
Embedded Reconfigurable Logic for ASIC Design

Obfuscation Against Supply Chain Attacks

Bao Liu∗ and Brandon Wang†

∗University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249
†Cadence Design Systems, Inc., 2655 Seely Avenue, San Jose, CA 95134

Abstract— Hardware is the foundation and the root of trust of
any security system. However, in today’s global IC industry, an

IP provider, an IC design house, a CAD company, or a foundry
may subvert a VLSI system with back doors or logic bombs. Such
a supply chain adversary’s capability is rooted in his knowledge
on the hardware design. Successful hardware design obfuscation
would severely limit a supply chain adversary’s capability if not
preventing all supply chain attacks. However, not all designs are
obfuscatable in traditional technologies. We propose to achieve
ASIC design obfuscation based on embedded reconfigurable logic
which is determined by the end user and unknown to any party
in the supply chain. Combined with other security techniques,
embedded reconfigurable logic can provide the root of ASIC
design obfuscation, data confidentiality and tamper-proofness. As
a case study, we evaluate hardware-based code injection attacks
and reconfiguration-based instruction set obfuscation based on
an open source SPARC processor LEON2. We prevent program
monitor Trojan attacks and increase the area of a minimum code
injection Trojan with a 1KB ROM by 2.38% for every 1% area
increase of the LEON2 processor.

I. INTRODUCTION

Hardware is the foundation and the root of trust of any se-

curity system. In recent years, a growing number of software-

based security solutions have been migrated to hardware-based

security solutions for much enhanced resistance to software-

based security threats. Such systems range from smartcards

to specialized secure co-processing boxes, wherein hardware

provides the source of security and trust for a number of

security primitives [3], [23]–[25], [36], [37].

At a closer analysis, all the existing cryptographic primitives

have proofs of security based on two assumptions: (1) read-

proof hardware; that is, hardware that prevents an enemy from

reading anything about the information stored within it; and

(2) tamper-proof hardware; that is, hardware that prevents

an enemy from changing anything in the information stored

within it. In particular, existing cryptographic schemes consist

of an algorithm which the adversary knows, but cannot change

(i.e., stored in tamper-proof hardware), and a secret key, which

the adversary does not know and cannot change (i.e., stored

in hardware which is both read-proof and tamper-proof) [17].

However, in recent years, it has been brought into light

that hardware is also subject to a number of security threats,

which make hardware neither read-proof nor tamper-proof.

The existing techniques mostly focus on information leak from

a hardware system: An adversary may extract cryptographic

keys and confidential information from a system by testing

[1], [41], reverse engineering [13], or side-channel analysis

[7], [21], [22], [39].

More critical threats come from the supply chain and

compromise hardware integrity. In today’s global IC industry,

a supply chain adversary, such as an IP provider, an IC design

house, a CAD company, or a foundry may have access to

the source code of the design, and may easily tamper a

hardware system by planting time bombs which compromise

hardware computation integrity, or creating back doors which

enable information leak, bypassing access control mechanisms

at higher (e.g., OS and application) levels [20]. The recently-

released Comprehensive National Cyber Security Initiative has

identified this supply chain risk management problem as a top

national priority [28].

A supply chain adversary’s capability is rooted in his knowl-

edge on the hardware design. Successful hardware design

obfuscation would severely limit a supply chain adversary’s

capability if not preventing all supply chain attacks. However,

not all designs are obfuscatable in traditional technologies.

We propose to achieve ASIC design obfuscation based on

embedded reconfigurable logic which is determined by the

end user and unknown to any party in the supply chain. Com-

bined with other security techniques, embedded reconfigurable

logic can provide the root of ASIC design obfuscation, data

confidentiality and tamper-proofness.

The rest of this paper is organized as follows. We present the

theoretical results on obfuscation and introduce the existing

VLSI obfuscation techniques in Section II. We present a

supply chain adversary attack model, and an analysis on

the existing VLSI obfuscation techniques, and present our

proposed reconfigurable logic-based VLSI obfuscation in Sec-

tion III. As a case study, we evaluate hardware-based code

injection attacks and reconfiguration-based instruction decoder

obfuscation in an open source LEON2 processor in Section IV.

We conclude in Section V.

