
Generation of Communication Schedules for
Multi-Mode Distributed Real-Time Applications

Akramul Azim, Gonzalo Carvajal, Rodolfo Pellizzoni, Sebastian Fischmeister
Department of Electrical and Computer Engineering

University of Waterloo, Ontario, Canada
{aazim, gcarvaja, rpellizz, sfischme}@uwaterloo.ca

Abstract—A key problem in designing multi-mode real-time
systems is the generation of schedules to reduce the complexities
of transforming the model semantics to code. Moreover, dis-
tributed multi-mode applications are prone to suffer from delays
incurred during mode changes. We therefore aim to generate
communication schedules that have low average mode-change
delay for multi-mode real-time distributed applications.

In this paper, we use optimization constraints associated
to timing requirements to generate state-based schedules for
multi-mode communication systems, and illustrate the workflow
for generating schedules from specifications through a real-time
video monitoring case-study. Our experiments in the case-study
demonstrate that schedules generated using the proposed method
reduce the average mode-change delay in relation to a randomized
algorithm and the well-known EDF scheduling algorithm.

I. INTRODUCTION

Current trends in distributed systems are pushing the
boundaries of existing real-time networks. Increased number
and complexity of distributed devices, and integration of
multiple real-time domains with traditional computers in a
single network, are quickly turning legacy fieldbuses obsolete
due to their limited bandwidth and incompatible protocols.

Increasing interest in Real-Time Ethernet (RTE), for ex-
ample, provides strong evidence of this trend [1]. In recent
years, both industry and academia have reported experimental
evidence for hard real-time communication on top of Ethernet
infrastructure [2], [3]. A common characteristic among the
proposed solutions is the use of enhanced devices with
specific modules for Time Division Multiple Access (TDMA)
arbitration. To provide real-time guarantees, TDMA networks
require careful planning of time-critical communication tasks,
which must be scheduled and verified in advance. In practice,
static TDMA schedules are complex to design, and lead to
inefficient bandwidth utilization, since they must reserve time
slots to handle the worst-case, even though it rarely occurs.

State-based scheduling is an alternative arbitration tech-
nique for hard real-time systems. State-based schedules allow
developers to describe multiple operational modes, or states,
and encode transitions from one state to another based on
conditions that change at runtime. This property increases
the flexibility, enable quick responses to changing operational
conditions, and improve the bandwidth utilization compared
to static TDMA configurations, while keeping the system
analyzable and verifiable. Multiple case studies show the
advantages of this approach in domains such as control
theory [4], hybrid systems [5], hierarchical scheduling [6],
and in general bursty demand models [7]. The Network Code

framework [8] provides a complete development environment
including an expressive language to describe TDMA schedules
with conditional branching, tools to verify the schedules before
runtime, and a powerful hardware-accelerated platform to
deploy and test solutions in practical scenarios [9]. However,
a big limitation of this approach is that developers must still
write the program at low-level, requiring a good understanding
of the underlying technology and runtime environment, and
perform fine tuning of configuration parameters to fit particular
application requirements. This approach is time-consuming,
prone to errors, and inadequate for medium/large-scale systems,
specially since conditional transitions add a new level of
complexity to the schedule design and verification.

Generating real-time schedules for efficient utilization of the
available bandwidth, with data dependencies and conditional
execution is a challenging and relevant problem for next-
generation distributed systems. This work proposes a novel
methodology to generate state-based communication schedules
from a high-level specification of the distributed components,
moving away the complexity of schedule design from the
developer. Starting from a state machine description of the
distributed tasks, the proposed workflow generates abstract
representations of state-based schedules for any feasible system,
which can then be mapped to executable entities. This paper
walks through the individual steps using an example case-study
based on real-time video streaming over an Ethernet network,
which is a recurrent application in the automotive domain. The
results demonstrate that the generated schedules meet the real-
time guarantees, while minimizing the average delay to switch
from one operational mode to another with respect to a set of
valid schedules generated using both Earliest-Deadline-First
(EDF) and random mapping of messages to time slots. The
analysis from the particular case-study can be easily generalized
to any network based on TDMA.

