
978-3-9815370-2-4/DATE14/©2014 EDAA

Fast STA Prediction-based Gate-level Timing

Simulation

Tariq B. Ahmad

ECE Department

University of Massachusetts

Amherst, MA, USA

tbashir@ecs.umass.edu

Maciej J. Ciesielski

ECE Department

University of Massachusetts

Amherst, MA, USA

ciesiel@ecs.umass.edu

Abstract— Traditional dynamic simulation with standard delay

format (SDF) back-annotation cannot be reliably performed on

large designs. The large size of SDF files makes the event-driven

timing simulation extremely slow as it has to process an excessive

number of events. In order to accelerate gate-level timing

simulation we propose an automated fast prediction-based gate-

level timing simulation that combines static timing analysis

(STA) at the block level with dynamic timing simulation at the

I/O interfaces. We demonstrate that the proposed timing

simulation can be done earlier in the design cycle in parallel with

synthesis.

Index Terms— Gate-level timing, static timing analysis,

dynamic timing simulation, ASIC, Opencores, RTL, Verilog

I. INTRODUCTION

A. Literature Survey on Verification

As design size and complexity increase, so is the need to

verify designs quickly and reliably. This, combined with the

reduced design cycle of 3-6 months, makes verification an

extremely challenging task. Today, verification consumes over

70% of the design cycle time and, on an average, the ratio of

verification to design engineers is 3:1 [1][2].

Verification engineers use a wide variety of verification

approaches, including constrained random simulation for

datapath components, equivalence checking for pre- and post-

synthesis netlists, and formal property verification for control

and protocol checking. As the design gets refined into lower

levels of abstraction, such as gate or layout level, in an

application specific integrated circuit (ASIC) or field

programmable gate array (FPGA) design flow, the

performance of simulation drops significantly. This is due to

the large size of gate-level and layout-level netlists, and gate

and wire delays available only at these lower levels of

abstraction. Formal property verification still cannot cope with

the design complexity beyond register transfer level (RTL) of

abstraction. Equivalence checking can only compare

functionality (but not the timing) of two designs; it suffers from

memory capacity limitations for large designs and may require

defining structurally similar cut points as a basis of

comparison. Other techniques, such as static timing analysis

(STA), are prone to manually imposed constraints. A designer

may inadvertently miss false or multi-cycle paths or add such

paths that should not have been constrained [3]. Furthermore,

STA does not work for asynchronous interfaces [15] and

there is no way to validate the results of STA, except by

simulation. To accelerate simulation at lower levels of

abstraction, hardware assisted simulation acceleration (based

on FPGAs), emulation (such as Cadence Palladium platform or

EVE/Synopsys Zebu platforms), and other techniques have

been introduced. These techniques are expensive, quite

complex to deal with, and may require redesigning testbench or

the design under verification (DUV) [4]. Despite this,

traditional hardware description language (HDL) simulation

remains the most popular method of design verification,

because of its ease of use, inexpensive computing platform,

100% signal controllability and observability [5]. Figure 1

illustrates the use of simulation in a typical ASIC design flow.

Figure 1. Simulation in ASIC/FPGA Design Flow

It is clear from the above description that simulation has

its own special place in the design flow and it is not going

away in the foreseeable future. As the design gets refined into

lower levels of abstraction, such as gate-level and layout level,

functional (zero-delay) and timing simulations can validate the

results of synthesis, STA or equivalence checking. Moreover,

neither STA nor equivalence checking can find bugs due to X

(unknown) signal propagation. Even though RTL regression is

run on a daily basis, industry insists on gate-level simulation

before sign-off.

Gate-level simulation is necessary to validate the results of

RTL and logic synthesis. At this stage, gate-level simulation

Start

Algorithm
Development

in C/C++

Translation into

Hardware

Description language

HDL

Post Synthesis

Functional &

Timing

Simulation

Synthesis

into logic gates

Functional

Hardware

Simulation

Layout

Post Layout

Functional &

Timing

Simulation

End

Le
ve

l o
f a

b
st

ra
ct

io
n

can be functional (zero-delay) or unit-delay, where all gate-

level cells are assumed to have delay value of 1 timescale unit.

Later, gate-level timing simulation can be performed in the pre-

layout or post-layout stage using standard delay format (SDF)

back-annotation. Gate-level simulations are considered a must

for verifying timing critical paths of asynchronous design as

such paths cannot be handled by STA tools. Furthermore, gate-

level simulation is used to verify the constraints of static

verification tools such as STA and equivalence checking.