II. BACKGROUND

A. Theoretical Results on Obfuscation

Obfuscation is a long-standing problem in computer security

and cryptography. To obfuscate a function f is to create an

implementation of f that reveals nothing about f except its

input-output behavior. Intuitively, a circuit obfuscator O is

an efficient algorithm that, given a circuit C implementing

some function f , outputs another circuit O(C) such that (i)

978-3-9815370-2-4/DATE14/ c©2014 EDAA



(preserving functionality) it computes (perhaps approximately)

the same function as f , (ii) (polynomial slowdown) its size

is within a polynomial factor of c, and, (iii) (“virtual black-

box” property) for any efficient adversary that computes some

predicate on O(C), there exists an efficient simulator that

computes the same predicate with black-box access to an

oracle that evaluates f [4], [9], [27].

Software and hardware design obfuscation has long been

studied as a potentially powerful tool against design tamper.

Recent theoretical studies show that, (1) there exist functions

that cannot be obfuscated, and (2) there exist functions that

can be obfuscated. Barak et al. showed the existence of

(contrived) classes of functions which are not obfuscatable, or,

a general purpose obfuscator does not exist [4]. Goldwasser

and Kalai showed that there exist many natural classes of

functions that cannot be obfuscated with respect to auxiliary

input (intuitively, one may think auxiliary input as the his-

tory or previous executions of the circuit) [18]. In contrast,

Hohenberger et al. presented an obfuscation scheme of a

public key-based re-encryption program [19]. Besides, the

only positive obfuscation result is of point functions, which

are Boolean functions that return 1 on exactly one input,

for example, a password check program. Canetti and Wee

separately showed how to obfuscate a point function based on

a random oracle, e.g., a hash function that hides all details [9],

[40]. An obfuscated point function queries the random oracle

on an input, and compares the answer with a stored value.

For example, a password check program encrypts an input,

and compares the encryption result with a stored value, which

is an encrypted password. As a result, it achieves the virtual

black box property of obfuscation. This scheme is based on

a weaker definition of obfuscation, which says that there is a

negligible probability to distinguish an adversary circuit based

on the obfuscated scheme and a simulator based on a black box

of the function. As a result, this obfuscation scheme of point

functions cannot be extended to obfuscate arbitrary Boolean

functions [27].

B. Existing VLSI Logic Encryption/Locking Techniques

The state-of-the-art VLSI logic encryption/locking tech-

niques include combinational logic locking and finite-state ma-

chine (FSM) locking. Combinational logic locking augments a

combinational logic network with an additional group of lock

inputs such that the augmented combinational logic network

has the same function as the original combinational logic

network only if a specific vector (aka a valid key) is applied to

the lock inputs [31]. This is achieved, for example, by inserting

a group of XOR logic gates or LUTs [6] or an additional logic

cone [11] to the combinational logic network. FSM locking

augments an FSM by introducing a group of extra finite states,

which form an obfuscated mode. Only a correct sequence of

inputs transit the FSM out of the obfuscated mode and set the

FSM to the correct initial state in the normal operation mode

[2], [10]–[12], [14]. These techniques hide combinational logic

or FSM functionality by introducing additional inputs or finite

states.

III. VLSI OBFUSCATION AGAINST SUPPLY CHAIN

ATTACKS

A. Attack Model

A supply chain adversary is an insider who is involved in

the design and the manufacturing of a hardware device. His

tamper capability is based on his role in the supply chain,

specifically, his read and write permission in the design and the

manufacturing process of a specific device. An IP provider or

a designer for a specific module may have limited access to the

design, while a foundry or a chip-level integration designer has

access to the whole device design. The general lack of access

control in today’s supply chain further facilitates an adversary

to gain knowledge of a design and launch attacks. Besides

based on his role in the supply chain, a supply chain adversary

may gain further knowledge of a design by probing, testing,

side-channel analysis, or reverse engineering. For example,

commercial tools are available to help convert a layout to a

gate-level netlist, and further convert a gate-level netlist to

a higher-level abstraction. To locate an adder in a gate-level

netlist, one can re-synthesize the logic based on a revised cell

library which includes a zero-cost adder cell. As a result, a

supply chain adversary (e.g., in a foundry) may have read and

write permission to the whole design of a particular device.

