
May-Happen-in-Parallel Analysis based on

Segment Graphs for Safe ESL Models

Weiwei Chen, Xu Han, Rainer Dömer

Center for Embedded Computer Systems

University of California, Irvine, USA

weiweic@uci.edu, hanx@uci.edu, doemer@uci.edu

Abstract—A well-defined system-level model contains explicit
parallelism and should be free from parallel access conflicts to
shared variables. However, safe parallelism is difficult to achieve
since risky shared variables are often hidden deep in the design
and are not exposed through simulation. In this paper, we propose
a new static analysis approach based on segment graphs that
identifies a tight set of potential access conflicts in segments
that may-happen-in-parallel (MHP). Our experimental results
show that the analysis is complete, accurate and fast to reveal
dangerous shared variables in several embedded application
models. Compared to earlier work, our approach significantly
reduces the number of false conflict reports and thus saves the
designer time.

I. INTRODUCTION

Quickly creating clean and parallel system-level models is

the sine qua non for designing cost-effective MPSoCs in a

short time. Model parallelism is particularly important for

Electronic System-Level (ESL) design so as to reflect the

target architecture that can utilize parallel processing for high

performance with low power.

To parallelize an application, system designers first iden-

tify suitable functions that can be efficiently parallelized.

Then, they recode the model into System Level Description

Languages (SLDLs), such as SystemC or SpecC, to expose

the potential parallelism. The functionality of the model is

typically validated through simulation. However, simulation

cannot prove the absence of mistakes in ESL models, such as

shared variable race conditions. The reference discrete event

simulator for both SystemC and SpecC uses cooperative multi-

threading which only executes one thread at one time. In

this case, race conditions due to parallel accesses to shared

variables hardly “show up” during simulation.

Parallel discrete event simulation in [1], [2] raises the

likelihood of exposing parallel access conflicts since it allows

multiple threads to run concurrently on multi-core CPUs.

However, it is still difficult to reproduce simulation results

since the execution order of concurrent threads is nonde-

terministic and can differ in multiple simulation runs. Most

importantly, however, simulation cannot provide a complete

list of potential access conflicts.

In this paper, we focus on the safety of the parallelism in

ESL models. A safe parallel system model in the context of

this paper is a model that is free from parallel access conflicts

to shared variables. In particular, we propose a method to

analyze the source code of a model at the segment level.

Our algorithm identifies segments that may happen in parallel

(MHP) and therefore detects all potential access conflicts with

less false positives than previous approaches.

A. Related Work

Extensive research has been done for decades to analyze

parallel programs.

[3] proposes a general on-the-fly algorithm for access

anomaly detection in shared-memory parallel programs. The

approach monitors variables and threads dynamically during

execution with small storage requirements by using data

compression and discarding obsolete information.

[4] presents an algorithm to statically detect race conditions

in parallel programs synchronized by using event variables.

Based on a graph representing both of the control and synchro-

nization flow, the method determines whether two basic blocks

can ever run in parallel. It uses safe distances to determine

whether a data array can be accessed by multiple parallel

loops. However, when dealing with loops, the analysis requires

a special assumption that each loop iteration should use a

different event variable.

[5] detects may-happen-in-parallel (MHP) statement sets

by using a Trace Flow Graph (TFG). Based on rendezvous

information, the method iteratively evaluates each TFG node

to find the largest MHP set. However, it has limitations on

analyzing loops and thus may report over-conservative results.

While these approaches focus on untimed concurrent pro-

grams in Ada, C or Java, we focus on timed concurrent

models in SLDLs with the discrete event semantics without

any limitation on the control flow.

[6] analyses non-concurrency information for OpenMP pro-

grams. The approach constructs OpenMP control flow graph

and partitions the program into phases. The analysis is based

on high level language semantics.

RacerX [7] detects races and deadlocks in operating sys-

tems. The algorithm is based on lockset analysis and uses

heuristics to reduce false positives and negatives. Since its

target system is general multithreading, user annotation is

required to specify lock and unlock functions.

In contrast, our analysis is based on low level synchroniza-

tion primitives and does not require any user annotation.978-3-9815370-2-4/DATE14/ c©2014 EDAA

Formal model checking based approaches are used in [8]

and [9] to detect races in SystemC models. These methods

use tracing results which combine static analysis and simula-

tion to provide comprehensive coverages. A dynamic partial

order reduction technique is proposed to address the state

explosion problem. [10] also uses simulation to analyze non-

deterministic anomalies among parallel logical processes.

