
A Flat, Timing-Driven Design System for a
High-Performance CMOS Processor Chipset

Juergen Koehl, Ulrich Baur, Thomas Ludwig, Bernhard Kick, Thomas Pflueger
IBM Entwicklung GmbH Boeblingen, Schoenaicher Str. 220

71032 Boeblingen, Germany
koehl@de.ibm.com

 Abstract
 We describe the methodology used for the design of the

CMOS processor chipset used in the IBM S/390 Parallel
Enterprise Server - Generation 3. The majority of the logic is
implemented by standard cell elements placed and routed
flat, using timing-driven techniques. The result is a globally
optimized solution without artificial floorplan boundaries.
We will show that the density in terms of transistors per mm2

is comparable to the most advanced custom designs and that
the impact of interconnect delay on the cycle time is very
small. Compared to custom design, this approach offers
excellent turn-around-time and considerably reduces overall
effort.

1: Introduction and Motivation

Custom design is the dominant design style for high per-
formance processors. The physical partitions used in floor-
planning are typically identical to the logical partitions. The
sub-optimality caused by the floorplan boundaries is reduced
by changing the functional partitions based on back annota-
tion of floorplanning results. This however, adds additional
turn-around-time. The advantage offered by a custom ap-
proach is that different design styles, ranging from full-cus-
tom layout to standard cell design, may be used on individual
partitions. In this sense, custom design focuses on local opti-
mization at the expense of global optimization.

A standard cell design approach makes it possible to glo-
bally apply advanced optimization algorithms on the entire
design, thus improving the quality of the layout while signif-
icantly reducing manual effort. The use of basic standard cell
elements reduces the complexity to the extent that the entire
design can be handled flat by layout and test data generation
tools, removing the need for artificial floorplan boundaries.

While our approach does use custom memory arrays and
some small custom logic macros for special functions, it is

important to note that these logic macros are small enough to
be placed under global timing optimization criteria and do not
need any floorplanning or preplacement. The majority of the
combinatorial logic, however, is implemented in standard
cells, and is placed and wired flat with the primary objective
being cycle time reduction. A full timing-driven layout of the
PU chip with its 164,000 placeable objects and 600,000 con-
nections can be performed in less than 5 days!

Logic entry, synthesis, and simulation are performed
based on functional units. The fact that the logic partitioning
is not used during layout removes the need to optimize this
partitioning based on timing and layout considerations. Time
consuming logic repartitioning based on layout back annota-
tion is no longer needed.

FIGURE 1. Design Flow

The testing methodology includes Design for Test

B
oolean C

om
pare

Test Data
Generation

Circuit
Design

Design Entry, Synthesis

Design for Test

T
im

in
g

 A
n

a
ly

si
s Placement

Routing

and Simulation

Tape-Out to
Manufacturing

Timing Optimization

sec. 3.0 sec. 4.0

se
c.

 5
.0

se
c.

 5
.4

sec. 7.0

sec. 6.0

sec. 5.0

(DFT) to assure a high test coverage, and test-pattern gener-
ation (TPG) to enable testing, analysis, and debugging of
chips in manufacturing. Key are fast turn-around-time and
high-quality testing.

Test data generation, circuit and logic design, as well as
layout verification, are performed with IBM internal tools.
The layout optimization tools were developed at the Institute
for Discrete Mathematics at Bonn, Germany, in close coop-
eration with IBM Boeblingen. This cooperation minimizes
the lead time required to incorporate combinatorial optimiza-
tion research results into production tools. The availability of
these advanced methods in combinatorial optimization en-
ables us to apply the methodology outlined in this paper to
designs with more than 500,000 placeable objects and
1,700,000 connections.

This paper is intended to give an overview of the pro-
cessor chipset and the methodology used (see Figure 1), and
to set a frame for the presentation of the mathematical algo-
rithms used in layout and timing optimization ([3], [5] and
[12]) which were key to the implementation of this method-
ology.

The methodology has been used successfully on a S/390
CMOS processor chipset which is the heart of the S/390 Par-
allel Enterprise Server - Generation 3 which has been on the
market since September of 1996.