A supply chain adversary may install a hardware Trojan that

is triggered at system runtime. A hardware Trojan can be a

logic bomb that compromises hardware computation integrity

by altering the authentic computation result, or a back door

that compromises hardware data confidentiality by leaking out

secrets or confidential information. A back door may launch an

attack by performing more (e.g., in leaking out information) or

less (e.g., in bypassing existing security checks) than expected,

while keeping the authentic computation results intact. Such a

back door cannot be detected by testing or concurrent checking

of the computation results.

B. Analysis on Existing VLSI Logic Encryption/Locking Tech-

niques

We observe that while the existing VLSI logic encryp-

tion/locking techniques succeed in preventing an adversary

from operating a hardware system, they cannot guarantee

to prevent a supply chain adversary from understanding and

tampering a VLSI design, as it has been proven that a generic

obfuscator does not exist [4]. We present a more detailed

analysis as follows.

An adversary can understand and tamper the design once

he has the logic encryption/locking key. An adversary at a

foundry may gain knowledge of the key if the foundry needs

to receive a key and activates an IC to perform manufacturing

test. Or, an adversary having knowledge of the function of

the chip can obtain the key. Such an adversary can be anyone

having an activated IC in his possession. We assume that the

adversary has the knowledge of the design, for example, by

reverse engineering, and has the capability to test the chip,

e.g., by applying stimuli and observing responses.

We categorize the state-of-the-art combinational logic en-

cryption/locking techniques as follows.



XOR/XNOR-Based: The simplest combinational logic

locking technique is to insert XOR and XNOR gates into

a combination logic network [6], [31]. An adversary knows

which inputs are functional inputs and which inputs are lock

inputs. He can then identify the lock gates connected to the

lock inputs. If a total of M lock gates are inserted in a

combinational logic network, the complexity for an adversary

to find the correct logic may not be 2M . For example, for

a logic output, if its fanin cone contains mi lock gates, the

complexity to find the correct logic function for that logic

output is at most 2mi .

MUX-Based: Another combinational logic locking tech-

nique is to insert multiplexers or combine logic functions

based on Shannon expansion [11]. The reason is as follows.

If a lock input is connected to a lock gate that is not a

XOR or XNOR gate, the key to the lock input is implied

to be the non-controlling logic value of the lock gate. An

adversary could easily obtain the key, unless the lock input

is connected to multiple lock gates and is implied to have

conflicting logic values (e.g., the lock input is connected to

a group of AND gates and a OR gate which have the same

function as a XOR or XNOR gate), or the gate is hidden in

reconfigurable logic as in [6]. A more general design paradigm

is to have a lock input connected to multiple logic cones which

provide different logic functions. These logic cones need to be

combined by multiplexers or based on Shannon expansion at

the logic outputs with lock inputs providing select signals.

For example, one can partition a combinational logic network

into 2n sub-networks, where n is the number of lock inputs,

and combine the sub-networks by a multiplexer with the lock

inputs providing the select signals. Each sub-network needs to

take all the logic inputs, otherwise, an adversary can identify

that sub-network is not valid. This increases the size of the

combinational logic network exponentially. For cost reduction,

the sub-networks may share common logic cones. This gives

the next paradigm.

Permutation-Based: An extension of the previous

paradigm is to permute the logic inputs and the logic outputs

(e.g., in [32]). A permutation logic block is a group of

multiplexers, wherein each output is given by any of the

inputs based on the select signal. A further extension is to cut

a combinational logic network into two parts, and permute

the signals crossing the cut line.

Reconfigurable Logic Barrier-Based: Another technique

cuts a combinational logic network into two parts with all

the inputs in one part and all the outputs in another part, and

implements all the gates in the cut line in reconfigurable logic,

i.e., forming a reconfigurable logic barrier [6].

An adversary has the following techniques to unlock a

locked combinational logic network.

Key Propagation: An adversary may apply an input vector

and propagate a bit in the key to a logic output based on an

ATPG algorithm. Improved locking techniques can limit the

adversary advantage to nothing more than brute force [30].