The remainder of the paper is structured as follows: Section
II revises the concept of state-based scheduling, and introduces
relevant terminology for the schedule generation workflow.
Section III illustrates the steps for the generation of state-based
schedules from component-level specifications using a video
streaming case-study. Section IV provides a brief overview of
related work, and finally Section V concludes the paper.

II. OVERVIEW OF STATE-BASED SCHEDULING

This section reviews the concept and introduces formal
definitions of state-based scheduling.

A. State-Based Schedules
A state-based schedule is an abstract representation of

communication systems based on TDMA with on-the-fly978-3-9815370-2-4/DATE14/ c©2014 EDAA

τ2τ1 τ3

τ2τ1 ɛ

slot 1 slot 2 slot 3

τ1

τ1

g

g

Communication Round
t

mode 1

mode 2

slot 1

Fig. 1: State-based representation of a TMR application

decisions. A TDMA communication system consists of a set of
stations that exchange messages through a broadcast network.

TDMA schedules divide time into non-overlapped slots
and rounds. Each slot is defined by a start point and a slot
length. A scheduler performs a message-to-slot mapping based
on the timing requirements for the system. A linear schedule
maps a slot to either only one message or leaves it empty. A
communication round refers to a sequence of messages that
repeats endlessly as the system executes.

An operational mode describes a system state and specifies
the messages that the system needs to communicate when
running on the associated mode. Each operational mode is
associated to a predefined linear schedule that meets the timing
requirements for the messages. State-based schedules encode a
set of linear schedules associated to different modes using a
global-time base. As a result, different messages from different
modes can be mapped to the same slot, but only one mode
can be active at any slot during runtime. The schedules can
encode guarded transitions that allow the system to change
from one mode to another between consecutive slots within a
single communication round.

To illustrate the concepts, let us consider an example of
a Triple Module Redundancy (TMR) application. In a typical
setup for TMR, three sensors transmit independent samples
of the same variable in consecutive messages τ1, τ2, and τ3.
A voting controller receives these messages and performs a
majority vote to determine the final value. On the one hand,
in a static TDMA configuration, the sequence of transmitted
messages is determined only by the progression of time, and
then the stations will always transmit the three messages, even
if τ1 and τ2 are already decisive for the voting. On the other
hand, a state-based schedule can perform a preliminary voting
after receiving the first two samples, and if the voting is already
decisive, then the slot associated to the third sample can be
empty, leaving the medium available for other purposes such as
best-effort traffic. Fig. 1 illustrates this behavior. The system can
operate in two modes: mode 1 considers that the system needs
to communicate the three messages, and mode 2 considers
that the vote is already decisive after the second message. The
system starts in mode 1, and after transmitting τ2 it checks the
guard g : τ1 6= τ2 to decide whether to transmit a message or
leave the slot empty (ε) and available for other messages (such
as best-effort data). After the third slot, a new round starts and
the system resets to mode 1.

B. Formal Definitions
Let us consider a set of messages T = [τ1, . . . , τN]. Each

message τi has an associated period pi, transmission time
ei, and implicit deadline di = pi, all represented as entire
multiples of an atomic time unit γ. Let us also consider a set
V = [v1, . . . , vM] representing the operational modes, each one
associated to a linear schedule. Considering a slot length of

