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Abstract—This paper addresses the fundamental and practi-
cally useful question of identifying a minimum set of sensors and
their locations through which a large complex dynamical network
system and its time-dependent states can be observed. The paper
defines the minimal sparse observability problem (MSOP) and
provides analytical tools with necessary and sufficient condi-
tions to make an arbitrary complex dynamic network system
completely observable. The mathematical tools are then used
to develop effective algorithms to find the sparsest measurement
vector that provides the ability to estimate the internal states of a
complex dynamic network system from experimentally accessible
outputs. The developed algorithms are further used in the design
of a sparse Kalman filter (SKF) to estimate the time-dependent
internal states of a linear time-invariant (LTI) dynamical network
system. The approach is applied to illustrate the minimum sensor
in-situ run-time thermal estimation and robust hotspot tracking
for dynamic thermal management (DTM) of high performance
processors and MPSoCs.

Index Terms—Complex Networks, Sparsity, Observability,
Controllability, Control Theory, Compressive Sensing, Thermal
modeling, Temperature sensor placement, Estimation, Prediction,
CyberPhysical Systems.

I. INTRODUCTION

OOBSERVING and controlling complex networks is of
paramount importance in science and engineering. The abil-

ity to experimentally access and accurately observe the internal
states of a system offers means to quantitatively describe dynamic
behaviors of any complex network system. Such networks exist in
a wide range of systems including network of chemicals linked by
chemical reactions [10], [11], the Internet, network of routers and
computers connected by physical links in multi/many-core processor,
as well as many/multi processor thermal and heat-flow networks [8].
A necessary step towards observing a complex network system is to
fully understand the observability of complex networks with linear
dynamics [11]. Consider a network of n nodes described by the
following set of ordinary differential equations [10]:

ẋ = Ãx+ B̃u

y = C̃x
(1)

where the vector x =[x1, x2, ..., xn]
T stands for the states of nodes,

Ã ∈ Rn×n represents the coupling matrix of the system, in which
aij represents the weight of a directed link from node j to i (for
undirected networks aij = aji), uk =[u1, u2, ..., up]

T are the set
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of controllers or control inputs, B̃ ∈ Rn×p is the control matrix,
y are the measurement, and C̃ ∈ Rm×n is the measurement matrix.
A system is called observable if we can reconstruct its complete
internal states x from the measured outputs y. Although simultane-
ous measurement and sensing of all the internal variables offers a
complete description of the system’s state, in practice experimental
access is limited to only a subset of variables due to cost of the
sensing infrastructure, placement restrictions, as well as unavailability
of suitable and effective sensing mechanisms. Identifying a set of
such crucial points that can provide complete insight into the internal
dynamics of a complex network system is fundamental to effective
and high performance system design.

In this paper, we explore this fundamental question of observing
the internal dynamics of a linear dynamical system using a minimal
set of observation points by using the notion of sparsity as developed
in the emerging field of compressive sensing [4]. We define the min-
imal sparse observability problem to find the sparsest measurement
vector which makes a linear dynamical complex network system
completely observable. We formulate and develop analytical tools to
find the minimum number of nodes (sensors) for any arbitrary type of
networks. The mathematical tools are then used to develop effective
algorithms to find the sparsest measurement vector that enables the
ability to estimate the internal states of a complex dynamic system
from experimentally accessible outputs. The developed algorithms are
further used in the design of a sparse Kalman filter (SKF) to estimate
the time-dependent internal states of a high performance processor
system and its dynamic thermal management (DTM) and control with
the minimum number of on-chip sensors.

II. MOTIVATION AND RELATED WORK

The conditions of observability and controllability of LTI sys-
tems were initially introduced by Kalman [9] and have been used
extensively in control theory. Although the classical rank condition
[9], [10] proposed by Kalman provides a test for checking the
controllability and observability for given system matrices, but the
process of systematically finding these system matrices (measurement
and control matrices) have not been addressed. The very recent
groundbreaking work of Liu et al. [10] addressed the process of mak-
ing a complex system completely controllable using few controlling
or driving nodes. The paper finds the minimal number of driving
nodes (or controllers) that would be necessary for driving a complex
network to a specific state by using a graphical approach. Specifically,
they developed a minimum input theory to efficiently characterize the
structural controllability of directed networks, allowing a minimum
set of driver nodes to be identified to achieve full control. In
particular, the structural controllability of a directed network can be
mapped into the problem of maximum matching [7], [17], where
external control is necessary for every unmatched node. Liu et al.
[11] extended their graphical approach to observability of complex
networks in their very recent work [11] .