Path Analysis: Similarly, in testing, an adversary flips

one bit at the logic input, and observes a flipped bit at the

logic output. He then finds the signal propagation path(s) in

the combinational logic network. The inversion of the signal

propagation path must match the inversion between the flipped

logic input and the flipped logic output. If there is a single

XOR or XNOR gate in the signal propagation path, the lock

input or the side input of the XOR or XNOR gate is determined

by the inversion of the path. If there are multiple XOR or

XNOR gates in the signal propagation paths, the adversary

needs to find more signal propagation paths to determine the

logic values of the lock inputs. If there is a multiplexer in

a signal propagation path, the select signal is implied by the

signal propagation path. If multiple signal propagation paths

cross a multiplexer, any signal propagation path of an incorrect

inversion can be eliminated. A logic network with permuted

inputs and outputs [32] may not be unlocked by this technique

if the adversary cannot observe any internal signal. But it can

be unlocked by graph isomorphism analysis as follows.

Graph Isomorphism: Since an adversary knows the func-

tion of the logic network (e.g., by testing), he can synthesize

a combinational logic network of the same function based on

the same cell library, compare with the locked combinational

logic network, and find any isomorphic graph. An isomorphic

graph can be found by, for example, first identifying the node

with the largest degree of connection, and proceeding to its

neighboring nodes and so on (e.g., as in formal verification

[8]). This technique is capable to unlock any locked combi-

national logic network with XOR/XNOR gates, multiplexers,

permutation blocks, or reconfigurable logic barriers. For a

reconfigurable logic barrier [6], graph isomorphism analysis

gives the function of the reconfigurable logic barrier. Although

the key may still be unknown, an adversary can proceed to

reconfigure the logic barrier for the same logic function, which

will remove the lock from the design. An adversary can unlock

a locked FSM similarly.

C. Industry Practice on VLSI Obfuscation

Although a generic obfuscator does not exist, the semi-

conductor industry has certain effective hardware obfuscation

techniques which prevent supply chain tampering based on a

specific manufacturing technology. For example, in 3D manu-

facturing, the interposer can be manufactured at an untrusted

foundry, while the logic chips are manufactured at a trusted

foundry and mounted on the interposer at a later stage. The

untrusted foundry has only black box access to the logic chips

and cannot tamper them. This technology however assumes the

existence of a trusted foundry.

D. Proposed VLSI Obfuscation Method Based on Embedded

Reconfigurable Logic

We propose to achieve hardware design obfuscation based

on embedded reconfigurable logic in ASIC technology. For

example, the dominant technology such as FPGA achieves re-

configurable logic based on lookup tables (Figure 1). A lookup

table includes a 2n-to-1 multiplexer and 2n configuration

memory cells. We construct a n-input gate of specific logic

by loading configuration data bits to the configuration memory



Fig. 1. LUT-based reconfigurable logic as in FPGA.

cells. A multiplexer also provides reconfigurable interconnect.

Such a reconfigurable logic technology is fully compatible

with the ASIC technology, i.e., reconfigurable logic modules

can be embedded on an ASIC chip without any change in the

manufacturing process.

In this technology, we do not assume any trusted party in the

design and manufacturing process for the reconfigurable logic.

The foundry can perform manufacturing test based on any im-

plementation of the correct function of a reconfigurable logic

block, while the end user determines the final implementation

of the reconfigurable logic blocks in the hardware system after

the design and the manufacturing process, such that nobody in

the design and manufacturing process has any knowledge on

the implementation of the reconfigurable logic functions and

cannot tamper the reconfigurable logic blocks.

A supply chain adversary has only “black box” access to

a reconfigurable logic module. He may know the function

of a reconfigurable logic module based on his role in the

design and manufacturing process, but he does not know the

exact implementation of the function or the internal structure

of a reconfigurable logic module. He cannot perform reverse

engineering, run testing or probe internal signals of a reconfig-

urable module because the reconfigurable logic module has not

been finalized. The reconfigurable module can be configured to

achieve the required functionality such that the entire system

can be verified at a design house or tested at a foundry, while

the end user determines the final configuration for operation.

Only an embedded hardware Trojan or a field engineer may

have access to the final configuration of the reconfigurable

module. A hardware Trojan has only limited intelligence or

resource. To tamper a reconfigurable module, one needs to

locate an internal signal in the module. For that a hardware

Trojan needs to probe all the nodes in a reconfigurable mod-

ule, apply stimuli, collect responses and analyze them. This

requires a very large area or power consumption for a Trojan

to stay stealthy. A field engineer may gain no knowledge on

the reconfigurable logic if reconfiguration is applied right after

the field engineer’s visit, effectively achieving the “virtual

black-box” property of the reconfigurable logic module. As

a result, a reconfigurable logic implementation of a function

f is an obfuscated implementation because it possesses the

three properties of obfuscation: (i) preserving functionality,

(ii) polynomial slowdown, and (iii) “virtual black-box.”