τ1
k

k ϵ {1,2}

j = 1 j = 2 j = 3 j = 4

k ϵ {1}

Round 1

G1
1

G2
2

τ2
k

τ4
k

G1
2

τ3
k

τ2
k τ3

k

τ4
k

G1
3

G2
3 G2

4

G1
4

k ϵ {2} k ϵ {2} k ϵ {2}

k ϵ {1}k ϵ {1} τ1
k

k ϵ {1,2}

j = 1 j = 2 j = 3 j = 4

k ϵ {1}

G1
1

G2
2

τ2
k

τ4
k

G1
2

τ3
k

τ2
k τ3

k

τ4
k

G1
3

G2
3 G2

4

G1
4

k ϵ {2} k ϵ {2} k ϵ {2}

k ϵ {1}k ϵ {1}

Round 2

(a) Overlapped message assignments in slot 1 form group G1
1

τ1
k

k ϵ {1,2}

j = 1 j = 2 j = 3 j = 4

Round 1

G1
1

τ4
k

τ3
k τ4

k

τ3
k

G1
3

G2
3 G2

4

G1
4

k ϵ {2} k ϵ {2}

k ϵ {1}k ϵ {1}τ2
k

k ϵ {1,2}

G1
2

τ1
k

k ϵ {1,2}

j = 1 j = 2 j = 3 j = 4

Round 2

G1
1

τ4
k

τ3
k τ4

k

τ3
k

G1
3

G2
3 G2

4

G1
4

k ϵ {2} k ϵ {2}

k ϵ {1}k ϵ {1}τ2
k

k ϵ {1,2}

G1
2

(b) An alternative schedule with an additional overlap in slot 2

Fig. 2: Different valid state-based schedules for a particular system

γ, the communication round will have Γ = LCM(p1, . . . , pN)
slots, where Γ is the Least-Common-Multiple of periods of
all the messages in T, i.e., the hyperperiod of the system.
We say that the state-based schedule has an overlap in slot
j = 1, . . . ,Γ when different modes map the same message to
that slot. Overlapped messages at slot j can be combined into
a group Gjm, where 1 ≤ m ≤ |V |. A state-based schedule is
a tree-like structure where each branch represents a transition
from a group in slot j to one or more groups in slot j + 1.

A valid state-based schedule is one that meets the timing
requirements for each linear schedule and the possible tran-
sitions between them. A particular system can have multiple
valid schedules, and then different number of overlaps and
groups. Fig. 2 shows an example of two different schedules for
a system with two modes and Γ = 4. For illustrative purposes,
let us assume that both schedules are valid for the particular
system. The notation τki indicates that mode k maps τi to the
corresponding slot. The schedule in Fig. 2a has an overlap for
τ1 in j = 1, which can be represented in group G1

1. Fig. 2b
shows an alternative schedule with an additional overlap for
τ2 in slot 2, which is represented in G2

1.
A mode-change in a state-based schedule is a timed event

that triggers a guarded transition to move from an old mode
vs ∈ Gjm to a new mode vd in the next slot at the cost of a
mode-change delay δ(vs, vd) defined as:

δ(vs, vd) =


0 if vd ∈ Gjm

Γ− j otherwise
(1)

where Γ− j represents the time until the next communication
round starts. The mode-change can occur immediately if a tran-
sition exists between mode vs and vd. If not, the mode-change
occurs when a new communication round starts. Reducing the
number of transitions decreases the number of groups which
lowers the average mode-change delay (Theorem 1).

Theorem 1. Given a set of valid state-based schedules for a
particular system, the schedule with the fewest number of groups

State Analysis

State-Based Schedule

Operational Modes

Schedule Generation

Executables
and Runtime

Component-Level
Description

Feasible?

Yes

No

Designer
Modifications

Fig. 3: Proposed Workflow

in a communication round will minimize the average mode-
change delay δ for a uniform probability of mode-changes.

Proof: Our proof is based on contradiction. Let us consider
two valid schedules S and S′ for a particular system, with S′

having fewer number of groups in a communication round. Let
us assume that δS′ > δS . The value |V −Gjm| represents the
number of modes that do not belong to Gjm. Since a maximum
number of |Gjm| modes can request a mode-change to the
modes that do not belong to Gjm, the total mode-change delay
∆ for a uniform possibility of mode changes at the end of slot
j for a group m and a transition is:

∆ =
∑

vs,vd∈V
δ(vs, vd) = (Γ− j)(|V −Gjm|)|Gjm|

Since the system executes all the transitions with uniform
probabilities, then the average mode-change delay ∆ for all
slots for all possible groups at runtime is:

∆ =

∑
j

∑
m(Γ− j)(|V −Gjm|)|Gjm|

Γ|
⋃
j(
⋃
mG

j
m)|

.

