ElastiStore: An Elastic Buffer Architecture for
Network-on-Chip Routers

I. Seitanidis, A. Psarras, G. Dimitrakopoulos
Electrical and Computer Engineering

Democritus University of Thrace, Xanthi, GR67100, Greece

Abstract—The design of scalable Network-on-Chip (NoC) ar-
chitectures calls for new implementations that achieve high-
throughput and low-latency operation, without exceeding the
stringent area-energy constraints of modern Systems-on-Chip
(SoC). The router’s buffer architecture is a critical design aspect
that affects both network-wide performance and implementation
characteristics. In this paper, we extend Elastic Buffer (EB)
architectures to support multiple Virtual Channels (VC) and
we derive ElastiStore, a novel lightweight elastic buffer architec-
ture that minimizes buffering requirements, without sacrificing
performance. The integration of the proposed elastic buffering
scheme in the NoC router enables the design of new router
architectures — both single-cycle and two-stage pipelined — which
offer the same performance as baseline VC-based routers, albeit
at a significantly lower area/power cost.

I. INTRODUCTION

Network-on-Chip technology is already being adopted in
the majority of large SoCs for simplifying system integration
at the IP-assembly functional verification level — all the
way down to physical integration - by alleviating physical
routing congestion and simplifying timing closure [1]. NoCs
also improve performance by parallelizing communication,
offer quality-of-service (QoS) guarantees, and enable flexible
system partitioning. The majority of these NoC features can
be satisfied by the use of virtual channels (VCs). A physical
channel can be used in a time-multiplexed manner by different
VCs, provided that each VC owns a separate buffer space [2].
VC-based architectures enable traffic separation and isolation
by assigning different traffic classes to different VCs, and
they reduce on-chip physical routing congestion by trading
off physical channel width and the number of supported VCs,
thus, creating a more layout-flexible SoC architecture [3].

The NoC needs to be both scalable, in terms of network
functionality and performance, as well as flexible in terms
of physical implementation. This requirement motivates us to
unify a VC-based architecture that favors NoC scalability with
elastic buffering, which eases physical implementation and
promises area and power reduction.

Owing to its elastic operation, which is based on simple
ready/valid handshakes, elastic buffering is a primitive and
simplified form of NoC buffering that can be easily integrated
in a plug-and-play manner at the inputs and the outputs of the
routers (or inside them) [4], [5], as well as on the network links
to act as a buffered repeater. Elastic buffering assumes only
one form of handshake on each network channel that cannot
distinguish between different flows thus making its operation
serial in nature. This feature prevents the interleaving of
packets and the isolation of traffic flows, while it complicates
deadlock prevention. Due to this limitation, direct support for

978-3-9815370-2-4/DATE14/(©2014 EDAA

C. Nicopoulos
Electrical and Computer Engineering
University of Cyprus, 1678 Nicosia, Cyprus

VCs is abandoned and replaced by multiple physical networks,
or implemented via complex and non-scalable hybrid EB/VC
buffering architectures [6], [7], [8], which remove the basic
property of the EBs to act as stitching elements that can be
placed seamlessly anywhere in the NoC.

In this paper, we generalize the operation and the imple-
mentation of elastic buffering to support multiple VCs. The
proposed architecture, which we call ElastiStore, minimizes
the number of buffers per channel (flip-flops, or latches, ac-
cording to the implementation) close to the absolute minimum
of one buffer slot per VC, without sacrificing performance.
The scalability of the proposed scheme is demonstrated by
the integration of ElastiStore in NoC routers that lead to
new architectures — both single-cycle and two-stage pipelined
— which offer the same performance as baseline VC-based
routers, albeit at a significantly lower area/power cost.