Although the graphical approach based on structural controllability
theory offers a general tool for directed networks, the approach
fails if the assumption of independence of free link parameters and
non-symmetry of the structural matrices is violated [10]. In other
words, the graphical approach can not be applied to any arbitrary
complex network with structure and configurations of the link weights
where the parameters (-i.e., the elements of the systems matrices)
are not independently varying. Specifically, for undirected networks,
the symmetric characteristic of the network matrix accounts for the
violation of the assumption of the structural matrix, even with random
weights [10]. To overcome this limitation, recently a more generic
algorithmic approach was proposed in [13]. Our work is motivated by
the work in [13] but differs in its objective and problem formulation.
The work in [13] finds the sparsest control matrix B for which a
complex network is fully controllable whereas we find the sparsest
measurement matrix C and minimum number of sensors as well as
their locations for which the complex dynamical network system is
completely observable. Our work is closest to the very recent work
of Lie et al. [11] but differs in two respect. First, [11] considers a
graphical approach (GA) based on structural properties of system
matrices to make the system structurally observable, whereas we
pursue a generic algorithmic approach to make the system completely
observable. Second, the approach in [11] can not be applied to
any arbitrary system with structural symmetries, whereas no such
limitations hampers our approach and thus our approach can be
applied to any arbitrary system. In our paper, we also outline the
design of a sparse Kalman filter to illustrate full-state observability
of complex thermal networks of real high performance processors
and multiprocessor system-on-chips (MPSoC).

The remainder of the paper is organized in the following sections.
Section II provides a brief overview of the related works followed
by the preliminaries in Section III. The sparse observability problem
is defined in Section IV with the description of the properties and
complexity of the problem. Algorithms to solve the MSOP are
described in the subsequent sub-sections. A specific example use
case of thermal sensor placement and run-time in-situ thermal profile
estimation and robust hotspot tracking is described in Section V
supported by simulation and experimental results.

III. PRELIMINARIES & SYSTEM MODEL

A. Dynamic System Model
We consider the discrete-time equivalent of a linear time-invariant

system in (1) as follows :

xk+1 = Axk +Buk

yk = Cxk
(2)

where xk ∈ Rn are the system states at kth time instant, uk ∈ Rp are
the system inputs , yk ∈ Rm are the measurements, A ∈ Rn×n,B ∈
Rn×p, C ∈ Rm×n, are system matrices and x0 is the initial state of
the system. Note that the discrete-time system matrices are obtained
for the sampling time ts as [12], [5]:

A = eÃ∗ts

B =

∫ ts

0

eÃ(ts−τ)B̃dτ.
(3)

B. Observability & Controllability of a System
The system described by equation (2) is said to be controllable if

it can be driven from any initial state to any desired final state in
finite time, which is possible if and only if the n×np controllability
matrix

Qc =
[
B,AB,A2B, ....,An−1B

]
= {(A,B) (4)

has full rank, that is

rank(Qc) =n. (5)

This represents the mathematical condition for controllability, and is
called Kalman’s controllability rank condition [9], [12].

Observability, on the other hand, requires us to establish a rela-
tionship between the outputs yk, the state vector xk, and the inputs
uk in a manner that we can uniquely infer the system’s complete
initial state x0. The linear dynamic system described by equation (2)
is said to be observable if we can reconstruct the system’s complete
internal state from its outputs, which is possible if and only if the
nm× n observability matrix

Qo = [CT, (CA)T, ..., (CAn−1)T]T = O(A,C) (6)

has full rank, that is

rank(Qo) = n. (7)

The controllability and observability of a LTI dynamic system is
related by the following duality property as described in theorem (1).

Theorem 1. [9]A linear dynamical system described in (2) is
observable (controllable) if and only if the dual system

xk+1 = −ATxk +CTuk

yk = BTxk
(8)

is controllable (observable).