2: System Overview

2.1: Chipset

The chipset (Figure 2) consists of a clock chip, process-
ing units (PU), level 2 caches (L2), bus switching network
adapters (BSN) with level 3 cache, two I/O controllers
(MBA) and storage controllers (STC). A tightly coupled S/
390-multiprocessing system with up to 12 processors can be
built with this chipset, and can address a physical storage of
16 Gbytes. Each PU is connected to the memory through L2
and BSN by four 16-byte-wide buses supporting 2-way inter-
leaving each. This results in a peak bandwidth of more than
10 GB per second for the entire chipset. The system runs
with a cycle time of 5.9 ns.

The chipset performs substantial error checking to in-
crease resistance to soft errors. All data path elements are
parity checked, and for large SRAM devices soft error recov-
ery or ECC is used. Soft error recovery takes advantage of
the fact that data is often held a second time in the system,
e.g. in the cache and in memory, and in the event of a parity
error, the duplicated data are automatically copied to the
faulty device. ECC provides 1-bit failure correction and 2-bit
failure detection.

FIGURE 2. System Overview (max.
configuration)

2.2: Cache Structure

The chipset implements a three-level cache hierarchy.
The level 1 (L1) and level 2 (L2) caches are private for each
PU. The L3 cache is a system-wide shared cache. The line
size for all caches is 128 bytes. Eight cycles, plus the latency
cycles described in Table 1, are needed to transfer a com-
plete cache line.

The L1 caches, located on the PU chips, are 32-kbyte 8-
way set-associative write-through, and can be accessed with-
in one cycle. The L2 caches, which are 256-kbyte 8-way set-
associative write-in, are implemented as separate chips. The
L2s implement the MESI protocol to ensure system-wide
data consistency between all L1s and L2s. The 2 Mbytes L3
cache is located on the BSN chips. This shared cache is
write-through, and designed for high-speed PU-L3 commu-
nication.

TABLE 1. Memory Hierarchy

Size Associativity
Latency
cycles

L1 32 KB 8 0

L2 256 KB 8 4

L3 2 MB 8 13

Memory 8 GB - 32

PU0

PU1

PU2

PU3

BSN

Bus0

BSN

Bus1

BSN

Bus2

BSN

Bus3

STC

STC

Memory Card 0

STC

STC

Memory Card 1

STC

STC

Memory Card 3

STC

STC

Memory Card 2

MBA

High Speed I/O

MBA

PU4

PU5

PU6

PU7

PU8

PU9

PUA

PUB

Bus0
Bus1
Bus2
Bus3

Bus0
Bus1
Bus2
Bus3

L2

L2

L2

Clock

2.3: Processing Unit Chip

The PU implements a 32-bit CISC data architecture
which executes the S/390 instruction set. The main parts of
this chip are the L1-cache, floating point, address generation,
ALU, shift unit, register file, timers, and data compression
unit. Data compression is fully implemented in hardware.
The main floating point data flow consists of an add-subtract
flow with 116-bit width, and a signed multiplier with 60*60
bits. The pipeline structure for all non-floating-point op-
codes runs up to four stages deep:
• instruction fetch
• decode
• execute
• putaway

In case of floating-point computational operation, the
four stages above are expanded to eight stages. Therefore the
most frequently used PU operations, and all floating-point
operations except divide, square root, and extended multiply,
require only one execution cycle. All floating-point and 108
PU-related instructions are executed by hardware only, as in
RISC processors. The remaining PU instructions are execut-
ed via a vertical micro code. A portion of this micro code is
loaded on system start to a 32-kbyte PU on-chip SRAM de-
vice. Another part of the micro code is held in a 32-kbyte on-
chip ROM, and the remaining portion has to be transferred
from the memory through STC, BSN, and L2 if needed. A
micro code transfer unit consist of 128 bytes. In a commer-
cial environment, this instruction implementation leads to an
infinite cache cycles-per-instruction (cpi) performance of
2.4.

3: Technology and Circuit Design

3.1: Technology

The CMOS process used [10] on this chipset was devel-
oped by IBM Microelectronics Division. The technology
provides six layers of metallization, one for internal circuit
wiring only, and four layers for wiring in a 1.8µm wiring
pitch. The last metal layer is used primarily for wiring redis-
tribution to the C4 array of signals and supplies

3.2: Library and Chip Image

The standard cell library provides a set of logic gates,
latches, and I/O’s. They fit into 3.5 million legal placement
locations and are interconnected through the x/y-wiring
tracks defined in the chip image. The I/O-cells are allowed to
be placed anywhere among the 3.5 million legal locations.