We do not propose to implement a security system entirely

in reconfigurable logic, because reconfigurable logic has a

higher implementation cost in area, power consumption, and

performance compared with ASIC, and reconfigurable design

Fig. 2. Code injection Trojan including ROM, multiplexers, and trigger logic.

data also faces security threats and needs to be protected,

for example, by encryption and authentication. We observe

that in many cases, a security scheme has layers. We propose

to achieve by reconfiguration a minimum obfuscated module

which provides the root of security for the entire system. As

a case study, we present obfuscation of an instruction decoder

in a processor as follows.

IV. CASE STUDY

A. A Code Injection Trojan

It is well known that a supply chain adversary may tamper a

processor by inserting a hardware Trojan, which compromises

authentic computations or leaks out confidential information

once it is triggered by a specific instruction or data pattern

[38], a specific interrupt or the count of a specific event [33].

We present here a hardware Trojan which injects Trojan code

at runtime to the instruction decoder of a processor. Such a

code injection Trojan can perform more complex tasks than

other hardware Trojans and may easily bypass existing security

checks as it hijacks the authentic microprocessor in a deputy

attack, for example, in case that only the microprocessor has

the decryption key to access the encrypted memory.

Such a code injection Trojan can be very small. For exam-

ple, it may only include a Trojan ROM containing the Trojan

instructions, a few multiplexers at the instruction fetch unit

inputs, and trigger logic (Fig. 2). The Trojan trigger logic

monitors the next program count (npc) in the instruction fetch

unit. When the trigger condition is met, for example, the lower

n bits of the next program count are all zero’s, the Trojan

multiplexers fetch instructions from the Trojan ROM other

than from the instruction cache. Since the Trojan ROM is very

small, it can be addressed by the lower n bits of the program

count. The Trojan instruction sequence starts by saving the

program count and the other processor internal states, and ends

by restoring the processor internal states including the program

count. When the low n bits of the program count equal to the

address of the last Trojan instruction (that restores the program

count), the Trojan multiplexers fetch instructions from the

instruction cache. This resumes the authentic operation.

Such a code injection Trojan cannot be detected by static

code integrity check, because the Trojan instructions are not

in the memory. Further, it cannot be detected by testing or

non-lock-stepping concurrent checking which checks the final

output of a program [26] because the authentic computation



results are intact. Lock-stepping concurrent checking which

checks the internal states [26] may detect such a Trojan. How-

ever, if a lock-stepping concurrent checking module resides

on the same chip as the function system, a supply chain

adversary such as a foundry or a chip-integration designer

can easily tamper the checking mechanism. If a lock-stepping

concurrent checking mechanism resides on a different chip,

it would be difficult to achieve synchronization, and only a

limited number of signals can be monitored. As a result, a

supply chain adversary may tamper the system while keeping

the sampled signals intact.

B. Reconfiguration-Based Instruction Decoder Obfuscation

Instruction set randomization (ISR) has been proposed to

prevent software-based code injection attacks [5], [15], [35].

One of the simplest ISR technique is to have a reconfigurable

opcode encoding while keeping the same instruction set and

the same instruction formats. Or, the bits of an instruction may

be permuted or XOR’ed before being sent to the instruction

decoder unit (IDU). We achieve ISR by obfuscating the IDU

by implementing it in reconfigurable logic, concealing the

opcode check logic or any instruction bit permutation or XOR

logic. ISR has its limitation in preventing software-based code

injection attacks [15], [35]. We believe ISR is more effective

in preventing hardware-based code injection attacks because

a hardware Trojan has much less computation resource. We

further prevent a hardware Trojan from monitoring an authen-

tic computation. For example, an XOR operation in RC5 is

associated with the cryptographic key, and a Trojan may be

triggered by an XOR operation to leak the key [33], [38].

ISR prevents a Trojan from identifying an XOR operation and

achieving the key.