Proof: Substituting the system matrices in (4) produces the
observability matrix (6) of the dual system and vice versa. See [9],
[12], [3] for the detailed proof.

IV. PROBLEM FORMULATION

We define the minimal sparse observability problem using the
above definitions of observability and controllability as follows:

A. Minimal Sparse Observability Problem (MSOP)
For the dynamic system defined by equation (2), the minimal

sparse observability problem is defined as the sparsest measurement
matrix C, i.e., with smallest number of nonzero entries in C, for
which the system described by equation (2) is completely observable.
We use the following theorems to show that MSOP is a NP-hard
problem.

Theorem 2. [13]For any p ≥ 1, finding matrix B ∈ Rn×p,with
smallest number of nonzero entries in B such that the system
xk+1 = Axk +Buk is controllable is NP-hard.

Proof: See [13]

Theorem 3. The minimal sparse observability problem defined in
(IV-A) is NP-hard. In other words, for any m ≥ 1, finding the matrix
C ∈ Rm×n with the smallest number of nonzero entries that will
make the system in (2) observable is NP-hard.

Proof: We use the duality theorem in (1) to construct a dual
system (−AT,CT,BT) as in (8). We then use theorem (2) to prove
the NP-hardness of finding the sparsest CT matrix that will make
the dual system controllable. Since the minimal controllability of the
dual system is NP-hard, hence the sparsest C that will make the
original system observable is NP-hard. Hence the minimal sparse
observability problem defined in (IV-A) is NP-hard.

Theorem 4. [13]For any p ≥ 1,m ≥ 1 finding matrix B ∈
Rn×p,C ∈ Rm×n with smallest number of nonzero entries (in B
and C) such that the system xk+1 = Axk +Buk and yk = Cxk

is both controllable and observable is NP-hard.

Proof: The proof follows from theorem (2) and (3). For details
see [13].



B. Greedy Solution to MSOP
Since the minimal controllability problem as described in [13]

and the minimal sparse observability problems are NP-hard, poly-
nomial time optimal solutions are unreachable. A randomized and
deterministic algorithm was proposed for the minimal controllability
problem in [13]. We extend the algorithm in [13] and propose a
Greedy algorithm for the minimal sparse observability problem. The
algorithm for the minimal sparse observability is presented in Fig.
(1) and (2).

Algorithm #1: Minimal Sparse Controllability

Input: System matrix A
Output: Sparse B such that System (2) is Controllable

1) Initialize B to zero vector and rank difference e∗r = 1
2) While e∗r > 1,

a) For i = 1..n

i) If B[i]=0, then for j = 1..2n + 1, set
B̃[i, j] = B+ j ∗ v⊥

i where v⊥
i is the ith basis

vector
ii) Q̃c = {(A, B̃[i, j]); Qc = {(A,B)

iii) Set er(i, j) = rank(Q̃c)-rank(Qc)

end
b) Let (i∗, j∗) ∈ arg max(i,j) {er(i, j)} and let e∗r =

er(i
∗, j∗)

c) if e∗r > 0,set B← B+j∗ ∗ v⊥
i∗

end
3) Output B

Figure 1. Greedy Minimal Controllability Algorithm.

Algorithm #2: Minimal Sparse Observability

Input: System matrix A
Output: Sparse C such that system (2) is Observable , Minimum
number of Sensor ns, Sensor Locations

1) Compute the system matrices for the dual system
A = −AT,

2) Find the sparse control matrix for the dual system using the
algorithm (IV-B) in Fig.(1)
B = minimal_sparse_controllability(A)

3) Compute the controllability matrix of original system as

C =B
T

4) Output
a) Minimum No of Sensor ns= rank(CT)
b) Sensor Locations are independent rows of CT

c) Measurement matrix C

Figure 2. Greedy Algorithm for Minimal Sparse Observability Problem.