These constraints are added manually, and the quality of results

obtained with static tools is only as good as the imposed

constraints. Gate-level simulation is also used to verify the

power-up, power-down and reset sequences of the full chip. It

is also used to estimate dynamic power drawn by the chip.

Finally, gate-level simulation is used after engineering change

order (ECO) to verify the applied changes [15].

B. Issues with Simulation

The dominant technique used for functional and timing

simulation is event-driven HDL simulation [5]. However,

event-driven simulation suffers from very low performance

because of its inherently sequential nature and heavy event

activities in gate-level simulation. As the design gets refined

into lower levels of abstraction, and as more debugging

features are added into the design, simulation time increases

significantly. Figure 2 shows the simulation performance of

Opencores [14] AES128 design [23] at various levels of

abstraction with debugging features enabled. As the level of

abstraction goes down to gate or layout level and debugging

features are enabled, simulation performance drops down

significantly. This is due to a large number of events at the

gate-level or layout level, timing checks and disk access to

dump simulation data.

Figure 2. Drop down in simulation performance with level of

abstraction + debugging

C. Scope of this Work

This work addresses the issue of improving performance of

event-driven gate-level timing simulation using static timing

analysis (STA) as “timing predictor” at the block level. We

propose an automated partitioning scheme that partitions the

gate-level netlist into blocks for SDF annotation and STA. We

also propose a new design/verification flow where timing

simulation can be done early in the design cycle using cycle-

accurate RTL.

The next section briefly reviews literature on improving

simulation performance using parallel simulation. Section 3

presents a new approach to accelerating gate-level timing

simulation using STA. Section 4 describes the setup,

experiments and results based on the new approach. Section 5

describes how to verify simulation results using the proposed

flow. New simulation flow based on early simulation is

discussed in Section 6. The paper is concluded in Section 7 and

References are listed in Section 8. Our contributions in this

work span Sections 3 through 7.

II. PARALLEL GATE-LEVEL SIMULATION

A. Parallel Discrete Event-Driven Simulation (PDES)

To address the performance of event-driven gate-level

simulation (both functional and timing), distributed parallel

simulation [6][7] has been proposed. Unfortunately, it has not

been very successful for the following reasons: i) difficulty in

design partitioning and load balancing; ii) communication

overhead; iii) synchronization overhead between design blocks

imposed by the distributed environment; and iv) lack of

concurrency in the original design. The area of parallel

simulation is rich in literature, and most of the known work

concerns traditional parallel simulation, based on physical

partitioning of the design into modules distributed to individual

simulators. PDES is not practical for gate-level timing

simulation as gate-level timing simulation involves processing

huge number of events across partitions which severely

degrades simulation performance. For this reason, recent

parallel multi-core simulators provided by major EDA vendors

[20][21] do not handle gate-level timing simulation in their

multi-core simulators.

B. Time Parallel Simulation (TPSIM)

In contrast to the parallel discrete event HDL simulation

described above, which partitions the design in spatial domain,

there has been some interesting work on time-parallel discrete

event HDL simulation [17]. This approach, called multi-level

temporal parallel event-driven simulation (MULTES) [18],

parallelizes simulation in time domain by dividing it into

independent time intervals (simulation slices). Each slice is

then simulated on a different processor. The key requirement of

this technique is finding the initial state of each slice, which is

a challenging problem, especially for a design obtained by re-

timing and re-synthesis [18]. For functional gate-level

simulation, RTL is used to find the initial state of each slice

and for gate-level timing simulation, functional gate-level is

used to find the initial state of each time slice. Limitations to

this include space complexity (each simulation slice simulates

the whole design) and limited applicability to multi-core

architecture. Multi-core architecture is more suitable to design

partitions rather than running entire design on every core. In

general, the method does not scale well with the multi-core

RTL gl_0 gl_timing +assertion +dump
0

50

100

150

200

250

300

350

Level of abstraction + debugging

S
im

u
la

ti
o
n
 t

im
e
 (

m
in

)

Level of abstraction + debugging effect on simulation performance of AES-128

architecture, cannot be fully automated and requires manual

interaction. However, if the designer requires gate-level timing

simulation with full SDF back-annotation, TPSIM can be used.

This will need manual interaction and state matching.

III. HYBRID GATE-LEVEL TIMING SIMULATION

A. Basic Idea

We present a new approach to improve performance of

gate-level timing simulation. The basic idea is to use static

timing analysis (STA) as timing predictor at the block level. It

uses worst case (critical path) delay, captured by STA, instead

of the actual cell delays for annotating block-level timing

during simulation. This idea is illustrated in Figures 3 and 4.