3.3: Custom Circuit Design

The base standard cell library provides simple logic
gates, but for the special needs of a S/390 processor a small
set of custom Logic Macros and custom SRAM Macros was
required. The custom implementation of the macros gives
the circuit designer the freedom to use special circuit design
techniques, like dynamic and double pass [11] circuits to im-
prove the propagation delay.

The circuit design flow begins with a specification sheet
defining the macro requirements. With this information an
HDL model in a proprietary hardware description language
[7] is built. This model of the macro defines the logic behav-
ior and is as compact as possible to reduce logic simulation
time. The HDL model is thoroughly simulated against the
specification sheet and becomes the “golden model” for the
following design process. All other design sources required
on the way to layout are checked against the “golden model”.

The first step of the schematic-driven layout is imple-
mentation of the logic function in transistors with a schemat-
ic entry tool. An iterative process based on transistor-level
simulation followed by transistor modifications is necessary
to meet the timing, performance, and power consumption
targets of the macro.

FIGURE 3. Circuit Design Flow

TABLE 2. Technology

Feature Value

Supply Voltage 2.5 V

Leff 0.25 µm

Minimum Feature Size 0.33 µm

Tox 7 nm

Metal layers 1 + 5

Specification
Sheet

HDL Entry

Schematic Entry

Layout Design

Boolean

LVS

DRC

LPE

Rules

Compare

Transistor
Simulation

Design Verification

Logic
Simulation

A boolean equivalence checker [6] compares the tran-
sistor schematics against the “golden model” and gives early
simulation-independent feedback of the correct implementa-
tion.

An early timing rule is generated for the chip-level de-
lay-calculator [3]. This early rule will be replaced later in the
design process by the final rule, based on layout-extracted
circuit information.

The device and net information in the schematics is
used by the schematic-driven layout tool. Compliance of the
macro layout with the technology design rules is checked
with a hierarchical design rule check (DRC). The layout de-
sign style could vary from a full shape-by-shape design, to
the usage of circuit generators for base logic functions like
NANDs. The custom macros can be used like big standard
cell books, placeable in any legal location.

The custom macro layout is fed into the layout parasitic
extraction (LPE) tool. The transistor geometries (width and
length), as well as all parasitic elements, such as diffusion ca-
pacitances and line-to-line capacitances, are then extracted
from the layout. The generated netlist with parasitic elements
is used for transistor-level re-simulation to make sure that the
function and performance are still correct. This netlist is the
source for the final timing rule representing the most accu-
rate timing model of the macro.

After the custom macro layout is complete, a final lay-
out versus schematic (LVS) check is performed. This check
generates a layout netlist and compares it against the sche-
matic netlist, not only checking network topology and device
sizes, but also detecting net opens and shorts.

Finally a test rule is generated, breaking down all tran-
sistor schematics into the primitive functions understood by
test pattern generation (TPG), such as AND, NAND, NOR,
OR, and XOR. This rule is verified against the “golden”
HDL model to guarantee logic equivalence between both im-
plementations.

4: Design Entry, Synthesis, and Simulation

4.1: Design Entry

The design system accepts design data in three forms:
gate level schematics, hardware design language (HDL)
code (see [7]), and finite state machine (FSM) tables; see
Figure 4.

Gate level schematics are preferred for data flow domi-
nated designs, whereas HDL code and FSM tables are well
suited for control flow dominated designs. Most parts of the
I/O chips are HDL code or FSM table designs. The level of
description is similar to the concurrent subset of VHDL:
boolean expressions, signal assignments, component instan-
tiations, etc..

FIGURE 4. Logic Design Data Flow

FSM tables are convenient because they describe finite
state machines more compactly than HDL code. FSM tables
are translated to HDL code for synthesis and simulation. For
simulation the generated HDL code is instrumented to col-
lect statistics about state transitions exercised by a set of test
cases. This information is used to create test cases that exer-
cise all possible state transitions.

4.2: Logic Synthesis

The logic synthesis system, BooleDozer [1], reads the
HDL code and generates gate level netlists. BooleDozer per-
forms technology-independent optimization, technology
mapping, and timing optimization to generate a netlist of
minimal size that meets the delay objectives. Synthesis uses
the same delay calculator as placement and routing, with the
exception that interconnect capacitances and resistances are
estimated as a function of fanout, based on statistics from
placement and routing.