V. APPLICATION TO RUN-TIME THERMAL ESTIMATION
AND HOTSPOT TRACKING FOR DTM

A. Thermal Network Model of Multi-core Processor Systems
The thermal behavior of the multi/many core processor is modeled

using heat-flow dynamics [16]. The heat-flow dynamics describe the
temperature values at different locations on the die depending on

various factors such as power consumptions of functional units, layout
of the chip and the package characteristics. The differential equations
describing the heat flow have a form dual to that of electrical
current, represented using lumped values of thermal R and Cs
network, and forms the basis for commonly used micro-architectural
thermal models [16], [8]. This complex dynamical thermal network
is represented in state space form [8], [5] with the grid cell or
subsystem block temperatures as states and the power consumption
of each blocks as inputs to this system. The outputs of this state
space model are the temperatures at the sensor locations which can
be observed by the temperature sensor readings. The system matrices
A and B are constant and are computed based on the floor-plan
of the processor and the process parameters [5]. We consider the
Alpha 31386 processor and its multi-core architectures that have
been extensively used in previous research works [16], [8], [5]. A
quad-core Alpha 31386 processor floorplan is shown in Fig. 3 where
each processor core is having 18 functional blocks/ subsystem units.
Fig. 4 shows the blocks in different layers of the chip and package.
Note that the block in the top most layer i.e., the die only consumes
power and the blocks in the thermal interface layer, heat spreader,
and the heat sinks help in dissipating the heat generated in the die.
The equivalent RC network representation of the processor’s thermal
dynamic system is shown in Fig. 4(b).

Figure 3. Floor plan of quad-core processor based on Alpha 31386.

B. Minimum Sensor Set and Their Optimal Placement
With increasing number of cores in the processor and projection

of hundreds and even thousands of cores [1], the thermal dynamics
of such a processor can be extremely complex with more than
thousands of blocks or functional units. Consequently, it is prudent
to consider them as large complex dynamic networks, requiring
systematic analysis. We use our mathematical tools and algorithms
developed in section IV to perform sparse observability analysis on
these networks. We consider the Alpha 31386 processor and its multi-
core architectures as discussed in the previous section. Our objective
is to determine if the thermal network of the Alpha processor is
completely observable and find the sparsest measurement matrix C
such that the processor network is completely observable. We use
the greedy algorithm in Fig. 2 to find the sparsest measurement
matrix C. The algorithm returns that the single-core Alpha 31386
processor thermal network is completely observable with a single
sensor. Consequently, we would be able to estimate the temperature
of the 18 subsystem units of the processor (resulting in 2x18+14=50
nodes on the network, see Fig. 4(a)) and autonomously track them
from a single sensor measurement. The placement of the sensor
returned by the algorithm is the first block in the processor floorplan
with a sensor gain of 0.272. Note that the complexity of the algorithm
in Fig. 2 is determined by the rank computation of the controllability



(a)

(b)

Figure 4. Thermal network representation of high performance processors.
(a) blocks in the different layers of the chip and their corresponding nodes in
the thermal networks (b) RC equivalent circuit representation of the thermal
dynamic network. [ Figures taken from presentation of [16] and [6]]

matrix Qc which is O(n3). The rank computation uses singular value
decomposition (SVD) which has the computational complexity of
O(n3). To further validate and verify the the completely observability
of the system, we construct a Kalman filter using this single sensor
observation as well as placement and track the peak temperature
(hotspot) of the processor. We compare the results of the thermal
hotspot tracking of the alpha processor with that of one of the state-
of-the-art thermal and hotspot tracking method [14].

C. Sparse Kalman Filter (SKF)
To construct a full-state observer, we use the well known Kalman

filtering approach. The thermal dynamics of the processor is modeled
using the discrete linear state-space system [8], [5] in presence of
variability induced process noise [2] as:

xk+1 = Axk +Buk +wk (9)

Figure 5. System matrices of the micro-architectural thermal model of Alpha
31386 processor. (a) sparsity pattern of the the system coupling matrix A (size
50×50) in continuous domain (b) representation of the coupling matrix A
(size 50×50) in the discrete domain (c) sparsity pattern of the control matrix
B (size 50×50) in continuous domain (d) the B matrix (size 50×50) in
discrete domain. The matrices are obtained from the Hotspot thermal simulator
[8] for the Alpha 31386 processor floorplan.

where xk ∈ Rn are the system states (i.e, the temperatures of each
block), uk ∈ Rp are the system inputs (i.e, power consumption at
each block), A,B are system matrices as discussed earlier. The
process noise wk is zero-mean, white random signals with known
covariance matrices, Qk = E