In contrast, our approach is fully static and does not require

simulation.

II. RACE CONDITION DETECTION FOR ESL MODELS

Race conditions among shared variables may cause non-

deterministic behavior in parallel models and errors in the final

implementation.

Race condition detection can be dynamic or static.

• Static Analysis extracts parallelism at the source code

level to detect the potential shared variable parallel access

conflicts. [11] proposes a Static Parallelism Aware De-

tection (SPAD) which derives the parallelism according

to the concurrent syntax in SpecC, namely keywords pipe

(pipelining execution) and par (parallel execution). For

instance, Fig. 1 shows a simple design with a two stage

pipeline (i.e. a and b), and each stage consists of two

parallel submodules (i.e. c and d in a; e and f in b). SPAD

b e h a v i o r A (. . .) b e h a v i o r B (. . .)

{ {
.

vo id main () { vo id main () {
p a r { p a r {

c . main () ; e . main () ;

d . main () ; f . main () ;

} }
} }

} ; } ;

b e h a v i o r Main ()

{
A a (. . .) ;

B b (. . .) ;

i n t main () {
p i p e {

a . main () ;

b . main () ;

}
}

} ;

Fig. 1. Example of a pipelined parallel SpecC design

first identifies the MHP module pairs hierarchically, such

as (a, b), (c, e), (c, f), (d, e), (d, f). Then, the algorithm

compares the variable access lists for each instance for

potential shared variable conflicts.

• Dynamic Analysis simulates the model and detects race

conditions at run-time. Parallel anomalies can be found

precisely along the execution path. In addition to [8] and

[9], [12] presents a Dynamic Segment Aware Detection

(DSAD) approach which analyzes the model statically

and monitors the simulation at runtime at the segment

(the piece of code between two scheduling points) level.

In particular, DSAD records the segment pairs that are

running in parallel during simulation and reports the

shared variable conflicts by comparing the segment vari-

able access lists computed statically.

Formal analysis for parallel programs synchronized by the

rendezvous mechanism to determine the pairs of statements

which may happen in parallel (MHP) is known to be NP-

complete [13]. For this reason, much research aims to find

the sets of MHP statements in larger granularity to reduce the

algorithm complexity. However, conservative static approaches

usually report a large amount of false positive results while dy-

namic checking may slow down the simulation and complete

coverage is not guaranteed.

In this paper, we also follow the philosophy of detecting race

conditions by identifying MHP statements. In Section III-B,

we propose a Static Segment Aware Detection (SSAD)

algorithm to analyze the model at the segment level which

is more efficient and comprehensive than DSAD, and more

precise than SPAD. Fig. 2(b) compares the coverage among

DSAD, SPAD, and SSAD.

!"#$%&'()*+,&&

-)*")./+#&

!"#!$

0)*")./+#&

""#!$

0)*")./+#&

"%#!$

0)*")./+#&

1//&-)*")./+#&"2&3(+&4+#"52&

(a) Static and dynamic approaches for detecting parallel access conflicts

DSAD SPAD SSAD

Speed Slow Fast Fast

Coverage Sparse Comprehensive Comprehensive

Accuracy Low Low Medium

(b) Qualitative comparison of approaches

Fig. 2. Comparison of race condition detection approaches

III. RACE CONDITION ANALYSIS USING SEGMENT

GRAPHS

We now propose the Static Segment Aware Detection

(SSAD) algorithm for parallely accessed variables. The basic

idea is to identify MHP segment pairs statically with respect

to discrete event semantics.

A. Segment Graph Data Structures

To formally describe our SSAD algorithm, we need the

following notations:

• Simulation Time: We define time as tuple (t, δ) where

t=time, δ=delta-cycle, and order time stamps as follows:

– equal: (t1, δ1) = (t2, δ2), iff t1 = t2, δ1 = δ2
– before: (t1, δ1) < (t2, δ2), iff t1 < t2, or t1 = t2, δ1 < δ2
– after: (t1, δ1) > (t2, δ2), iff t1 > t2, or t1 = t2, δ1 > δ2

• Segment segi: source code statements executed by a

thread between two scheduling steps. Note that segment

has larger granularity than single statements.