As a full chip design cannot be synthesized in one run,
it has to be partitioned into pieces of a few thousand synthe-
sizable gates each. This approach has the advantage that syn-
thesis jobs can run in parallel on multiple machines, reducing
turn-around times. Synthesis times range from one to ten
CPU hours per partition, resulting in over-night turn-around
if only a few partitions are synthesized. Turn-around time for

FSM-to-HDL

HDL
Code

Synthesis

Gate
netlist

Flattener

Chip
netlist

L
og

ic
 S

im
ul

at
io

n

Text Editor

Schematic
Editor

FSM
Table

a complete chip is two to three days.
Partitioning requires that delay objectives for the chip

be broken down into delay objectives for each partition. This
process, called slack apportionment, assigns delay objectives
to partitions in such a way that if each partition meets its de-
lay objective, then the chip also meets the delay objective.

Logic synthesis and schematic entry generate one net-
list for each chip partition. The partition netlists are finally
flattened into one chip netlist for flat placement and routing.

4.3: Simulation

Extensive logic simulation at the functional unit, chip,
and system level is performed to verify the functional cor-
rectness of the designs ([8], [9]). Simulation is performed
without regard to delay, leaving timing verification to the de-
lay calculator [3]. This approach nicely separates timing as-
pects from functional aspects and speeds up simulation
considerably.

Unit level and chip level simulation are performed by
the logic design groups, primarily using HDL models and
test cases developed by the logic designers. This mode of
simulation is used mainly in the early stages of the design to
fix the easy bugs.

The bulk of simulation happens at the system level. Sys-
tem simulation uses gate level models for the processor,
cache and memory interface chips, and behavior level mod-
els for the I/O chips.

The tests performed include micro-code tests and archi-
tecture tests. Micro-code tests are low level tests that simu-
late at the hardware implementation (micro-code execution)
level. They are loaded into, and executed from, the control
store of the processor. Architecture tests are assembly lan-
guage programs that check that the hardware works accord-
ing to the S/390 specification. They are loaded and executed
from main memory, and require correct cache and memory
models, and S/390 micro-code.

Overall the test set contains about 10,000 self-checking
test cases, of which a few thousand were developed and
hand-coded over the last decade. The remaining tests were
generated, or are generated on the fly during simulation, by
various weighted random pattern test generators. A couple of
weeks is needed to completely simulate this test set of more
than 100 million machine cycles.

Upon completion of unit simulation, system simulation
begins, and may be performed in parallel with logic design.
A cluster of 46 S/390 systems, consisting of 268 processors
is dedicated to simulation.

Building a new simulation model after a design change,
and restarting the cluster of S/390 systems with the new
model, takes about half a day. Overall more than 300 million
cycles were simulated on various versions of the model over
a period of 6 months.

5: Flat, Timing-Driven Layout

Our chip place and route tools have been so refined over
the course of four processor generations, that pure routeabil-
ity is no longer our major concern. This allows us to focus
fully on cycle time reduction during the place/route/optimi-
zation phase. To be able to judge the quality of a given lay-
out, we need a reasonable lower bound for the possible cycle
time.

A natural lower bound can be obtained by a static tim-
ing analysis of the logic network assuming a netlength of
zero for each net. In other words: each circuit drives the input
capacitances of the next stage with interconnect length set to
zero. Using different design approaches such as floorplan-
ning and timing-driven placement, we have compared the ac-
tual post-routing cycle time to this hypothetical “zero-
netlength” cycle time. The design approach that consistently
produces the lowest delay directly attributable to intercon-
nect, is non-floorplanned (flat) and timing-driven. With this
approach the final cycle time is consistently within 15% of
the cycle time based on a zero-netlength timing analysis. An
interesting observation is that the highest increase is obtained
by the flat non-timing-driven approach and that the floor-
planned approaches are in between. This shows that the flat
approach is only superior if a global timing-driven layout
methodology is used.

Our experience does not support the common industry
view that “interconnect delay represents the majority of de-
lays within a design”.