[
wkw

T
k

]
. Our objective is to select

minimal number of sensors and their placement such that we have
minimum number of sensors in the measurement equation:

y̆k = C̆xk + η̆k (10)

where y̆k ∈ Rm are the measurement (i.e, the temperature sensor
measurement), C̆ is the minimum sensor measurement matrix, and
measurement noise η̆k is zero-mean, white random signals with
known covariance matrices R̆k = E

[
η̆kη̆

T
k

]
. The process noise wk

and measurement noise η̆k are assumed to be mutually uncorrelated.
The Kalman filter maintains the states x̂k|k which means the

estimate of xk given the measurement yk,yk−1,... , and the error
covariance of the states, Pk|k , is the covariance of the states xk

given the measurement yk,yk−1,...y0. Kalman filter performs the
following recursive processing as in Fig. 6 to estimate the states from
the measurement for the given input.

D. Run-time Thermal Profile Reconstruction & Hotspot Track-
ing

Temperature adversely affects power and reliability of processor
systems. For safe and reliable operation, the peak temperature of
the processor has to be be always maintained or controlled below a
safe threshold. However, with the change in workloads and phasic
behavior of workloads, the power consumption of each block vastly
vary. As temperature sensors along with their peripheral circuits
introduce substantial overhead in silicon area and power consumption,
it is extremely important to minimize the number of temperature
sensors without surrendering the accuracy of thermal monitoring.
On one-hand large number of temperature sensors are needed for
accurate thermal monitoring in presence of large dynamic power
variations, on the other hand they incur substantial die area real



Algorithm #3: Sparse Kalman Filter

Input: Measurements y̆k, input uk, state space model
A,B, C̆,Qk, R̆k, Initial Values x0,P0

Output: State estimates x̂k, measurement estimate ŷk

1) Initialize the values of x̂0|−1 = x0,P̂0|−1 = P0,
2) Perform the following every sampling step :

a) Predict states and states covariance:
i) x̂k|k−1 =Ax̂k|k−1 +Buk

ii) Pk|k−1 = APk−1|k−1A
T +Qk−1

b) Calculate the Kalman gain, update the states and states
covariance:

i) Kk = Pk|k−1C̆
T
(
C̆Pk|k−1C̆

T +R
)−1

ii) x̂k|k = x̂k|k−1 +Kk

(
y̆k − C̆xk|k−1

)
iii) Pk|k = (I−KkC̆)Pk|k−1

3) Output the results:
a) State estimate: x̂k = x̂k|k
b) Measurement estimate: ŷk = C̆x̂k|k

Figure 6. Minimum sensor state estimation using Kalman filter.

Unmeasured Temperature  

Processor  
Floor Plan 

Power 
Traces 

SPEC2k 

Temp. 
Sensors 

Sparse Kalman 
Filter (SKF) 

Run-Time 
Temperature 
Estimates 

Simple Scalar 
+ Wattch+Gcc 

HOTSPOT 
Dynamic 
Thermal 
Model 

Validate 

Hotspot 
Tracking 

Figure 7. Simulation and validation framework for run-time thermal
estimation using Sparse Kalman Filter (SKF). The SKF estimates the full
chip thermal profile using minimum number of sensors while filtering the
effect of sensor, measurement, and process noise.

estate and power consumptions overhead. Given this scenario, the
minimal sparse observability problem directly addresses this trade-off
by providing the minimum number of sensors to accurately observe
the thermal dynamics.

In order to experimentally verify the results, we have created a
simulation framework as shown in Fig. 7. Fig.8 shows the thermal
profile estimation of the complete processor using a sparse Kalman
filter presented in Fig. 6 with just one sensor. The thermal network for
the single-core Alpha processor is observable using a single sensor
and the thermal profile estimated by the SKF is very accurate. Even
in presence of sensor noise, the SKF provide the best statistically
possible estimation and tracking of the thermal profile. The approach
presented can easily be applied to multi-core configuration; the
number of sensors and their location are obtained using the algorithm
in Fig.2. Fig.9 shows improved tracking of the hotspot in the Alpha
processor in comparison to one of the state-of-the-art method [14]
for all the SPEC 2000 benchmarks. As should be evident from Fig.
9, the minimum sensor SKF provides superior hotspot tracking that
is paramount for reliable operations of processors.