A supply chain adversary has only black box access to

the obfuscated IDU. Consequently, he has no knowledge on

the instruction set and cannot tamper the instruction decoder.

A Trojan may carry out a deputy or circumvention attack

[15] as follow, but cannot stay stealthy at the same time. To

carry out a deputy attack or send Trojan instructions to the

obfuscated IDU, a Trojan needs knowledge of the instruction

set, and it further needs to be reconfigurable to translate

the Trojan instructions to the local dialect. A Trojan may

apply stimuli to the instruction decoder, collect responses and

analyze them for knowledge on the instruction set. To probe

an internal signal (e.g., the opcode check logic output), a

Trojan needs to probe all the nodes in the reconfigurable IDU,

which has a prohibitive cost. Or, a Trojan may probe the other

signals which are in the hardware system but are not in the

obfuscated module. For a microprocessor, these signals include

the program count, the ALU inputs, the memory stage inputs,

the register file inputs, etc. The cost is also prohibitive for a

Trojan to stay stealthy. For example, an ALU add operation

may be caused by an add, subtract, multiple, load, store, jump,

or return instruction. To carry out a circumvention attack or

bypass the instruction decoder, a Trojan needs to duplicate

the instruction decoder unit, which would be too costly. Or,

a Trojan may reconfigure the IDU, which requires that the

TABLE I

HARDWARE OVERHEAD OF THE LEON2 PROCESSOR, A CODE INJECTION

TROJAN WITH 1KB ROM, THE IDU, AN OBFUSCATED IDU, AND THE

LEON2 PROCESSOR WITH AN OBFUSCATED IDU, RESPECTIVELY.

Area Power Delay

(µm2) (mW ) (ns)

LEON2 4.52 × 104 2.25 7.79

Trojan w/ 1KB ROM 1.12 × 103 2.22 × 10−3 0.41

IDU 9.26 × 10
2

1.40 × 10
−2 6.79

Obfuscated IDU 1.57 × 104 1.46 × 10−1 18.01

Obfuscated LEON2 6.09 × 104 2.40 18.01

Trojan includes all the configuration bits for the IDU. There

would further be significant performance degradation when the

Trojan reconfigures the IDU.

C. Evaluation

We evaluate the code injection Trojan and reconfiguration-

based IDU obfuscation based on an five-stage in-order open

source SPARC processor LEON2 [16], which is configured to

include a five-cycle multiplier, a 35-cycle divider, a floating-

point unit, a memory management unit, a PCI interface, and

a network unit with no co-processors. We perform logic

synthesis based on the Synopsys Design Compiler and the

45nm Nangate open cell library [34]. For the lookup table-

based reconfigurable technology (Fig. 1), we modify the 45nm

Nangate cell library such that a n-input logic gate has the same

area as a 2n-input multiplexer plus 2n latches.

We have implemented a minimum code injection Trojan

with a 1KB ROM, a few multiplexers at the instruction fetch

unit input, and a trigger logic network. We have further

implemented an IDU in the lookup table-based reconfigurable

technology as in FPGA. We did not implement a deputy attack

Trojan because of its complexity. We estimate the cost of a

circumvention attack Trojan by summing up the cost of the

minimum code injection Trojan and the standard IDU or the

configuration memory cells of a reconfigurable IDU.

Table I gives the hardware overhead of these designs. Com-

pared with the LEON2 processor, the minimum code injection

Trojan with a 1KB ROM leads to a layout area increase of only

2.5%. Reconfiguration-based IDU obfuscation increases the

IDU area from 926.3µm2 to 15718.3µm2, and increases the

overall LEON2 processor area by 34.7%. For a circumvention

attack, to reconfigure the IDU, including all the configuration

memory cells would increase the minimum code injection

Trojan area by a factor of 9.5 as the configurable memory

cells take 67.7% of the area in our 2-input LUT-based reconfig-

urable logic. Alternatively, including an additional IDU would

increase the minimum code injection Trojan area by 82.7%.

For tradeoff between cost and security, we may implement x%
of the IDU in reconfigurable logic starting from the inputs,

which increases the Trojan area by 0.827x% at the cost of

0.347x% area increase for the LEON2 processor.

V. CONCLUSIONS

We propose to achieve ASIC design obfuscation based on

embedded reconfigurable logic which is determined by the



end user and unknown to any party in the supply chain.