TABLE 3. Netlength Distribution for PU Chip

Netlength in mm

N
um

be
r

of
 n

et
s

1 2 3 4 5 6 7 8 90

120 000

100 000

80 000

60 000

40 000

20 000

0

On a 14.6 mm ❏ chip, about 70% of the nets are below
0.5 mm and there are very few nets above 5 mm in length
(see Table 3). Restricting the functional units to floorplan re-
gions introduces global nets, which are typically longer. This
relatively small interconnect delay adder is an inherent ad-
vantage of our design system. It will show its merits even
more in future, denser technologies with higher RC delay
adder.

The layout flow is shown in Figure 5, we will briefly
describe the main steps.

5.1: Placement

The possibility to place and route complex designs flat,
timing-driven is hence an important prerequisite for the de-
sign methodology presented here. It is made possible by qua-
dratic optimization combined with a new quadrisection
approach, developed by J. Vygen (see [12]). The timing-
driven approach is based on netweights, that are generated
based on a timing analysis and optimization of a non-timing-
driven placement. High weights are only assigned to nets
with timing violations, that cannot be solved by power level
optimization or buffer insertion as described below. A
branch-and-bound approach used in macro placement sup-
ports the placement of custom macros and standard cells in a
single run without any preplacement. A description of the de-
tailed placement can be found in [13].

FIGURE 5. Layout Flow

5.2: Timing Analysis and Optimization

As synthesis is done without knowledge of the actual
interconnect length, in-place optimization techniques are
used to further improve the cycle time. This is done in three
steps:

1. Clock synthesis

is performed following placement. The clock tree is
not considered during placement but instead re-synthe-
sized after placement based on a zero-skew approach.
Routing information for balanced routing is created as
an input to the routing step.

2. Power level optimization

is performed for timing optimization and power reduc-
tion. It uses one of the 5 driving capabilities available for
each standard cell circuit.

3. Buffer insertion

is performed in conjunction with power level optimiza-
tion on failing paths that could not be solved by power
level optimization alone. The decisions of this algorithm
are always based on actual placement data as each circuit
added is assigned to a placement location.

Details on timing analysis and optimization techniques
can be found in U. Fassnacht and J. Schietke in [3].

5.3: Routing

Special nets such as power buses and nets connected to
I/O pads are routed first, and then congestion driven global
routing defines guide boxes for the subsequent local routing
step. The information generated during clock optimization
drives the balanced routing of the clock nets.

The ability to route the entire design flat removes the
sub-optimality introduced by the necessary pin propagation
in a hierarchical approach.

The routing tool supports different wire widths and
spacing restrictions. A crosstalk analysis and crosstalk viola-
tion removal capability has been implemented. The memory
efficiency of the routing approach can be seen in Table 5, de-
tails will be presented by A. Hetzel in [5].

5.4: Boolean Compare and Engineering Changes

To avoid any risk of introducing logic errors during in-
place optimization, a Boolean Equivalence checking tool [6]
is used to verify the equivalence of the pre- and post-layout
netlist.

Late metallization-only changes are supported either by
re-routing or by the use of gate array books. This process is
complicated by the fact that in-place optimization during lay-

Placement

Routing

Layout Verification Tape-Out
to Manufacturing

Timing Optimization

Net weight

and analysis

generation

Pre-P&R
netlist

Post-P&R
netlist

Boolean Compare

Clock tree
optimization

Timing-Driven
Placement

out, and late functional changes by the logic designers, are
done concurrently. We have implemented a flow to incorpo-
rate the functional changes performed on the pre-layout
netlist into the post-layout netlist.

5.5: Results

The density of 33.8 k TX’s per mm2 is comparable to
the density achieved by recently announced state of the art
custom design microprocessors present at ISSCC 1997 (e.g.
34.6 TX’s/mm2 in [4] or 36.9 k TX’s/mm2 in [2]).

FIGURE 6. MONPU Chip Colored by Partition

6: Design for Test

For very complex VLSI chips, Design for Test (DFT) is
absolutely required in order to achieve high test coverage
and excellent TAT.