In addition, the SKF can also alleviate the variability induced
process noise in deep sub-micron technologies as well as suppress

sensor noise by suitably filtering the noise during the estimation steps.
Fig. 10 shows the filtering of the sensor noise from the measurements
during the estimation procedure. Such an approach could also be
beneficial in the closed loop dynamic thermal management and
performance improvement of the processor as illustrated by in Fig.
11. During the dynamic thermal management operation, the processor
throttles its frequency (i.e., reduces the frequency of operation and
hence power by certain percentage, e.g., 20 %) whenever the peak
temperature crosses a specified threshold. In the absence of a accurate
hotspot tracker, the peak thresholds are violated; resulting in deep
reliability issues and imminent damage to the processor. On the
other hand, the noise in the sensor can spuriously early trigger DTM
operation causing unwanted performance loss. Fig. 11 illustrates
the scenario where the SKF enabled DTM filter-out the noise and
spurious triggers, resulting in performance improvement of approx.
28 % in this specific example scenario.

Figure 8. Thermal profile estimation (a) actual thermal profile (b) estimated
by SKF using a single sensor for all the SPEC 2000 benchmarks. The
estimated error is with in 0.3% for all the blocks.

Figure 9. Robust hotspot tracking of the Alpha processor using SKF in
comparison to the state-of-the-art hotspot tracking approach in [14].

E. Overheads and Complexity
The algorithmic solution to the MSOP has the computational

complexity determined by the SVD computations. The complexity
of finding the sparsest measurement matrix through the SVD based
rank computations result in O(n3). On the other hand, the complexity
of the SKF that uses the sparse measurement matrix, is also O(n3).
This is determined by the matrix inverse involved in the computation
of the Kalman gain Kk. In a scenario, where the time scale at which



Figure 10. Sensor measurement ( with noise variance of ±1oC) and noise
filtering with SKF. Effect of both measurement noise and variability induced
process noise can be mitigated by the SKF to achieve statistically superior
estimates.

(a)

(b)

Figure 11. DTM control of the Alpha processor with minimal sensor
placement (a) DTM with direct noisy sensor reading (b) with SKF. Because
of the noise filtering by the SKF, less frequent frequency throttling is initiated
in the DTM, which improves performance of the processor system (approx.
by 28%).

the noise characteristics change is much larger than the time scale
at the thermal networks are studies (e.g., month or even years), the
system and the noise covariance of the Kalman filter can be assumed
to be time-invariant [15]. As a result, we can use a steady state
sparse Kalman filter for which it is not necessary to compute the
estimation error covariance or the Kalman gains in real-time [15],
rather the gains can be replaced by constant gains. This reduces the
computational overhead of the real-time thermal estimation using the
SKF from O(n3) to O(n2) while still providing good accuracy.
Although, a calibration step may be needed prior to running the
SKF with steady state gains, this can be achieved by computing the
Kalman gains initially from the SKF and then switching to steady
state SKF with constant gains.

VI. CONCLUSIONS

One of the most challenging problem in modern network sci-
ence and engineering is the controlling and observing of complex
dynamical networks. Observability is fundamental to having deeper
insight in any complex dynamic networks. It is paramount in the
understanding of the interplay between the complex network topology

and the underlying dynamic behavior. In this paper, we explore
this fundamental question of observing the internal dynamics of a
complex dynamic network systems using minimal set of observation
points by using the notion of sparsity. We define the minimal sparse
observability problem (MSOP) to find the sparsest measurement
vector and prove that the problem is NP-hard. Our main result is the
development of an algorithm to find the sparsest measurement matrix
that will make any arbitrary linear dynamical network completely
observable. We develop effective greedy algorithms to find the
sparsest measurement and use it in the design of a sparse Kalman
filter (SKF) to estimate the time-dependent internal states of complex
dynamical networks. We apply the approach to complex thermal
networks of real processor systems and demonstrate the applicability
in run-time thermal profile estimation and hotspot tracking using
minimal number of on-chip sensors for effective dynamic thermal
management of such processors.
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