The average delay in the state-based schedule δS′ for a
uniform possibility of mode changes is less than δS , because
S′ has fewer groups than that in S and therefore the value
|V −Gjm| is less than that of in S. This contradicts that the
average mode-change delay in S is lower than the average
mode-change delay in S′.

This following section describes a workflow for schedule
generation that uses the concept of groups to address the
problem of message-to-slot mapping for state-based schedules,
such that the resulting valid schedule minimizes the average
mode-change delay.

III. SCHEDULE GENERATION WORKFLOW

This section walks through an example case-study to
illustrate the necessary steps to generate state-based schedules
from a component-level description.

A. Workflow Overview
Fig. 3 illustrates the steps for the proposed workflow

to generate state-based schedules. The designer specifies
a component-level description consisting of state machine
descriptions and timing requirements for each task generating
messages. Given that the system is correctly described and
feasible, the proposed workflow will generate a valid schedule
that minimizes the average mode-change delay.

The first step in the workflow is an analysis to combine the
states of the individual components and obtain the operational
modes of the system. This step also considers a feasibility test
to verify that it is possible to meet the timing requirements
for all the operational modes. If any of the operational mode
is unfeasible (e.g., due to bandwidth limitations), then the
designer must modify the system specifications. For feasible
systems, the next step is the generation of a valid schedule that
minimizes the average mode-change delay.

The previous steps generate an abstract representation
describing the message-to-slot mapping for the system. These
descriptions can then be translated into a programming language
to generate executable abstractions. Previous work illustrates
this process by mapping schedules designed by hand for simple
applications to the Network Code framework, which offers
a domain-specific programming language with conditional
branching capabilities and a powerful hardware environment
for real-time communication over Ethernet [9].

The rest of this section provides details for each step
in the workflow using an example case-study based on the
demonstration setup described in [9]. The application considers
the real-time streaming of multiple video sources on top of
Ethernet, which can change the resolution according to specific
operational conditions for efficient utilization of the bandwidth.

B. Application Example and Assumptions
Let us consider an embedded video monitoring system for

mining trucks. Drivers need some kind of monitoring system
for increased security when sharing the road with smaller
vehicles and people because of the dimensions of these trucks
(typically over 7 mt. high). The system uses four video cameras,
each one transmitting a stream of the surroundings of each
wheel to displays located in the driver’s cabin. All devices
connect through a real-time capable Ethernet network operating
at 1[Gbit/s] [9].

The cameras operate in two states that differ in the number
of Frames-Per-Second (FPS) : Standard Quality (SQ) and High
Quality (HQ). The cameras operate in SQ by default. Each
wheel includes a sensor that detects proximity to surrounding
objects. When a sensor activates, the cameras switch to HQ.
An additional condition is that the sensors activate according
to the movement of the truck: front sensors only activate if the
truck is moving forward, and rear sensors only activate if the
truck is moving backwards.

For the analysis we only consider the scheduling of the
video streams, and assume that all distributed components are
synchronized to a global clock reference. In practice, the model
specification must also consider the scheduling of periodical
sensor readings and synchronization messages, which require
much less bandwidth than the video data [9].

C. Component-Level Description
Fig. 4 shows a state machine representation and transition

table for the camera attached to the front right wheel. The inputs

FR=0 |
(moving

backwards)

FR=1 &
(moving
forward)

HQ

SQ

(a) State Machine

FCR, FCL, RCR, RCL sk sk+1

1, 0, 0, 0 X HQ
1, 1, 0, 0 X HQ

others X SQ

(b) Transition Table

Fig. 4: Representation of the states for each camera

Front Right (FR), Front Left (FL), Rear Right (RR), and Rear
Left (RL) represent the status of the sensors attached to each
wheel; and sk and sk+1 represent the current and next state,
respectively. The designer must provide a similar representation
for each camera, together with the timing requirements for each
state (addressed in Section III-D).