DFT consists of four major phases:

1. Definition of test methodology and design of test mac-
ros:

All our designs follow the LSSD (level sensitive scan
design) rules. This allows race-free testing and initializa-
tion of all memory elements in the chip at any level. The
implementation is always full scan. Our main test
approach is built-in-selftest (BIST), where different state
machines are designed that execute the test after the ini-
tialization. BIST is used to test both logic (LBIST) and
arrays (ABIST). Early in the design phase, macros are
designed such that a common methodology is used
across all chips in the machine. Our LBIST and ABIST
tests can be used on all levels of hierarchy, from chip test
in manufacturing all way up to the power-on sequence in
the customers office. The LBIST implementation fol-
lows the STUMPS approach. These tests can be per-
formed at system cycle speed in chip manufacturing
using SGC (Self Generated Clocks) and on-chip PLLs.
Special I/O books were designed that allow testing of the
signal I/Os without contacting them at wafer test. This is
also called RPCT (reduced pin count testing) and allows
the use of less expensive test equipment in manufactur-
ing for most of the tests. The more complex library ele-
ments are checked early in the design phase for
testability, and if necessary, logic is added to improve
controllability and observability.

2. Checking for design rule compliance (TSV, test structure
verification):

Compliance with the LSSD rules is checked using an
IBM-developed tool set called TestBench. TestBench not
only supports TSV, but is also used to generate all test
patterns. In addition to the LSSD rules, several other
rules are checked and analyzed:

TABLE 4. Design Statistics

PU L2 MBA

Chip-Size 213 mm2 269 mm2 240 mm2

Standard cells 164 k 87 k 206 k

Pins 616 k 339 k 771 k

Nets 184 k 104 k

Custom mac-
ros

98 341 89

Transistors 7.2 M 17.9 M 3.6 M

Global signal
netlength

126 m 90 m 122 m

Signal I/O’s 744 928 770

Cycle time 5.9 ns 5.9 ns 5.9 ns

TABLE 5. Memory and Run Times

Step
Run times on
RS/6000 590 Memory

Placement 12 h 500 MB

In-place optimization 21 h 1000 MB

Routing 21 h 220 MB

a. BSC (boundary scan) rules: These rules enable us to
test the I/O area independent of the internal logic of the
chips, and vice versa. The implementation is similar to
the JTAG boundary scan design.

FIGURE 7. Test Control Logic

b. Selftest rules: In all selftest designs, propagation of
X-states into the signature analyzer is prohibited,
because it corrupts the final signature. Another impor-
tant check is the common-defined selftest chain-length,
allowing us to use the same LBIST control logic across
all chips.

c. IDDQ rules: All our chips are also tested with IDDQ
test patterns. To enable this, it is necessary that all cur-
rent can be turned off for the measurements. We spent a
separate test I/O to control this.

3. Design of test control logic together with clock genera-
tion logic:

Embedding test control logic into the clock generation
logic allows more accurate testing by using the system
clock distribution. The control logic is very similar to the
JTAG controller defined by IEEE, but in addition, it has
several test registers to setup and control the different
tests that are executed. For example, registers are used to
define the length of the LBIST test sequence, the way of
clocking, or just to enable certain parts of the chip. The
test logic is designed only once for all chips and is
embedded such that it is virtually invisible to the logic
designer. Both the basic LSSD design and the common
design for the test controller are easily merged with the
logic. Figure 7 is a high-level view of the logic inter-
faces.

4. Testability analysis (TA):

 The testability goal for our chip designs is 99.9% DC
fault coverage (using the stuck-at fault model) and 95%
AC fault coverage (using the transition fault model).
With TestBench we are able to generate the fault models
as well as to analyze the problem areas. The implemen-
tation of LSSD full scan enables TestBench to produce
very high coverage almost immediately. The testability
problem that we deal with is mainly redundancy
removal. Because our main test method is LBIST, test-
ability analysis for random resistant logic is also very
important. To improve this test, we must add controlla-
bility and observability wherever possible. Our goal here
is to achieve 98% DC fault coverage with LBIST only.

7: Testpattern Generation

Figure 8 describes the test pattern generation flow. Af-
ter the steps TSV and TA (described above) follows the gen-
eration of the actual test data which is used during
manufacturing for chip and/or module testing, as well as the
generation of the system LBIST signatures that are checked
in the machine. TPG generates the following tests:

1. Scantest:

This test insures the basic function of the implemented
LSSD design and is key for any diagnostics done in
manufacturing.

2. LBIST/ABIST test:

For LBIST, the generated test patterns include the ini-
tialization of the chip plus the calculated signature, as
well as intermediate signatures for debug and diagnosis.
The ABIST patterns are very similar to the LBIST pat-
terns. After the state machine has stopped, registers not
only indicate success/failure but also contain the fuse
information if redundancy is built into the arrays. We
have the capability to run these tests in two different
ways: using the SGC logic, the tests are run by an oscil-
lator only, but we also have the capability to run them
with dedicated tester clocks, the so called LSSD clocks.
This again is very important for diagnostic purposes.