The proposed ElstiStore design is envisioned as an archetyp-
ical primitive for future, extremely low-cost NoC router imple-
mentations, where the performance and functionality enhance-
ments provided by VCs cannot be sacrificed. In fact, due to
protocol-support restrictions, the use of VCs will be mandatory
in future Chip Multi-Processors (CMP) employing directory-
based cache coherence protocols. These coherence protocols
require isolation between the various message classes, in order
to avoid protocol-level deadlocks. For example, the MOESI
directory-based cache coherence protocol requires at least
three virtual networks to prevent protocol-level deadlocks. A
virtual network comprises one VC (or a group of VCs) tasked
with the handling of a specific message class of the cache
coherence protocol [9].

Despite the increased functionality demands, the area/power
budgets of individual NoC routers will continue to dwindle as
the number of processing elements (and, hence, the NoC size)
keeps increasing. The ElastiStore solution aims to precisely
reconcile the conflicting and diverging demands of low cost
and high performance/functionality.

The rest of the paper is organized as follows: Section II
briefly describes elastic flow control, while Section III intro-
duces the ElastiStore architecture. Sections IV and V describe
the implementation of ElastiStore and its integration into NoC
routers, respectively. Experimental results are presented in
Section VII, and conclusions are drawn in Section VIII.

II. BASELINE ELASTIC CHANNEL AND BUFFERS

A baseline elastic channel carries — in parallel to the data
wires — two extra control wires (valid and ready), which
are required to implement the elastic protocol, as shown
in Figure 1(a). The EBs implement the elastic protocol by

— data wse LU
. o] L
vald Y@ @]
B ready EB ready ,J :
(@ (b)
Vin—|
rout
in—>|D Q
master slave
latch latch
n - clock
vin—»H:_»vout
Auxiliary rout latch EB control rin
(c) (d)
Fig. 1. The fundamentals of the elastic buffering protocol.

replacing any simple data connection with an elastic channel.
When an EB can accept an input, it asserts its ready signal
upstream; when it has output available, it asserts the valid
signal downstream. When two adjacent EBs both see that the
valid and ready signals are both true, they independently know
the transfer has occurred, without negotiation or acknowledge-
ment. An example of this handshake is shown in Figure 1(b).

When the output of a chain of EBs stalls, the stall can
only propagate back one stage per cycle. To handle this, all
EBs can hold two words, one for the stalled output, and
one caught when necessary from the previous stage. Such an
implementation is shown in Figure 1(c). The 2-slot EB can be
in three possible states: EMPTY, HALF, and FULL, depending
on the number of flits it has stored. By controlling the clock
phases accordingly, as shown in [10], the 2-slot EB can be
also designed using 2 latches in series, instead of two flip-
flops, similar to Figure 1(d). Following the same methodology,
any EB architecture derived for edge-triggered flip-flops can
be implemented with latches.

III. ELASTIC VCs

An elastic channel that supports VCs consists of a set of
data wires that transfer one flit per clock cycle, and as many
pairs of control wires valid(i)/ready(i) as the number of VCs.
Figure 2 shows an example of a 2-VC elastic channel. At the
protocol level this approach resembles the multiple threads
of OCP-IP [11]. Since multiple VCs may be active at the
sender, arbitration is employed to select which VC will use
the channel. As a result, only one valid(i) signal is asserted
per cycle. At the same time, the receiver may be ready to
accept flits that can potentially belong to any VC. Therefore,
there is no limitation on how many ready(j) signals can be
asserted per cycle. The arbiter at the sender should grant only
a VC that is ready at the receiver. Therefore, the requests of the
active VCs are first qualified by the incoming ready signals.

din — dout
—> — valid(0) ——
ready(0)—
—> —valid(1)
[&—————ready(1)—
Fig. 2. An example of a 2-VC elastic channel.

A baseline ElastiStore primitive can be built by replicating
one EB per VC, including an arbiter and a multiplexer, and
following the connections shown in Figure 3 for the case of
3 VCs. The arbiter selects which VC will drive the output by

checking if it has valid data and if the corresponding VC is
ready downstream. Also, the optional VC qualifiers (1 bit per
VC) can enable or disable the request of an active VC. These
qualifiers are needed when an ElastiStore is integrated at the
inputs of NoC routers.

header fields
din |
> EB dout
EB

vin[1] vout[1]
routlt] <~ EB - 32511%2]

vin[2] < rin2]
rout[2] vout[3]

vin[3] < rin[3]
rout[3]

wy (o
VC status qualifiers

Fig. 3. The baseline ElastiStore architecture.