Figure 3 shows gate-level timing simulation of a design

consisting of two blocks, with timing simulation accomplished

with SDF back-annotation applied to the entire design.

However, for large designs, such SDF back-annotation will

negatively impact the performance of gate-level timing

simulation.

Figure 3. Gate-level timing simulation with full SDF annotation

To improve the performance of gate-level timing

simulation, we propose a hybrid approach, shown in Figure 4,

where only gate-level block 2 is SDF back-annotated. Gate-

level block 1 is analyzed by STA tool which reports the

maximum delay inside the block. Only this value is back-

annotated during simulation as dsta at the output of block1.

This type of timing annotation is termed as selective SDF

annotation. Note that STA can be performed on gate-level

block 1 as part of the whole design or separately if I/O delays

are modeled appropriately.

Essentially, block 1 is simulated in functional (zero-

delay) mode i.e., without SDF back- annotation, while block 2

is simulated with SDF back-annotation. In case of multiple

blocks, the proposed STA based timing prediction approach

can be used for majority of the blocks to speed up gate-level

timing simulation. Designers typically know the timing critical

blocks in a design where selective SDF back-annotation can

be used to quickly verify timing.

B. Partitioning

Partitioning of gate-level netlist into blocks for SDF

annotation and STA is a challenging problem as verification

engineer may not have sufficient insight in identifying timing-

critical blocks. Furthermore, partitioning schemes are often

manually driven. This may cause a problem when dealing with

large gate-level netlists. Often gate-level netlist is flattened

and hierarchy is not preserved. We propose a partitioning

scheme based on STA that is fully automated and works for

flat or hierarchical gate-level netlist. This is one of the most

important contributions of this paper. Moreover, the

partitioning does not have to be at the register boundary. For

multi-clock designs, clock domain crossings (CDC) are

always SDF back-annotated. Formal tools like Synopsys

Formality can detect CDC paths in a design.

Figure 4.Gate-level timing simulation with hybrid approach

STA determines slowest (critical path) in a design. One can

also choose to report not only the most timing critical path but

the next most timing critical path and so on. STA report then

reports these timing critical paths and the associated module

instances. Since these paths are time critical, one would

always want to do SDF back-annotated timing simulation on

these module instances to make sure that their timing

conforms to STA results. In brief, one can include all the

module instances that are in the timing critical paths for SDF

back-annotation. This group of instances is shown as Block2

in Figure 4. All the other module instances can be considered

not timing critical. These module instances shall be simulated

in functional (zero-delay) mode. This group of instances are in

Block1. However, one needs to run STA on Block1 to find out

their worst case delay dsta as shown in Figure 4. All of this can

be automated in a flow as shown in Figure 5.

Figure 5. Automated Partitioning and simulation flow for hybrid

 gate-level timing simulation

T
e

s
t

b
e

n
c
h

Block 1

Gate-Level with SDF
Block 2

Gate-Level with SDF

din1

din2

din3dout1

dcomb1

dcomb2

dcomb3

d

d

d d
d

dout2

da

db

dc

dd
de

df
dg

dh

T
e

s
t

b
e

n
c
h

Block 1

Gate-Level with 0-delay
Block 2

Gate-Level with SDF

din3dsta
dcomb3d

d
dout2

dg
dh

comb

comb

STA at Block’s 1

boundary

STA

Gate-level netlist

1 or more

critical paths

List of

module

instances

in the

critical

paths

List of

module

instances

NOT

in the

critical

paths

Timing Constraint

file (tfile)
STA

Simulation

dsta

Block1Block2

C. Integration with the existing Design Flow

The flow for this approach is shown in Figure 6. The key

idea is to capture peripheral timing of each block via static

timing analysis or various estimates derived from time

budgeting. As some (non-critical) of the design blocks are

simulated in functional (zero-delay) mode, except at the block

periphery, this should result in a significant speedup compared

to the simulation with full SDF back-annotation.

To further improve the performance of gate-level timing

simulation, the majority of gate-level blocks can be replaced by

their cycle-accurate RTL blocks with peripheral timing

captured via STA, time budgeting or other estimates to be

explained next.