Alternatively, the designer can use high-level languages such
as AADL [10] or UML-MARTE [11] to specify the system
behavior, and use a parser to extract the transition tables and
timing specifications.

D. State Analysis
The algorithm presented in [12] allows us to compute the

operational modes of the system as the cross products of the
state machines for the individual components. In the case-study,
the condition that front and rear cameras cannot operate at HQ
at the same time leaves only seven possible operational modes
out of the sixteen possible.

Table I shows the parameters of interest to perform
feasibility analysis for the case-study. These parameters must
be encoded together with the transition tables. The nominal
transmission time represents the time required to transmit a
single video frame of 640x480 pixels, with a pixel-width of
32 bits, over a 1[Gbit/s] link. Since the maximum payload
for a standard Ethernet frame is 1500 bytes, video frames are
transmitted as a sequence of Ethernet frames. The reported
time accounts for the overhead related to Ethernet headers and
Inter-Frame Gap (IFG). For simplicity, we omit the propagation
latency and additional processing in the path between cameras
and displays, which will depend on the physical configuration
of the network. In practice, designers must provide a worst-
case value for these parameters and consider them in the total
transmission time for each message. The table also shows the
periods associated to different FPS. Considering an atomic unit
for the schedule equal to the minimum transmission time for a
message, we normalize the timing specifications to this time
unit, and floor the normalized period. This processing over-
estimate the actual requirements, but allows us to represent all
the timing as multiple integers of the time unit.

For the system to be feasible, the total channel utilization
for each operational mode cannot be greater than the available
bandwidth for scheduled traffic. This is:

U(vk) =
∑
τi∈vk

ei
pi
≤ B

L
(2)

where B is the bandwidth assigned to scheduled messages, and
L is the link capacity, with B ≤ L.

Table II summarizes the utilization test for all operational
mode when setting the SQ mode to 15[FPS], and the HQ mode
to either 30[FPS] or 60[FPS]. Considering that all link capacity
is available for the video streams, the feasibility test will be

TABLE I: Timing Requirements for Different Video Qualities

FPS Nominal [µs] Normalized

Trans. time Period Exec. time Period

15 7600 66700 1 8
30 7600 33350 1 4
60 7600 16720 1 2

TABLE II: Feasible modes with messages specifications

ID Mode Utilization (SQ=15[FPS])

(FCR, FCL, RCR, RCL) HQ=30[FPS] HQ= 60[FPS]

1 (SQ,SQ,SQ,SQ) 0.5 0.5
2 (SQ,SQ,SQ,HQ) 0.625 0.875
3 (SQ,SQ,HQ,SQ) 0.625 0.875
4 (SQ,SQ,HQ,HQ) 0.75 1.25
5 (SQ,HQ,SQ,SQ) 0.625 0.875
6 (HQ,SQ,SQ,SQ) 0.625 0.875
7 (HQ,HQ,SQ,SQ) 0.75 1.25

U(vk) ≤ 1. We see if the HQ mode is set to 60[FPS], there
are two modes that fail the feasibility test (bold numbers), and
then the designer must either need to change the specifications
or modify the system. In this case, reducing the quality of the
HQ mode to 30[FPS] makes the system feasible.

E. Schedule Generation
To find an optimal state-based schedule with respect to

minimizing the number of groups, this work uses integer linear
programming (ILP) to find optimal assignments of messages to
slots. Minimizing the number of groups provides the optimal
assignments of messages to slots, which are based on the
constraints on timing requirements of messages of each mode
and the characteristics of state-based schedules.

In addition to the parameters of the system model, the ILP
model uses some variables to find the optimal assignments of
messages to slots. The variable αi represents the number of
instances for every τi until the hyperperiod such that αi = Γ

pi
.

The variable xkij represents the usage of a time slot for i ∈ N ,
j ∈ {1, . . . ,Γ} and k ∈ V . Therefore,

xkij =


1 if message τi is allocated to slot i in mode k

0 otherwise.