A 2-slot EB per VC allows each VC to host 2 flits.
This is an expensive solution, since the available resources
(EBs, in this case) are replicated per VC. When a single VC
is active between two baseline ElastiStores, it can achieve
100% throughput. When it stalls, it utilizes the 2 buffer slots
available, while the remaining V' — 1 VCs are left un-utilized.
When M VCs are active per channel, with 2 < M < V,
each VC will receive a throughput of 1/M. In this case of
uniform utilization, each VC will use only one buffer out of
the two available per VC, since it will be accessed once every
M cycles. The second buffer is used only when a VC stalls.

Two buffers per VC are needed in order to allow a single
active VC to enjoy full throughput, even if the rest V' —1 VCs
are blocked, occupying their 2(V — 1) buffers, and assuming
that each one of the blocked VCs reserves the right to restart
at peak rate. In this paper, we relax this hard constraint and
build an ElastiStore using only V + 1 buffers. Each VC owns
a single buffer (V' in total), which is enough in the case of
uniform utilization, where each VC receives a throughput of
1/M, with 2 < M < V. Furthermore, when a single VC uses
the channel without any other VC being active or blocked, i.e.,
M =1, it receives full throughput, and, in the case of a stall,
it may use the additional buffer available in ElastiStore. This
additional buffer is shared dynamically by all VCs, although
only one can have it in each clock cycle.

Figure 4 depicts an example of flit flow on an elastic channel
that supports 2 VCs. Initially, all VCs in each stage have
one flit available. In the first cycles, each VC receives 1/2 of
the throughput per channel (M = 2), and, at each step, they
utilize only one buffer slot. In those cycles, the shared auxiliary
registers are not utilized. The shared buffers are used between
cycles 4 and 7 to accommodate the stalled words of VC B.
In those cycles, VC A — which is not blocked — continues to
deliver its words to the output of the channel.

However, when all VCs, except one, are blocked, and the
shared buffer is utilized by a blocked VC, then the only
active VC will get 50% of the throughput, since it effectively
sees only one buffer available per channel. The baseline and
“expensive” ElastiStore that allocates 2 buffers to each VC
would allow this active VC to enjoy full channel utilization.

ElastiStore offers a reasonable tradeoff, since it saves V —1
buffer slots per elastic VC buffer, and limits throughput only
under heavy congestion that blocks all the VCs except one.

Elastistore#0 Elastistore#1

|nput_>D BWDB_. output
cycles 0 1 2 3 4 5 6 7
Input

EStore#d:l

Channel

EStore#] (A
[Bd|

Output

VC B stalls

VC B released

Fig. 4. An example of flit flow on an elastic channel that supports 2 VCs.

In the case of light traffic, a single active VC receives full
throughput without any limitation. Also, the static allocation
of a single buffer to each VC guarantees forward progress for
all VCs and avoids possible protocol-level deadlocks.

IV. IMPLEMENTATION OF ELASTISTORE

ElastiStore can be designed using the datapath shown in
Figure 5, which consists of a single register per VC along
with a shared register that is dynamically shared by all VCs.
The select signals of the bypass multiplexers, the load enable
signals of the registers, as well as the internal ready/valid
signals that are connected to the arbiter and the input interface
are produced via ElastiStore control.

din —ﬁl—b DaQ
VC2
L—
on DQ dout
shared >
buffer L | ves en
D Q
—>
en
vin{1] gtk
rogt[1]) @ vout[2]
vin[2] ElastiStore control 3 <«—rin[2]
r?/lljlt][[%]] & vout[3]
S -<«—rin[3]

VC stvavt!s qda’li’fiers

Shared bufer control___ Control per thread

é ZgoFuII(i goFull(i) valid(i)/ valid() B?gmﬂ\)l) Empty/ ‘E
T @‘ goHalf(i C@ (HavF) (@O §
i % goHalf() Empty ready(i)val\d(\)'/zj ready(i)/goRaTT g
Fig. 5. The datapath and control logic of the proposed ElastiStore architec-

ture. The FSMs of the control logic are shown at the bottom of the figure.