Figure 6. Proposed flow for hybrid gate-level timing simulation

D. Early Gate-level Timing Simulation

The idea of early simulation is shown in Figure 7, where

gate-level Block1 is replaced by equivalent RTL. Now RTL is

simulated instead of gate-level for Block1. The key idea is to

perform timing simulation using estimated timing dest early in

the design cycle when the blocks have not been synthesized.

The estimated timing can come from time budgeting or a tool

like Synopsys DC Explorer [22]. This is in contrast to the

conventional approach, where gate-level simulation is

performed later in the design flow, after synthesis or place &

route step, with all the detailed delay data already available.

Major simulator vendors have already embraced the idea of

early timing simulation based on the estimated delays

realizing that performing gate-level timing simulations late in

the design cycle is prohibitively slow. Verification engineers

get around this problem by performing gate-level timing

simulation of only time critical blocks with few test vectors.

However, they are not able to perform full chip timing

simulation with large number of test vectors, which often

leaves certain timing bugs undetected. Synopsys [21] has

recently announced a new product called DC Explorer [22]

that is based on the same idea of early design exploration. It

can do early synthesis, timing and other estimates with

sufficient accuracy for designs to start the simulation process

early in the design flow. For this reason, Synopsys DC

Explorer is rapidly getting adoption in the industry.

Figure 7. Early timing simulation using RTL with estimate of

peripheral timing

IV. EXPERIMENTS

A. Setup

We tested the proposed approach by measuring the

performance of gate-level timing simulation of several

Opencores Verilog designs [14], namely AES-128 [23], 3-DES

[24], VGA controller [25] and JPEG encoder [26] designs. We

used Cadence [20] Incisive Unified Simulator 13.1 on quad-

core Intel CPU with 8GB RAM. The designs were synthesized

with Synopsys Design Compiler using TSMC 65nm standard

cell library. All these designs except VGA controller are single

clock designs. The following Table 1 shows essential statistics

for these designs.

Table 1. Gate-level design statistics

B. Results

First, we show simulation results with the AES-128 design.

We started with SDF annotation of majority of blocks (to

accommodate many timing critical paths) and then gradually

decreased the number of blocks in SDF annotation to one (to

accommodate the worst case timing path). Table 2 shows that

significant speedup (~5x) over full SDF annotated timing

simulation can be obtained.

The waveforms in Figure 8 illustrate the difference

between full SDF annotation and selective SDF annotation. It

shows that signal from selective SDF annotation is delayed

more than the SDF-annotated signal due to STA delay, but

contains no glitches. This means fewer events to process

during simulation and hence faster simulation. Both signals

match at the clock cycle boundary (positive edge of the clock).

In the next set of experiments, all designs were divided

into two gate-level blocks, Block1 and Block2 as in Figure 4.

Block 2 contains module instances from the most timing

RTL

RTL

Synthesis

STA + SDF gen

(SDF contains

gate delays)

Full SDF

annotated gate-

level sim (Slow)

Traditional

Selective SDF

annotated +STA

gate-level sim

(Fast)

This Work

Place &

Route

STA + SDF gen

(SDF contains

gate + wire

delays)

T
e

s
t

b
e

n
c
h

Block 1

RTL
Block 2

Gate-Level in SDF

din3dest dcomb3d
d

dout2

dg dh

Assign c = A & B;

.

.

.

Always @ (posedge clk)

State < = next_state;

.

.

Timing estimate

at Block’s 1
boundary

Implementations Synthesized

Area in

NAND2

equivalents

AES-128
Iterative

18400

3-DES 96650

VGA 144189

JPEG 968788

critical path. Here, the number of timing critical paths

considered is one.

The proposed approach has an additional advantage that it

validates the result of STA which is depends on manual

constraints entry. If the simulation exhibits timing failure, it

will help debug STA constraints. Once the constraints are

corrected, STA is run again to provide new #dsta value. This

STA-to-simulation cycle is repeated until all timing failures

are debugged and removed from the simulation.

Table 2. Gate-level timing simulation speedup of AES-128 for

variable number of blocks in SDF annotation

Figure 8. Full SDF annotation vs selective SDF annotation in

waveform

Table 3. Speedup with hybrid gate-level timing simulation

V. VERIFICATION OF SIMULATION RESULTS

In order to verify the timing correctness of the approach,

we propose the following dumping-based flow, shown in

Figure 9. Note that this is an optional step, used only to verify

the proposed simulation approach. In practice, verification

engineer can skip this step to reduce the verification time.