3. Deterministic test:

Additional testpatterns are generated to supplement the
LBIST test coverage, in order to achieve 99.9% DC fault
coverage.

Clock and
Test Control

Clock
and
Test
I/O’s

Signal
I/O’s

BSC
Logic

Latch

Latch

Latch

Latch

Latch

Latch

Latch

Latch

LUT
(Logic

under Test)

Clocks and Controls

Chip

FIGURE 8. Testpattern Generation (TPG) Flow

4. I/O test:

Using the BSC implementation, the I/O tests are very
easy to generate. With the boundary scan chain we can
setup all I/O’s independently to ‘1’ or ‘0’ so that these
patterns are very compact. Only 1% to 3% of the chip
logic needs to be simulated.

Refer to Table 6 for TPD statistics.

8: Outlook

We have presented a flat, timing-driven VLSI design
system, producing results which are very competitive with
custom design solutions in both density and clock frequency.

To verify that future complexities can be handled by our
methodology, we have successfully placed and routed an ex-
perimental design consisting of 580.000 placeable objects on
a 1024 mm2 image.

The low percentage of long nets inherent in our design
style will minimize the impact of the higher interconnect de-
lay expected in future, denser, technologies. Together with
our partners from Bonn University, we are currently testing
and implementing techniques for global transistor sizing for
further cycle time reduction and power minimization.

Considerable effort is being put into faster system level
simulation techniques and their implications to our logic de-
sign style.

9: References

[1] D. Brand, R. Damiano, L. van Ginneken, A. Drumm: In the
Driver’s Seat of BooleDozer. Proc. ICCAD, October 1994, pp.
518-521.

[2] Choudhury, Miller: A 300 MHz CMOS Microprocessor with
Multi-Media Technology. Proc. of ISSCC 1997, pp. 170-171.

[3] U.Fassnacht, J.Schietke: Timing Analysis and Optimization of
a High-Performance CMOS Processor Chipset. To appear in
Proc. of DATE 1998.

[4] Greenhill et. al.: A 330MHz 4-Way Superscalar Microproces-
sor. Proc. of ISSCC 1997, pp. 166-167

[5] A. Hetzel: A Sequential Detailed Router for Huge Grid Graphs.
To appear in Proc. of DATE 1998.

[6] A. Kuehlmann et. al.: Verity - A Formal Verification Program
for Custom CMOS Circuits. IBM Journal of Research and De-
velopment. Vol. 39, No.1/2.

[7] W. Roesner: A Hardware Design Language for Logic Simula-
tion And Synthesis in VLSI. Proc. IEEE COMPEURO, May
1987, pp. 311-314.

[8] W. Roesner: A Mixed Level Simulation System for VLSI Logic
Designs. Proc. IEEE COMPEURO, May 1987, pp. 196-199.

[9] W. G. Spruth: The Design of a Microprocessor. Springer-Ver-
lag, 1989.

[10] IBM: CMOS5X 2.5V Gate Array/Standard Cell. “http://
www.chips.ibm.com/products/asics/tech/cmos5x/cmos5x.ht-
ml”

[11] Suzuki et. al.: A 1.5ns 32b CMOS ALU in Double Pass-Tran-
sistor Logic. Proc. ISSCC ‘93, pp. 90-91.

[12] J.Vygen: Algorithms for Large-Scale Flat Placement. Proc. of
the 34th Design Automation Conference, 1997, pp.746-751.

[13] J.Vygen: Algorithms for Detailed Placement of Standard Cells.
To appear in Proc. of DATE 1998.

TABLE 6. Test Data Statistics

Testmodel books 950 k

LSSD latches 46 k

Faults DC 2.8 M

Faults AC 3.2 M

LBIST:

- DC coverage 96.70%

- CPU time on RS6000/590 12 h

- Vectors 500 k

Deterministic Patterns:

- DC coverage 99.89%

- CPU time on RS6000/590 5 h

- Vectors 1700

Netlist

Testmodel
generation

TSV

Fault Model
Generation

TA

TPG Tape-Out
to Manufacturing

rules
violations

test
coverage
improvements

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