• Segment Boundary vi: SLDL statements which call the

scheduler, i.e. wait, waitfor, par, pipe, etc.

• Segment Graph (SG): SG=(V, E), where V = {v | v is a

segment boundary}, E={eij | eij is the set of statements

s1

s1

s1

s1

s1

s1

s1

s1

s2

s3

s3

s3

s3

s3

s2

14: behavior B(event e)

15: {

16: void main(){

17: int i = 0; // stack variable

18: for(i=0;i<9;i++){ // i(RW)

19: y = y*42 + z; // y(RW), z(R)

20: waitfor 2; // seg boundary

21: array[i] = array[i]*4 + x++; // i(R), array(RW), x(RW)

22: notify e; // notify event

23: wait e; // segment boundary

24: z ++;} // z(RW)

25: }

26: };

s5

s5

s5

s6

s6

s6

s6

s6

s6

s4

s4

s4

s4

s4

s4

s4

s4

1: int array[10] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

2: int x = 0, y = 0, z = 0, w = 0; //global variable

3: behavior A(event e)

4: {

5: void main(){

6: int i = 0; // stack variable

7: for(i=0;i<9;i++){ // i(RW)

8: y = x + 27; // x(R), y(W)

9: waitfor 1; // segment boundary

10: w ++; // w(RW)

11: wait e; // segment boundary

12: x = array[i]*42;}} // i(R), array(R), x(W)

13: };

27: behavior Main()

28: {

29: event e; // event instance

30: A a(e); // behavior instantiation

31: B b(e); // behavior instantiation

32: int main(){

33: while(1){ // segment boundary

34: par {

35: a;

36: b; } // segment boundary

37: }

38: }

39: };

s1

s4

s7

s7

s7

s0

s0

s0

s0

s0

s0

s0 s7

Fig. 3. SLDL source code for a simple design example

between vi and vj , where vj could be reached from vi,

and segi = ∪eij}. The Segment Graph can be derived

from the Control Flow Graph (CFG) of the SLDL models

[14].

• Current time advance table CTime[N] lists the time

increment that a thread will experience when it enters the

given segment. N is the total number of segments. The

time increase for different segments is listed in Table I.

TABLE I
TIME ADVANCES AT SEGMENT BOUNDARIES.

Segment boundary Time Increment Add to (t′, δ′)
wait event inc by one delta cycle (0:1) (t′, δ′ + 1)
waitfor t increment by time t (t:0) (t′ + t, 0)

par/end of par no time increment (0:0) (t′, δ′)

!"#$"%&' (')' *' +' ,' -' .' /'

012$"' 345' 6(7(8' 6)7(8' 6(7)8' 6(7(8' 6*7(8' 6(7)8' 9'

!"#$"%&' (')' *' +' ,' -' .' /'

0123!&'
4567'

8597'
:5697'

;<<;8567'

45697'

8597'

85697'

=567'

;<<;85697'

45697'

85697'

=5697'
>'

!"#$%

&'(%

!"#)%

!"#*%

!"#+%

!"#,%!"#-%

!"#.%

/'012(%)%

/'03%"%

/'012(%-%

!"#4%

/'03%"%

Fig. 4. Segment Graph, current time advance table and segment variable
access lists for the simple example

!"#$ %$ &$ '$ ($)$ *$ +$,$

%$

&$

'$

($

)$

*$ -$ -$

+$

,$

(a) Event notification table

!"#$ %$ &$ '$ ($)$ *$ +$,$

%$ -$.%/%0$.&/%0$.&/&0$.%/%0$.'/%0$.'/&0$.%/%0$

&$ -$ -$.&/%0$.&/&0$ -$ -$ -$.%/%0$

'$ -$ -$.&/%0$.%/&0$ -$ -$ -$.%/&0$

($ -$ -$.&/%0$.&/&0$ -$ -$ -$.%/%0$

)$ -$ -$ -$ -$ -$.'/%0$.'/&0$.%/%0$

*$ -$ -$ -$ -$ -$.'/%0$.%/&0$.%/&0$

+$ -$ -$ -$ -$ -$.'/%0$.'/&0$.%/%0$

,$ -$.%/%0$ -$ -$.%/%0$ -$ -$ -$

(b) Segment shortest path table

Fig. 5. Event notification table and segment shortest path table for the simple
example

Table I also shows the result of adding the time increment

to a given timestamp (t′, δ′).
• Event notification table NTab[N,N]:

NTab[i, j] =







T if segi notifies an event that
segj is waiting for;

F otherwise.