While testbench can verify functional correctness of the

two simulations, the proposed verification scheme helps in

verifying timing correctness of the two simulations. In order

for both simulations to be timing correct, the monitored

signals from the two simulations should match at the clock

cycle boundary. Unfortunately, dumping, as shown in Figure 2

can drastically reduce simulation performance. Further, the

amount of dumping can cause the disk to quickly become full.

Therefore, it is recommended that dumping should be done for

a small time interval rather than for the entire simulation. We

used small simulation intervals to verify timing correctness of

the output signals of the designs. Cadence Comparescan tool

was used to compare the dumped signals. The tool reported

the signals to be matching at the clock cycle boundary. Table

3 shows comparison between full SDF gate-level timing

simulation and proposed hybrid gate-level timing simulation

for all the flip-flops/registers in VGA and AES-128 designs.

The fact that the values of the registers match at the clock

cycle boundary during the entire simulation confirms the

accuracy of our approach.

Figure 9. Verification flow for hybrid gate-level timing simulation

Table 4. Accuracy of hybrid gate-level timing simulation at the

register boundary

VI. NEW GATE-LEVEL TIMING SIMULATION FLOW

We also propose the design/verification flow in which

gate-level timing simulation is performed early in the design

cycle, using estimates from time budgeting and/or STA. Tools

like Synopsys DC Explorer [22] can provide timing estimates

for running gate-level timing simulation. As already

mentioned performing gate-level timing simulation late in the

design cycle is prohibitively slow and may result in design

changes back in the RTL or may require ECO. Further, the

idea of performing long full chip timing simulation in a short

amount of time is much welcomed by the industry. Figures 10

and 11 show the traditional and new flow for simulation,

of modules

instances in

SDF

Annotation

/17

Module

Instances

in

0-delay

Full SDF

annotated

timing sim

(T1)

Min

Selective

SDF

annotated

Timing sim

(T2)

Min

Speedup

(T1/T2)

16 test.u0.us00
(one Sbox)

172 115 1.49

16 test.u0.u0
(key_expand)

172 84 2.04

15 test.u0.us00
to

test.u0.us01
(two Sboxes)

172 110 1.56

13 test.u0.us00
to

test.u0.us03
(Four sboxes)

172 100 1.72

9 test.u0.us00
to

test.u0.us13
(8 sboxes)

172 77 2.23

7 test.u0.us00
to

test.u0.us23
(12 sboxes)

172 56 3.07

1 test.u0.us00
to

test.u0.us33
(16 sboxes)

172 37 4.64

Clock

Full sdf annotated signal

Selective sdf annotated signal

Implementations Full SDF

annotated

timing sim

T1 (min)

Hybrid

timing

simulation

T2 (min)

Speedup

(T1/T2)

AES-128 172 37 4.64

3-DES 196 51 3.92

VGA Controller 812 232 3.50

JPEG Controller 273 79 3.45

 Hybrid

gate-level

timing sim

with

dumping

Full SDF

annotated

gate-level

timing sim

with

dumping

Sim

Dump

Data

Sim

Dump

Data

Compare

signals at

clock cycle

boundary

T/F

Design

name

A: Total # of

registers

B: # of

Full SDF timing vs

selective SDF

timing register

match

Lower bound on

hybrid

prediction

accuracy

(B/A)*100

VGA

controller
1611 1611 100 %

AES128 530 530 100 %

respectively. The obvious advantage of the new flow is rapid

gate-level timing simulation early in the design cycle so that

timing checks are validated and bugs are caught early on.

Figure 10. Traditional simulation flow in ASIC design

Figure 11. Proposed flow of early simulation in ASIC design

VII. CONCLUSION AND FUTURE WORK

Today, system-on-chip (SoC) designs have become

widespread. These designs integrate multiple hardware cores

working at different frequencies. Timing simulation of such

multi-clock domain designs is critical. Traditional dynamic

simulation with SDF back-annotation cannot be done on such

large designs. In addition, event-driven timing simulation is

extremely slow, suffers from capacity issues because of large

SDF files (exceeding 10GB for small SoC designs) and is

generally done late in the ASIC design cycle after synthesis or

layout.

This paper provides a proof of concept of hybrid gate-level

timing simulation that makes use of STA and selective SDF

back-annotation to accelerate gate-level timing simulation.

STA acts as timing predictor for blocks which are run without

SDF back-annotation. The approach also validates the result

of STA which depends on manual constraints entry. The

proposed approach is applicable to multi-clock domain

designs with clock domain crossings (CDC). We are actively

working on such larger designs. Further, we proposed a flow

for early simulation in the ASIC/FPGA design flow that

includes rapid hybrid gate-level timing simulation.