ElastiStore control copies V' times the control logic of
a single EB, which implements the 3-state FSM shown in
Figure 5, allowing each VC to be in the EMPTY, HALF,
or FULL states. ElastiStore control tracks the state of each
EB, by inspecting the additional goFull and goHalf signals,
and guarantees, via the Empty output signal, that only one
of them will move to the FULL state. This is needed, since
only one VC is allowed to store two flits — in the case of
a downstream stall — by using the shared buffer. A two-state
FSM associated with the shared buffer tracks this condition
and produces the Empty signal, which allows the transition of
only one EB control from the HALF to the FULL state.

When a new word arrives at the input and belongs to the ith
VC that is in EMPTY state, it is stored in the main register of
the ith VC and moves to the HALF state. On the contrary, the

VCs in the HALF state are ready to accept new data, as long
as no thread is in the FULL state. If this is the case, and new
data arrives, three operations take place in the same cycle: (a)
the new data word is stored in the shared buffer, (b) its state
moves to FULL, and (c) all threads that were in the HALF
state stop being ready to accept new data.

When the arbiter selects a VC that is in the HALF state, its
data is dequeued from the VC’s main register and returns to the
EMPTY state. On the contrary, if the selected VC was the only
one in the FULL state — having stored two words in ElastiStore
(in the main register and the shared buffer) — it should move to
the HALF state, after reading the data from the main register.
During this state transition, the main register of the VC should
be refilled by the data stored in the shared buffer. The shared
buffer cannot receive a new word in the same cycle, since its
availability — which releases all VCs being in the HALF state
— will appear on the upstream channel in the next clock cycle.

Even if the datapath of ElastiStore is reduced to only V' +1
registers, its control is almost the same as using a 2-slot EB
per VC, as shown in Figure 3. Using this property we can
design a latch-based ElastiStore by just changing the FSM
per EB to its latch-based equivalent [10], and qualifying the
enable signals by the appropriate clock phase.

ElastiStore accepts at most one flit per cycle for a ready
VC. The registers of the rest VCs can be clock-gated to save
dynamic power during their idle cycles. The main register of
a VC should be clocked (a) when it moves from the EMPTY
to the HALF state (it is accepting a new incoming flit), and
(b) when it moves from FULL to HALF, (the main register is
refilled by the contents of the shared buffer). On the contrary,
the shared buffer and the ElastiStore control logic that keeps
track of the state of each VC are always clocked. This form of
fine-grained clock gating activates for writing only two data
registers, independent of the total number of VCs.

A. Lower Number of Handshake Wires

In an elastic channel, the majority of wires are dedicated to
data signals. The percentage of handshake wires increases on
narrow data channels that support many VCs. Even if there
are abundant on-chip wiring resources to support separate
handshake signals per VC, the elastic protocol can still be
modified to minimize the number of control wires.

The first modification encodes the V' valid signals, from
which only one will be active, to a single valid bit per channel
and a VCid that encodes the index of the selected VC in log, V'
bits. The second modification minimizes the number of ready
signals. When the ith VC at the receiver is ready to accept a
new flit, it asserts the ready(i) signal independently of the rest
of the VCs. Therefore, multiple ready signals can be asserted
per clock cycle. If we do not want to spend more wires for
back-pressure than we do for forward validity notification —
ie., 1 + logy, V wires — we need to store the condition of
each downstream VC at the sender. In this ‘“stored-ready”
approach, which is effectively a primitive form of a credit-
based flow control, the sender keeps track of the readiness
of each downstream VC, by checking the value of the local
stored ready bits. Thus, the receiver only sends a status update
signal and a VCid backwards, which indexes which VC should
update its status to ready.