• Shortest path table, SPTab[N,N] stores the minimum

time advance between two segments:

SPTab[i, j] = the minimum time advance from segi to

segj .

Note that this value can be the accumulated current

simulation time advances along a valid path from segi
to segj (For valid path, see Lemma II below).

• Variable Access List: V AListi is the list of the variables

that are accessed in segi. Each entry for a variable in this

list is a tuple of (Var, AccessType).

• May happen in parallel table MHP [N,N]:

MHP [i, j] =

{

T if segi may happen in parallel with segj ;
F otherwise.

Fig. 3 shows the source code of a simple SpecC design

with its segment graph and analysis tables shown in Fig. 4

and Fig. 5.

!"#$%

&'(%

!"#)%

!"#*%

!"#+%

!"#,%!"#-%

!"#.%

/'012(%)%

/'03%"%

!"#4%

/'03%"%

/'012(%-%

(a) Two valid execution paths

!"#$%

&'(%

!"#)%

!"#*%

!"#+%

!"#,%!"#-%

!"#.%

/'012(%)%

/'03%"%

/'012(%-%

!"#4%

/'03%"%

(b) An invalid execution path

Fig. 6. Valid and invalid execution paths in the segment graph when
calculating the minimum time advance

B. Determining MHP Segments

We propose an elimination-based algorithm for computing

the MHP segments. Initially, all segments are MHP with

all others. We use the following lemmas to eliminate MHP

segment pairs so as to reduce the number of false conflicts.

Lemma I: ∀segi, segi is only executed by one thread.

Lemma I states that a segment cannot execute in parallel

with itself because a segment can only be executed by one

thread. When a module (i.e. behavior or channel in SpecC)

is instantiated multiple times, multiple copies of the segments

are added to the segment graph [14]. Therefore, one segment

only belongs to one specific instance and different instances

never share same segments.

Note that a channel instance may be used by multiple

threads in the same segment. However, channel accesses are

always mutual exclusive in SpecC. This guarantees that a

segment in a channel instance is never executed by multiple

threads at the same time. �

Lemma II: If ∃ a valid execution path from segi to segj
in the Segment Graph, segi and segj will not be executed

in parallel. A valid execution path is a path that does not exit

and re-enter a parallel statement. Fig. 6(a) shows two valid

execution paths (seg1 → seg7 and seg5 → seg5) and Fig. 6(b)

shows an invalid one (seg1 → seg5).

Lemma II states that sequentially executed segments cannot

run in parallel. A valid execution path in the segment graph

indicates sequentiality. The only exception would be an invalid

path which exits a par statement from a branch (a child in-

stance) and re-enters another branch (a different child instance)

in the same par statement (i.e. seg1 → seg5 in Fig. 6(b)). �

Lemma III: ∀segi where segi notifies segj , if ∃segk
which happens either before all segi or more than (0, 1) time

cycles after all segi on the path between them, then segk does

not happen in parallel with segj .

If segi notifies an event segj is waiting for, segj will be

executed (0, 1) time cycles after segi finishes. Therefore, any

segment segk (k may equal to i) that is before segi or more

than (0, 1) time cycles away from segi, will not not happen

in the same simulation cycle with segj .

Particularly, if segi belongs to a loop and the time advance

for segi which goes back to itself is greater than (0, 1)

time cycles, segi cannot happen in parallel with segj . When

multiple segis exist (an event can be notified by statement(s)

belonging to multiple segments), segk are compared with all

segis to determine whether segk and segi cannot happen in

parallel.

In summary, Lemma III is general enough to cover all

models with loops and event notifications. �

Lemma IV: If segi and segj share the same parent,

1) the parent segment starts a par statement (i.e. seg1 and

seg4 in Fig. 4), then segi will always happen in parallel

(AHP) with segj ;

2) the parent segment starts a pipe statement, then segi
will never happen in different simulation cycle with segj
within the same pipeline iteration.