The number of groups in a state-based schedule will increase
if different messages of different modes are allocated to the
same slot and the previous slots. The variable skij is used to
reduce the possibilities of such assignments of messages to
slots. The value of skij is set to 1 if a message i of mode k is
allocated to a slot j, and there exists not only a message except
i of any other modes that is allocated to the same slot j but
also a different message than i of any other modes allocated to
any of the previous slots (i.e., 1, . . . , j − 1). This is required
because the increase in number of groups not only depend on
allocating different messages of other modes in the current slot
but also in the earlier time slots due to increasing the number
of transitions. Therefore,

skij =



1 if xkij = 1∧
∃xvuj , st : u 6= i ∧ v 6= k ∧ xvuj = 1∧
∃xbaq, st : a 6= i ∧ b 6= k∧

q ∈ {1, . . . , j − 1} ∧ xbaq = 1

0 otherwise.

The variable wkij is used to determine whether different
messages of other modes are allocated to the same slot j if a
message i of mode k is already allocated to slot j. The variable
zkij is used to determine whether different messages of other
modes are allocated to the previous slots if a message i of
mode k is allocated to slot j. The ILP model shown below
minimizes the number of groups.

min
∑

∀i∈N,j∈{1,...,Γ},k∈V

skij .

st. C1{∀i ∈ N, k ∈ V} :

gpki +pki∑
j=gpki +1

xkij ≥ cki , g = 0, . . . αi − 1;

C2{∀j ∈ Γ, k ∈ V} :∑
xkij ≤ 1,

C3{∀i ∈ N, j ∈ Γ,

k ∈ V, u ∈ N− {i}, v ∈ V− {k} :

wk
ij ≥ xvuj ,

C4{∀i ∈ N, j ∈ Γ,

k ∈ V, a ∈ N− {i}, b ∈ V− {k},
q ∈ Γ− {j . . .Γ} :

zkij ≥ xbaq,
C5{∀i ∈ N, j ∈ Γ, k ∈ V} :

skij ≥ xkij + wk
ij + zkij − 1,

C6{∀i ∈ N, j ∈ Γ, k ∈ V} :

skij ≥ 0,

In the ILP model, a number of constraints represent the char-
acteristics of the optimized schedule. Constraint C1 specifies
that all messages at least get the computation units in their
periods. Constraint C2 and C6 are bounds to guarantee xkij
and skij being binary. Constraint C3, C4, and C5 compute skij .
These constraints manage to find optimal assignments of xkij
that the decomposition method (Def. 1) uses to construct a
state-based schedule.

Definition 1 (Decomposition method). Given all schedulable
and reachable groups at any time slot, a decomposition method
derives all groups in the next time slot from xkij followed by a
labelled transition (i.e., guard).

Using the decomposition method as defined above, it is
possible to generate an optimized schedule either based on pro-
visioning empty slots to transmit best-effort traffic or allowing
messages to execute more than their timing requirements. In
the latter, the schedule has fewer groups and therefore faster
average mode-change delay, but lower bandwidth for best-effort
traffic. In this paper, we focus on maximizing the available
bandwidth for best-effort traffic to gain the full advantage of

Slots 1,…,6 Slot 7 Slot 8

τ2
k ɛ

k ϵ {1,2,3,4,5,6,7}

τ2
k

k ϵ {5}

ɛ

k ϵ {1}

τ4
k

k ϵ {2}

τ3
k

k ϵ {3,4}

τ1
k

k ϵ {6,7}

ɛ

k ϵ {1}

ɛ

k ϵ {2}

ɛ

k ϵ {5}

ɛ

k ϵ {3}

τ4
k

k ϵ {4}

ɛ

k ϵ {6}

τ2
k

k ϵ {7}

τ1
k τ3

k τ4
k ɛ

Fig. 5: An optimized best-effort oriented schedule using decomposition

using state-based schedules. According to Def. 1, we define a
method (not shown due to space limitations) to construct a state-
based schedule from the values of xkij based on provisioning
empty slots. Using xkij , the method finds all groups from j = 1
onwards, along the slots, up to the slot Γ, where a group
contains modes that either have overlapped messages or nothing
(ε) to transmit. A group G initially contains all messages and
uses the decomposition method to create groups Gkij . Fig. 5
shows the state-based schedule for the case-study prioritizing
best-effort traffic.

