S. Wenban, J.W. O’Leary, and G.M. Brown.
Codesign of Communication Protocols. IEFEE
Computer, pages 46 — 52, December 1993.

J. Gong, D. Gajski, and S. Bakshi. Model Refine-
ment for Hardware-Software Codesign. In Proc.
of the European Design & Test Conference 96,
pages 270 — 274, Paris, France, March 1996.

M. Gasteier, T. Hollstein, M. Miinch, and
M. Glesner. An Interactive Approach to Hard-
ware/Software Co-Design. In IFIP Workshop on
Logic and Architecture Synthesis 96, pages 211 —
218, Grenoble, France, December 1996.

M. Gasteier and M. Glesner. Co-simulation of
Mixed HW/SW Systems (orig: Cosimulation
gemischter HW/SW-Systeme). In M. Glesner,
editor, Hardwarebeschreibungssprachen — und
Modellierungsparadigmen: 2. GI/ITG/GME-
Workshop, pages 60 — 69, Darmstadt, Germany,
February 1996.

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