The sender stores V' ready bits, one for each downstream
VC, and one bit for the shared buffer. In this case, an active

data_in data_out
valid —| | valid
VCid——»| —— VCid
update «—— l«—— update
VCid <«—— l«—— VCid
protocol converter

Fig. 6. The implementation of the stored-ready approach is done outside
ElastiStore by protocol converters.

VC is eligible to send a new flit when either the local ready
bit, or the ready bit of the shared buffer, is asserted. For the
VC that was granted, we de-assert its local ready bit. If it was
already zero, we de-assert the ready bit of the shared buffer.
When an update is received for the ith VC, the <th local ready
bit should be asserted. If it was already asserted, this update
refers to the ready bit of the shared buffer (i.e., the ith VC
has sent two flits in the past, due to a downstream stall, and
one of them occupied the shared buffer). The implementation
of the stored-ready approach can be done outside ElastiStore
by protocol converters, as shown in Fig. 6.

V. INTEGRATION OF ELASTISTORE IN NOC ROUTERS

When a packet arrives in a router, it needs to find its output
destination port via routing computation (RC). The output port
can be pre-computed in the previous router, using lookahead
RC (LRC). Each packet then has to choose a VC at the
input of the next router, before leaving the current router
(known as an “output VC”). Matching input VCs to output
VCs is performed by the VC allocator (VA). Allowing packets
to change VC in-flight can be employed when the routing
algorithm does not impose any VC restrictions (e.g., XY
routing does not even require the presence of VCs). However,
if the routing algorithm and/or the upper-layer protocol (e.g.,
cache coherence) place specific restrictions on the use of VCs,
then arbitrary in-flight VC changes are prohibited, because
they may lead to deadlocks. In the presence of VC restrictions,
the VC allocator will enforce all rules during VC allocation to
ensure deadlock freedom. Such VC restrictions are orthogonal
to the operation of ElastiStore.

The flits that own an output VC arbitrate for accessing their
output port. If a flit wins this stage — called switch allocation
(SA) and organized in local and global arbitration steps, SA1
and SA2 — it will traverse the crossbar (ST — switch traversal),
and, then it will move to the output link (LT — link traversal)
towards the next router [12].

ElastiStore can be integrated at the inputs, at the outputs,
or inside a router as shown in Fig. 7. ElastiStore modules are
placed between router stages, thus replacing the conventional
pipeline registers. A single-stage NoC router would require at
most two ElastiStore modules; one at the input and one at the
output. Similarly, a two-stage NoC router would require one
additional intermediate ElastiStore module (a total of three)
between the first and second stages of the router.

The input ElastiStore utilizes all the optional output signals
shown in Fig. 5: The header information from each VC is
passed to the RC unit, which computes the output destination.
Then, using the VC status information of the ElastiStore, the
head flits from each VC try to acquire an output VC in their
output destination. The output VCs correspond either to the

data N/ {LNK
> ST [—>|: —
: e :
. | J\ | i
info \ ' H
- : | VCs
N output ! output
valid | ﬁ VC qualifiers port L irequ\ests valid L E ‘ valid
sodlitE 1 SA2 s [
ready C_g/\ = ﬁ_l—T— &) ready
T 4 ready ...~ 4
Input sa1— Intermediate Output
Router #k _ Router #k+1
T |
- K HTH | |
L _
N
Optional ElastiStores
Fig. 7. ElastiStore can be integrated at the inputs, at the outputs, or inside
a router.

VC of the output ElastiStore — if it exists — or to the VCs of
the input ElastiStore of the next router.

The VCs that have not yet received an output VC cannot
leave the input. On the contrary, the input VCs that have been
matched to an output VC can move forward and arbitrate for
an output port. SA can be performed in the same cycle, or in
the next cycle, depending on the presence of the intermediate
ElastiStore. SA1 is performed by the arbiter inside the Elasti-
Store (either at the inputs or in the middle) and SA2 follows to
resolve contention for the same output among different inputs.