To demonstrate that the solution to the described opti-
mization problem assigns the messages to slots efficiently,
we use random assignments of xkij that also meet the timing
requirements of messages of each mode. Fig. 6 shows the
difference in the normalized number of transitions between
the 10000 randomized schedules and the optimized schedule
for a hyperperiod of 4, 8, 12, 16, 20, 24, 28, and 32 time
slots using the case-study through changing the period of
the SQ message. The error bars in the randomized schedules
represent the normalized maximum and minimum number of
transitions among 10000 schedules. We also generate state-
based schedules using the assignments of messages to slots
through EDF scheduling policy (Fig. 6). The geometric mean
of the normalized number of transitions for the schedules
using optimized, randomized, and EDF xkij assignments are
0.6094, 0.9505, and 1 respectively. The average mode-change
delay for the generated schedule using optimized xkij is also
significantly less (Fig. 7) than the delay in the schedules
generated using either randomized or EDF-based xkij .

We implemented a set of open-source scripts for each step
of the workflow. Users can download these scripts [13] and
verify the results for the case-study included as an example,
or start with new system specifications. The current version
of the workflow scripts are based on Matlab and use the
AMPL/GUROBI optimization problem solver.

IV. RELATED WORK

Traditional real-time networking protocols allow limited
control to the applications over the communication behaviour
at runtime. For example, developers must assign message
priorities statically on a CAN bus to ensure that the priorities

4 8 12 16 20 24 28 32
0

0.2

0.4

0.6

0.8

1

Number of Slots

T
ra

n
s
it
io

n
s
 (

n
o
rm

a
liz

e
d
)

Optimized Schedule

Random Schedules

EDF Schedule

Fig. 6: Normalized number of transitions in generated schedules using
randomized, EDF-based, and optimized xk

ij assignments

4 8 12 16 20 24 28 32
0

10

20

30

40

Number of Slots

A
v
e

ra
g

e
 M

o
d

e
−

C
h

a
n

g
e

 D
e

la
y
 [

m
s
]

Optimized Schedule

Random Schedules

EDF Schedule

Fig. 7: Average mode-change delay in generated schedules using randomized,
EDF-based, and optimized xk

ij assignments

are unique [14]. FlexRay [15] follows a static TDMA approach
with a specific slot for dynamic traffic at the end of each round.
Stations must wait for that specific slot to transmit dynamic
messages, and its timing is not guaranteed.

Some recent work explore the concepts of state-based
schedules, but they lack any generation technique of schedules
from high-level specifications. For example, in [4], the authors
demonstrate the advantage of state-based scheduling for control
systems, but using a small scale system, and the schedules
are not necessarily optimized. Moreover, the work uses timed
automata [16] to express the schedule using regular expressions.
This work uses the notion of slots and communication rounds
to reduce complexity for analysis and verification. In [17], the
authors propose mechanisms to synthesize clocked graphs [18]
with the Network Code framework, but avoids generation and
optimization of state-based schedules.

V. CONCLUSION

Model-driven development is complex for time-critical
systems not only because of meeting deadlines at runtime,
but also how effective the generated schedules that represent
the runtime behaviour. A well understood approach of model-
driven development is to create a system-level design and
generate schedules specific to the execution framework. In
this paper, we present a workflow with an illustration of a
real-time video streaming case-study to implement higher
level abstractions through generating state-based schedules

that facilitate conditional executions at runtime. We also
demonstrate the generated schedules using constraints through
an optimization solver are better than schedules generated using
EDF and a randomized algorithm because of lower average
mode-change delays.