Lemma IV defines the segment pairs that alway-happen-

in-parallel (AHP) according to the execution semantics. Note

that pipe is a special case of par. Although the first segment

in each pipeline stage does not happen all the time while

the pipeline is filling or flushing, they either AHP or never

happen for a specific iteration. Therefore, we categorize the

first segments following a pipe statement the same as those of

the par statement. �

Corollary IV.1: If segi and segj AHP, ∀segk on a valid

execution path in the segment graph with segi, segk will not

happen in parallel with segj .

Corollary IV.1 states that all the segments that execute se-

quentially with segi in different simulation cycles will never

happen in parallel with any AHP segments of segi. �

C. MHP Algorithm for Race Condition Analysis

Our race condition analysis consists of three main steps:

1) Building the segment graph: we first go through all

statements in the design, find the segment boundaries, and

construct the segment graph similar to [14].

2) MHP segment elimination: In contrast to SPAD, we aim

at minimizing MHP segment pairs.

Our MHP table is initially filled with true (T) value,

which means all segments are conservatively assumed to be

potentially in parallel (Fig. 7(a)).

Next, we apply the Lemmas presented in Section III-B to

eliminate false positives as follows:

• Lemma I eliminates the Ts on the diagonal of the MHP

table, as shown in Fig. 7(b).

• Lemma II eliminates the segment pairs that are on the

same valid sequential execution path.

The SPTab reflects the execution order among the

segment pairs:

– SPTab[i, j] 6= ∞ and SPTab[j, i] 6= ∞ ⇒
segi and segj are a loop (i.e. seg2 and seg3 in Fig. 5(b));

– SPTab[i, j] 6= ∞ and SPTab[j, i] = ∞ ⇒
segi will happen before segj (i.e. seg0 and seg7 in Fig. 5(b));

– SPTab[i, j] = ∞ and SPTab[j, i] 6= ∞ ⇒
segi will happen after segj (i.e. seg5 and seg4 in Fig. 5(b));

– SPTab[i, j] = ∞ and SPTab[j, i] = ∞ ⇒

segi and segj may happen in parallel (i.e. seg1 and seg4 in

Fig. 5(b)).

Algorithm 1 shows our modified Floyd−Warshall algo-

rithm to compute the SPTab. As shown in Fig. 5(b),

we get the SPTab for the simple example in Fig. III-A.

Then, we use the SPTab to eliminate segment pairs from

the MHP table and get Fig. 7(c).

• Lemma III eliminates the MHP pairs based on the se-

mantics for event notifications (Algorithm 2).

We get Fig. 7(d) as the MHP table for the simple example.

For instance, (seg3, seg4) are removed from being MHP

since seg4 will at least be (2:0) time cycles away from

seg5 which is longer than the time advance (0:1) between

seg3 and seg5.

• Lemma IV eliminates MHP pairs based on the AHP

segments (Algorithm 3). In the simple example, since

seg1 and seg4 AHP (both starting from the par statement

in line 34) and seg5 and seg4 are not MHP (Lemma II),

seg1 and seg5 thus will never be MHP as shown in

Fig. 7(e).

3) Race condition variable analysis: With the reference of

the MHP table, we compare the variable access lists of the

MHP segment pairs for potential variables that may cause race

conditions due to parallel accesses.