ACKNOWLEDGMENT

This work was supported in part by funding from the

National Science Foundation, award No. CCF 1017530.

REFERENCES

[1] T. Anderson, and R. Bhagat, “Tackling Functional Verification

for Virtual Components,” ISD Magazine, pp. 26, November

2000.

[2] P. Rashinkar, and L. Singh, “New SoC Verification

Techniques,” Abstract for tutorial, IP/SOC 2001 Conference,

March 19, 2001.

[3] Symbolic Simulation speeds Timing Closure

(http://www.techdesignforums.com/eda/eda-topics/verified-rtl-

to- gates/symbolic-simulation-speeds-timing-closure)

[4] D. Kim, M. Ciesielski, and S. Yang, “A new Distributed Event-

driven Gate-level HDL Simulation by Accurate Prediction,”

Design and Test Europe (DATE 2011), pp. 547-550, March

2011.

[5] W.K. Lam, “Hardware Design Verification: Simulation and

Formal Method-Based Approaches,” Prentice Hall, 2005.

[6] SimCluster datasheet, Avery Design Automation

(http://www.averydesign.com)

[7] MP-Sim datasheet, Axiom Design Automation

(http://www.axiomda.com)

[8] R.M. Fujimoto, “Parallel Discrete Event Simulation,”

Communication of the ACM, Vol. 33, No. 10, pp. 30-53, Oct.

1990.

[9] A. Gafni. “Rollback Mechanisms for Optimistic Distributed

Simulation Systems,” SCS Multiconference on Distributed

Simulation, vol.3, pp 61-67, July 1988.

[10] R.M. Fujimoto, “Time Warp on a Shared Memory

Multiprocessor,” Transactions of the Society for Computer

Simulation, Vol, 6, No. 3, pp. 211-239, July 1989.

[11] D.M. Nicol, “Principles of Conservative Parallel Simulation,”

Proceedings. of the 28th Winter Simulation Conference, pp.

128–135, 1996.

[12] D. Chatterjee, A. DeOrio, and V. Bertacco, “Event- driven Gate-

level Simulation with General Purpose GPUs,” Proceedings. of

Design Automation Conference (DAC09), pp. 557-562, 2009.

[13] Y. Zhu, B. Wang, and Y. Deng, “Massively Parallel Logic

Simulation with GPUs,” article 29, ACM Trans. Design

Automation of Electronic Systems, June 2011.

[14] Opencores designs (www.opencores.org)

[15] VerificationBlog

(http://whatisverification.blogspot.com/2011/06/gate-level-

simulations-necessary-evil.html)

[16] L. Li, and C. Tropper, “A design-driven Partitioning Algorithm

for Distributed Verilog Simulation,” in Proc. 20th International

Workshop on Principles of Advanced and Distributed

Simulation (PADS), pp. 211–218, 2007.

[17] D. Kim, M. Ciesielski, and S. Yang, "MULTES: MUlti-Level

Temporal-parallel Event-driven Simulation," IEEE Trans. on

CAD of Integrated Circuits and Systems 32(6): pp. 845-857

(2013).

[18] D.Kim, “MULTES : Multi-level Temporal-parallel Event-driven

Simulation, ” PhD Thesis, University of Massachusetts

Amherst, 2011.

[19] F. Rodriguez-Henriques, N. Saqib, A. Perez, and C. Koc,

“Cryptographic Algorithms on Reconfigurable Hardware,”

Springer, 2006.

[20] Cadence (http://www.cadence.com)

[21] Synopsys (http://www.synopsys.com)

[22] Synopsys DC Explorer

(http://www.synopsys.com/tools/implementation/rtlsynthesis/dc

explorer/Pages/default.aspx)

[23] AES-128 Opencores design

(http://opencores.org/project,aes_core)

[24] DES-3 Opencores design (http://opencores.org/project,des)

[25] VGA Controller Opencores design

(http://opencores.org/project,vga_lcd)

[26] JPEG Encoder Opencores design

(http://opencores.org/project,jpegencode)

Synthesis

+ STA
RTL

Layout

+ STA

GL

0-delay & timing

SIM

GL

0-delay & timing

SIM

 Synthesis

+ STA
RTL

RTL

SIM with

peripheral

timing

GL

0-delay

SIM

Hybrid GL

Timing

SIM

Layout

+ STA

GL

0-delay

SIM

Hybrid GL

Timing

SIM

Our work Our work