ACKNOWLEDGMENTS

The authors would like to thank Juan Rodriguez for early
contributions to this work. This research was supported in part
by projects NSERC DG 357121-2008, ORF-RE03-045, ORF-
RE04-036, ORF-RE04-039, APCPJ 386797-09, CFI 20314,
CMC Microsystems, and the industrial partners associated.

REFERENCES
[1] J.-D. Decotignie, “The Many Faces of Industrial Ethernet,” IEEE

Industrial Electronics Magazine, vol. 3, no. 1, pp. 8–19, 2009.
[2] “Time-Triggered Ethernet,” http://www.tttech.com.
[3] “Profinet,” http://www.profibus.com.
[4] G. Weiss, S. Fischmeister, M. Anand, and R. Alur, “Specification and

Analysis of Network Resource Requirements of Control Systems,” in
Proc. of the Int. Conference on Hybrid Systems: Computation and
Control (HSCC), 2009, pp. 381–395.

[5] M. Anand, S. Fischmeister, Y. Hur, J. Kim, and I. Lee, “Generating
Reliable Code from Hybrid Systems Models,” IEEE Trans. on Computers,
vol. 59, no. 9, pp. 1281–1294, 2010.

[6] A. Easwaran, M. Anand, and I. Lee, “Compositional Analysis Framework
Using EDP Resource Models,” in Proc. of the 28th IEEE Real-Time
Systems Symposium (RTSS), 2007, pp. 129–138.

[7] L. T. X. Phan, S. Chakraborty, and P. S. Thiagarajan, “A Multi-Mode
Real-Time Calculus,” in Proc. of the 29th IEEE Real-Time Systems
Symposium (RTSS), 2008, pp. 59–69.

[8] S. Fischmeister, R. Trausmuth, and I. Lee, “Hardware Acceleration
for Conditional State-Based Communication Scheduling on Real-Time
Ethernet,” IEEE Trans. on Industrial Informatics, vol. 5, no. 3, pp.
325–327, 2009.

[9] G. Carvajal, M. Figueroa, R. Trausmuth, and S. Fischmeister, “Atacama:
An Open FPGA-based Platform for Mixed-Criticality Communication
in Multi-segmented Ethernet Networks,” in Proc. of the 21st IEEE
Int. Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2013, pp. 121–128.

[10] G. Lasnier, T. Robert, L. Pautet, and F. Kordon, “Behavioral Modular
Description of Fault-tolerant Distributed Systems with AADL Behavioral
Annex,” in Conference on New Technologies of Distributed Systems,
2010, pp. 17–24.

[11] J. Vidal, F. de Lamotte, G. Gogniat, P. Soulard, and J.-P. Diguet, “A
co-design approach for embedded system modeling and code generation
with uml and marte,” in Design, Automation Test in Europe Conference
Exhibition (DATE), 2009, pp. 226–231.

[12] S. C. Hsieh, “Product Construction of Finite-State Machines,” in Proc.
of the World Congress on Engineering and Computer Science, 2010, pp.
141–143.

[13] “Open-source scripts,” http://www.mathworks.com/matlabcentral/
fileexchange/44716.

[14] CAN Specification, Version 2, Robert Bosch GmbH, 1991.
[15] FlexRay Communications System – Protocol Specification, Version 2,

FlexRay Consortium, 2004.
[16] R. Alur and G. Weiss, “Regular Specifications of Resource Requirements

for Embedded Control Software,” in Proc. of the Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2008, pp.
159–168.

[17] D. Potop-Butucaru, A. Azim, and S. Fischmeister, “Semantics-Preserving
Implementation of Synchronous Specifications Over Dynamic TDMA
Distributed Architectures,” in Proc. of the International Conference on
Embedded Software (EMSOFT), 2010, pp. 199–208.

[18] D. Potop-Butucaru, R. Simone, Y. Sorel, and J. Talpin, “Clock-Driven
Distributed Real-Time Implementation of Endochronous Synchronous
Programs,” in Proc. of the International Conference on Embedded
Software (EMSOFT), 2009, pp. 147–156.