!"#$ %$ &$ '$ ($)$ *$ +$,$

%$ -$ -$ -$ -$ -$ -$ -$ -$

&$ -$ -$ -$ -$ -$ -$ -$ -$

'$ -$ -$ -$ -$ -$ -$ -$ -$

($ -$ -$ -$ -$ -$ -$ -$ -$

)$ -$ -$ -$ -$ -$ -$ -$ -$

*$ -$ -$ -$ -$ -$ -$ -$ -$

+$ -$ -$ -$ -$ -$ -$ -$ -$

,$ -$ -$ -$ -$ -$ -$ -$ -$

(a) Initial MHP table

!"#$ %$ &$ '$ ($)$ *$ +$,$

%$ -$ -$ -$ -$ -$ -$ -$

&$ -$ -$ -$ -$ -$ -$ -$

'$ -$ -$ -$ -$ -$ -$ -$

($ -$ -$ -$ -$ -$ -$ -$

)$ -$ -$ -$ -$ -$ -$ -$

*$ -$ -$ -$ -$ -$ -$ -$

+$ -$ -$ -$ -$ -$ -$ -$

,$ -$ -$ -$ -$ -$ -$ -$

(b) Lemma I applied

!"#$ %$ &$ '$ ($)$ *$ +$,$

%$

&$ -$ -$ -$

'$ -$ -$ -$

($ -$ -$ -$

)$ -$ -$ -$

*$ -$ -$ -$

+$ -$ -$ -$

,$

(c) Lemma I and II applied

!"#$ %$ &$ '$ ($)$ *$ +$,$

%$

&$ -$ -$ -$

'$ -$ -$ -$

($ -$

)$ -$ -$

*$ -$ -$

+$ -$ -$ -$

,$

(d) Lemma I, II and III applied

!"#$ %$ &$ '$ ($)$ *$ +$,$

%$

&$ -$

'$ -$ -$

($ -$

)$ -$

*$ -$

+$ -$ -$

,$

(e) Lemma I, II, III, and IV
applied

Fig. 7. MHP table generation by applying Lemma I through IV

Algorithm 1 Modified Floyd−Warshall algorithm for com-

puting the SPTab

1: let SPTab be a NxN array of minimum time advances initialized to ∞.

2: let Next be a NxN array of integers initialized to -1 (record the shortest path).

3: void BuildSPTab(){
4: ∀ edge from segi to segj ,

5: SPTab[i, j] = CTime[j]; /* time advance when entering segj . */

6: for k from 0 to N-1 do

7: for i from 0 to N-1 do

8: for j from 0 to N-1 do

9: if (SPTab[i, k] + SPTab[k, j] < SPTab[i, j] then

10: oldVal = SPTab[i, j];

11: SPTab[i, j] = SPTab[i, k] + SPTab[k, j]; Next[i, j] = k;

12: if (IsValidPath(i, k, j)==false) then

13: SPTab[i, j] = oldVal; Next[i, j] = -1; end if

14: end if

15: end for

16: end for

17: end for

18: }
19:
20: bool IsValidPath(i, k, j){
21: /* check whether the shortest path from segi to segj through segk is valid */

22: path = FindPath(i, k) + FindPath(k, j);

23: if (path exits a par or pipe statement first and then re-enters the same one)

24: then return false; end if

25: return true;

26: }
27:
28: string FindPath (i, j){
29: if (SPTab[i,j] == CTime[j]) then return “ij”; end if

30: tmp = next[i, j];

31: if (tmp == -1) then return “”; end if

32: return FindPath(i, tmp) - string(tmp) + FindPath(tmp, j);

33: }

Algorithm 2 Lemma III for MHP segment elimination

1: ∀ segj and segi, if NTab[i][j] = true /*segi notifies segj*/

2: then ∀ segk
3: if ((SPTab[i, k] > (0, 1) and SPTab[i, k] 6= ∞)

4: or (SPTab[i, k] == ∞ and SPTab[k, i] 6= ∞)) then

5: MHP [k, j] = MHP [j, k] = false end if

6: end if

Algorithm 3 Lemma IV for MHP segment elimination

1: ∀ segi and segj , if (segi and segj are AHP) /*always happen in parallel*/

2: then

3: ∀ segk , if (MHP[k, i] = false) then

4: MHP[k, j] = MHP[j, k] = false; endif

5: ∀ segk , if (MHP[k, j] = false) then

6: MHP[k, i] = MHP[i, k] = false; endif

7: end if

In particular, if both lists contain entries of the same

variable, and at least one of the access types is write or read-

write, then this is reported as a potential race condition.

Table II shows the analysis results after applying the MHP

algorithms. It clearly shows that the lemmas help to reduce the

MHP segments and thus narrow down the potential conflicts

to just y (line 2) for the example shown in Fig. 3.

TABLE II
EXPERIMENTAL RESULTS FOR THE SIMPLE EXAMPLE

Analysis #MHP Potential Conflict Variables
Steps Segment Pairs numbers variable list

Initial 36 5 x, y, z, w, array

Lemma I 28 4 x, y, z, array

Lemma I, II 9 3 x, y, array

Lemma I - III 7 2 x, y

Lemma I - IV 4 1 y

IV. EXPERIMENTS AND RESULTS

We implemented and performed the three approaches,

DSAD, SPAD and SSAD, on our in-house ESL models for

seven embedded applications. In Table III, we show the size

of the applications, the number of parallel accessed variables,

and the execution time of the analysis for each approach.