While the existing obfuscation results are limited to a few

specific functions, reconfiguration-based obfuscation is widely

applicable to any logic function. Combined with other security

techniques, embedded reconfigurable logic can provide the

root of ASIC design obfuscation, data confidentiality and

tamper resistance. As a case study, we evaluate hardware-

based code injection attacks and reconfiguration-based instruc-

tion decoder obfuscation based on an open source LEON2

processor [16]. We prevent program monitor Trojan attacks

and increase the area of a minimum code injection Trojan

with a 1KB ROM by 2.38% for every 1% area increase of

the LEON2 processor. Our future work include to enhance

processors against a variety of supply chain attacks [29] based

on this technique.

ACKNOWLEDGMENTS

We thank Dr. Ramesh Karri and Jeyavijayan Rajendran

at NYU-Poly and anonymous reviewers for their valuable

comments.

REFERENCES

[1] M. Agrawal, S. Karmakar, D. Saha, and D. Mukhopadhyay. Scan based
side channel attacks on stream ciphers and their counter-measures. In
Intl. Conf. on Cryptology in India (INDOCRYPT), pages 226–238, 2008.

[2] Y. M. Alkabani and F. Koushanfar. Active hardware metering for
intellectual property protection and security. In Proc. USENIX Security

Symposium, pages 291 –306, 2007.
[3] T. Alves and D. Felton. Trustzone: Integrated hardware and software

security. Information Quarterly, 3(4):18–24, 2004.
[4] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan,

and K. Yang. On the (im)possibility of obfuscating programs. In Proc.

International Conference on Cryptography, pages 1–18, 2001.
[5] E. G. Barrantes, D. H. Ackley, S. Forrest, and D. Stefanovic. Random-

ized instruction set emulation. ACM Trans. on Information and System

Security, 8(1):3 – 40, 2005.
[6] A. Baumgarten, A. Tyagi, and J. Zambreno. Preventing IC piracy using

reconfigurable logic barriers. IEEE Design and Test of Computers, pages
66 – 75, 2010.

[7] E. Biham and A. Shamir. Differential fault analysis of secret key
cryptosystems. In Proc. Ann. Intl. Cryptography Conf. Advances in

Cryptography, pages 513–527, 1997.
[8] R. E. Bryant. Graph-based algorithms for boolean function manipula-

tion. IEEE Trans. Computers, C-35(8):677 – 691, 1986.
[9] R. Canetti. Towards realizing random oracles: Hash functions that

hide all partial information. In Proc. International Conference on

Cryptography, pages 455–469, 1997.
[10] R. S. Chakraborty and S. Bhunia. Hardware protection and authen-

tication through netlist level obfuscation. In Proc. IEEE Intl. Conf.

Computer-Aided Design, pages 674–677, 2008.
[11] R. S. Chakraborty and S. Bhunia. Harpoon: An obfuscation-based SoC

design methodology for hardware protection. IEEE Trans. Computer-

Aided Design, 28(10):1493–1502, 2009.
[12] R. S. Chakraborty and S. Bhunia. Security against hardware Trojan

through a novel application of design obfuscation. In Proc. IEEE Intl.
Conf. Computer-Aided Design, pages 113–116, 2009.

[13] Chipworks. http://www.chipworks.com/.
[14] A. R. Desai, M. S. Hsiao, et al. Interlocking obfuscation for anti-tamper

hardware. In CSIIRW, pages 1 – 4, 2012.
[15] D. Evans, A. Nguyen-Tuong, and J. Knight. Moving target defense: An

asymmetric approach to cyber security. chapter Effectiveness of Moving
Target Defenses. Springer, 2011.

[16] A. Gaisler. LEON SPARC V8 Processors.
http://www.gaisler.com/.

[17] R. Gennaro, A. Lysyanskaya, T. Malkin, S. Micali, and T. Rabin.
Algorithmic tamper-proof (ATP) security: Theoretical foundations for
security against hardware tampering. In Theory of Cryptography Conf.,
pages 258–277, 2004.

[18] S. Goldwasser and Y. T. Kalai. On the impossibility of obfuscation with
auxiliary input. In Proc. IEEE Symp. Foundations of Computer Science,
pages 553–562, 2005.