Overall, the MHP analysis approach, i.e. SSAD, reports

more accurate and complete results than DSAD and SPAD

with a very short execution time. Note that, while it is

hard to measure, it can easily be seen that the reduced set

reported race conditions (due to less false positives compared

to SPAD) translates directly into significant savings in the

system designer’s analysis, testing, and debugging time.

The last four columns in Table III also show the effective-

ness of the lemmas in Section III on narrowing down the set

of potential conflict variables in the application models.

• Mandelbrot Renderer: a graphics application which vi-

sualizes the points of the Mandelbrot set with 16 parallel

slice renderers. The 2 conflict variables reported by SSAD,

image and t, are array variables. image can be resolved by

splitting it into dedicated slices for each parallel rendering

unit. t is a timestamp in the test bench which is safely set

by the stimulus and read by the monitor (false positive).

• JPEG image encoder: encodes a color image with 3

parallel encoders and 1 sequential Huffman encoder at the

end. The 3 reported variables input, ch, and fin are all

pointer variables which are never accessed in parallel. SSAD

could avoid reporting these variables with further pointer

analysis (future work).

• Fixed-point MP3 audio decoder: MP3 audio decoder with

stereo channel decoders using fixed-point calculations. 2

variables, file handle and decend are reported by SSAD.

file handle is a pointer reported due to the lack of pointer

TABLE III
EXPERIMENTAL RESULTS FOR EMBEDDED APPLICATIONS

Embedded Lines of Number of #Potential Race Conditions Analysis Time (sec) #Potential Race Conditions after Applying Lemma

Applications Code Segments DSAD SPAD SSAD DSAD SPAD SSAD none I I-II I-III I-IV

Mandelbrot graphics 0.6k 38 1 2 2 22.31 0.01 0.01 3 3 2 2 2

JPEG image encoder 2.5k 47 1 5 3 1.79 0.02 0.02 21 10 5 5 3

MP3 decoder (fixed point) 7k 21 1 47 2 4.31 0.08 0.07 48 39 2 2 2

MP3 decoder (floating point) 14k 66 2 54 9 75.33 0.23 0.22 60 45 9 9 9

GSM vocoder 16k 50 2 141 24 0.78 0.08 0.08 145 108 25 24 24

H.264 video decoder 40k 54 78 183 162 79.82 0.93 1.46 209 207 170 170 162

H.264 video encoder 70k 251 128 503 151 1531.22 12.24 31.75 504 440 151 151 151

analysis. decend is a debugging variable in the test bench

which does not affect the safety of the design.

• Floating-point MP3 audio decoder: MP3 audio decoder

based on floating-point operations. 9 variables are reported

by SSAD, 7 of them can be avoided with further pointer

analysis (future work); hybrid blc can be resolved by

splitting it into two pieces for the two stereo channels, and

decend is a debugging variable in the test bench which does

not affect the safety of the design.

• GSM Vocoder: Global System Mobile (GSM) vocoder

whose functionality is defined by the European Telecom-

munication Standards Institute (ETSI). 24 variables are

reported by SSAD, 4 of them can be resolved by using

proper channels, and 18 can be avoided with further pointer

analysis. The Overflow variable can be resolved by being

localized to a stack variable; the Old A variable can be

resolved by being duplicated for parallel modules.

• H.264 video decoder: H.264 video decoder with 4 parallel

slice decoders and sequential slice dispatcher and synchro-

nizer. SSAD reports 162 conflicting variables including 21

global variables and 141 pointers. The global variables

contain 1 counter for debugging purposes and 20 values

constant to each frame, so they are shared safely among

parallel threads. Parallel access to the pointers could be

eliminated with further analysis.

• H.264 video encoder: H.264 video encoder with parallel

motion estimation distortion calculation. Among the 151

variables reported by SSAD, 64 are pointer variables that

can be eliminated with further pointer analysis. This model

is under development. For this industrial-size model with

more than 70k lines of code, SSAD narrows the size of

the potential conflicts set down to 87 which need further

investigation for a safe parallel model.

V. CONCLUSIONS AND FUTURE WORK

Writing well-defined and safe ESL models with explicit

parallelism is difficult. Parallel accesses to shared variables

pose an extra challenge as they are often hidden deep in the

model and cause problems that are difficult to capture during

simulation.

In this paper, we propose the may-happen-in-parallel analy-

sis for discrete event execution semantics by using the segment

graph of a system-level design. The approach enables the fast

yet complete detection of potential conflicts due to parallel

accesses to shared variables. It helps the designer to target

dangerous shared variables with very few false positives and

ensures a safe design. Our experimental results show the

effectiveness of revealing risky shared variables in existing

industrial-sized embedded applications in very short execution

time.

In future work, we plan to integrate pointer analysis support

for variables of pointer types and develop automatic algorithms

to assist in resolving the reported conflicts.

ACKNOWLEDGMENT

This work has been supported in part by funding from the National
Science Foundation (NSF) under research grant NSF Award #0747523. The
authors thank the NSF for the valuable support. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] W. Chen, X. Han, and R. Dömer, “Multi-Core Simulation of Transaction
Level Models using the System-on-Chip Environment,” IEEE Design and

Test of Computers, vol. 28, pp. 20–31, May/June 2011.
[2] C. Schumacher, R. Leupers, D. Petras, and A. Hoffmann, “parSC:

Synchronous Parallel SystemC Simulation on Multi-Core Host Archi-
tectures,” in Proceedings of the International Conference on Hardware/-

Software Codesign and System Synthesis, pp. 241–246, 2010.
[3] E. Schonberg, “On-the-fly detection of access anomalies,” in Proceedings

of the ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI), 1989.
[4] V. Balasundaram and K. Kennedy, “Compile-time detection of race

conditions in a parallel program,” in Proceedings of the 3rd International

Conference on Supercomputing, ICS ’89, pp. 175–185, 1989.
[5] G. Naumovich and G. S. Avrunin, “A Conservative Data Flow Algorithm

for Detecting All Pairs of Statements that May Happen in Parallel,” ACM

SIGSOFT on Software Engineering Notes, vol. 23, pp. 24–34, Nov. 1998.
[6] Y. Lin, “Static Nonconcurrency Analysis of OpenMP Programs,” in

Proceedings of the 2005 and 2006 International Conference on OpenMP

Shared Memory Parallel Programming, IWOMP’05/IWOMP’06, pp. 36–
50, 2008.

[7] D. Engler and K. Ashcraft, “RacerX: Effective, Static Detection of Race
Conditions and Deadlocks,” ACM SIGOPS Operating Systems Review,
vol. 37, pp. 237–252, Oct. 2003.

[8] N. Blanc and D. Kroening, “Race Analysis for SystemC using Model
Checking,” ACM Transactions on Design Automation of Electronic Sys-

tems, vol. 15, June 2010.
[9] A. Sen, V. Ogale, and M. S. Abadir, “Predictive Runtime Verification

of Multi-processor SoCs in SystemC,” in Proceedings of the Design

Automation Conference (DAC), 2008.
[10] C. Schumacher, J. Weinstock, R. Leupers, and G. Ascheid, “Scandal:

SystemC Analysis for Nondeterminism Anomalies,” in Forum on Speci-

fication and Design Languages, 2012.
[11] X. Han, W. Chen, and R. Doemer, “Designer-in-the-loop recoding of

esl models using static parallel access conflict analysis,” in Proceedings

of the 16th International Workshop on Software and Compilers for

Embedded Systems (SCOPES), 2013.
[12] W. Chen, C.-W. Chang, X. Han, and R. Dömer., “Eliminating Race

Conditions in System-Level Models by using Parallel Simulation Infras-
tructure,” in High Level Design Validation and Test Workshop (HLDVT),

2012 IEEE International, 2012.
[13] R. Taylor, “Complexity of Analyzing the Synchronization Structure of

Concurrent Programs,” Acta Informatica, vol. 19, no. 1, pp. 57–84, 1983.
[14] W. Chen, R. Dömer, and X. Han, “Out-of-Order Parallel Simulation for

ESL Design,” in Proceedings of the Design, Automation and Test in

Europe (DATE) Conference, 2012.