[19] S. Hohenberger, G. N. Rothblum, A. Shelat, and V. Vaikuntanathan.
Securely obfuscating re-encryption. In Theory of Cryptography Conf.,
pages 233–252, 2007.

[20] C. E. Irvine and K. Levitt. Trusted hardware: Can it be trustworthy? In
Proc. ACM/IEEE Design Automation Conf., pages 1–4, 2007.

[21] P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Proc. Intl.

Cryptography Conf. Advances in Cryptography, pages 388–397, 1999.
[22] P. C. Kocher. Timing attacks on implementations of Diffie-Hellman,

RSA, DSS, and other systems. Advances in Cryptology - CRYPTO’96,
Lecture Notes in Computer Science, V. 1109:104–113, 1996.

[23] R. B. Lee, P. C. S. Kwan, J. P. McGregor, J. Dwoskin, and Z. Wang.
Architecture for protecting critical secrets in microprocessors. In Proc.
International Symposium on Computer Architecture (ISCA), pages 2–13,
2005.

[24] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell,
and M. Horowitz. Architecture support for copy and tamper resistant
software. In Proc. International Conference on Architecture Support for

Programming Languages and Operating Systems (ASPLOS-IX), pages
168–177, 2000.

[25] Microsoft. Next-Generation Secure Computing Base.
http://www.microsoft.com/resources/ngscb

/default.mspx.
[26] S. Mukherjee. Architecture Design for Soft Errors. Morgan Kaufmann

Publishers, 2008.
[27] A. Narayanan and V. Shmatikov. On the limits of point function

obfuscation, 2006. http://eprint.iacr.org/2006/182.
[28] National Security Council. The Comprehensive National Cybersecurity

Initiative. http://www.whitehouse.gov/cybersecurity/
comprehensive-national-cybersecurity-initiative.

[29] J. Rajendran, A. K. Kanuparthi, M. Zahran, S. K. Addepalli, G. Or-
mazabal, and R. Karri. Securing processors against insider attacks: A
circuit-microarchitecture co-design approach. IEEE Design & Test of

Computers, 30(2):35–44, 2013.
[30] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri. Security analysis of

logic obfuscation. In Proc. ACM/IEEE Design Automation Conf., pages
83 – 89, 2012.

[31] J. Roy, F. Koushanfar, and I. Markov. EPIC: Ending piracy of integrated
circuits. In Proc. Conference on Design Automation and Test in Europe,
pages 1069 – 1074, 2008.

[32] J. A. Roy, F. Koushanfar, and I. L. Markov. Protecting bus-based
hardware IP by secret sharing. In Proc. ACM/IEEE Design Automation
Conf., 2008.

[33] J. C. M. Santos and Y. Fei. Designing and implementing a malicious
8051 processor. In Proc. IEEE Intl. Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems, pages 63 – 66, 2012.

[34] S. I. I. (SI2). Nangate Open Cell Library.
http://www.si2.org/openeda.si2.org/projects

/nangatelib/.
[35] N. Sovarel, D. Evans, and N. Paul. Where’s the FEEB? the effectiveness

of instruction set randomization. In 14th USENIX Security Symposium,
2005.

[36] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas. Aegis:
Architecture for tamper-evident and tamper-resistant processing. In Proc.

International Conference on Supercomputing, 2003.
[37] Trusted Computing Group. Trusted

Platform Module (TPM) Specifications.
http://www.trustedcomputinggroup.org/resources/

tpm main specification.
[38] X. Wang, T. Mal-Sarkar, A. Krishna, S. Narasimhan, and S. Bhunia.

Software exploitable hardware trojans in embedded processor. In Proc.

IEEE Intl. Symposium on Defect and Fault Tolerance in VLSI and

Nanotechnology Systems, pages 55 – 58, 2012.
[39] Z. Wang and R. B. Lee. New cache design for thwarting software

cache-based side channel attacks. In Proc. International Symposium on

Computer Architecture, pages 494–505, 2007.
[40] H. Wee. On obfuscating point functions. In Proc. ACM Symp. the Theory

of Computing, 2005.
[41] B. Yang, K. Wu, and R. Karri. Scan based side channel attack on

dedicated hardware implementations of data encryption standard. In
Proc. IEEE Intl. Test Conf., pages 339–344, 2004.