The intermediate ElastiStore can hold the flits that have
acquired an output VC and move forward, waiting to be
selected by SA. The flits need to be enhanced with two
tags: the output destination port and the output VC acquired
via the head flit of the packet. Once inside the intermediate
ElastiStore, each flit can independently arbitrate for an output
port. The intermediate ElastiStore is just an extension of the
input ElastiStore. The flit that leaves the input ElastiStore and
moves to the intermediate one stays on the same VC as in the
input. A flit moves to its destination output VC only when it
leaves the router, or when it is stored in the output ElastiStore
by asserting the appropriate valid signal.

The ready/valid handshake connections are transferred
across routers, following the connections of the elastic chan-
nels. If a router is equipped with an intermediate or an output
ElastiStore, the handshake signals propagate in a step-by-
step manner after being registered in each ElastiStore. When
ElastiStores are placed only at the inputs, then the intermediate
and the output ElastiStores act as feedthroughs for the data and
the ready/valid handshakes.

VI. EVALUATION

In this section, we compare ElastiStore-based routers with
conventional VC-based routers, both in terms of network
performance and hardware complexity.

A. Network Performance

All comparisons have been performed using a cycle-
accurate SystemC network simulator that models all micro-
architectural components of a NoC router, assuming an 8x8
2D mesh network with XY dimension-ordered routing. Evalu-
ation involves synthetic traffic patterns using uniform random
and bit-complement traffic. Other permutation traffic patterns
follow very similar trends to bit-complement traffic. The

=)
=3
o
=3

o
=)
=)
=3

Base-2VC ——
Base-4VC —w—
Base-8VC —w—

Base-2VC ——

Base-4VC —w—
- Base-8VC —=—

Elasti-2VC —=— |
Elasti-4VC
| Elasti-8VC

)

®
o
®
S

Elasti-2VC —=—
Elasti-4VC
Elasti-8VC

@
S
=
S

N
S
IS
=)

3

n
o
n
15}

|

Average Packet Latency (Cycles)
Average Packet Latency (Cycles)

Base-2VC ——
Base-4VC —w—
Base-8VC —w—-

Base-2VC ——
Base-4VC —w—
- Base-8VC —=—
Elasti-2VC —=—
Elasti-4VC
| Elasti-8VC

®
o
-3
o

Elasti-2VC —=—
Elasti-4VC
Elasti-8VC

o
S
@
S

IS
o
N
S

N

N
o
n
o

Average Packet Latency (Cycles)
Average Packet Latency (Cycles)

0 0
0 005 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0 0
0 005 0.1 015 0.2 0.25 0.3 0.35 0.4 0 005 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Load (Flits/Node/Cycle)

(a) Uniform random traffic

Load (Flits/Node/Cycle)

(b) Bit-complement traffic

Load (Flits/Node/Cycle)

(c) Uniform random traffic

Load (Flits/Node/Cycle)

(d) Bit-complement traffic

Fig. 8.

Latency vs. load curves for (a)-(b) single-stage and (c)-(d) two-stage routers.

injected traffic consists of two types of packets to mimic
realistic system scenarios: 1-flit short packets (just like request
packets in a CMP), and longer 5-flit packets (just like response
packets carrying a cache line). For the latency-throughput
analysis, we assume a bimodal distribution of packets with
50% of the packets being short, 1-flit packets, and the rest
being long, 5-flit packets. This percentage is in accordance
with recent studies of cache traffic in CMPs running real
application workloads [13].

Baseline VC routers can be built with shallow, or deep
buffers per VC. It is critical, however, for each VC to contain
as many buffers as needed to cover the credit round-trip
latency. In single-cycle baseline routers, each flit spends one
cycle inside the router and one additional cycle on the link.
To isolate the link from the rest of the router, a simple output
buffer (single pipeline register) is added at the output of the
crossbar. In this configuration, each VC needs 3 buffers to
cover the round-trip time. This configuration is sufficient to
achieve high performance and keep the total buffering per
router to reasonable levels when the number of VCs is high.
For example, a pipelined router with two stages increments the
credit round-trip latency by one — unless direct combinational
credit update paths are employed across routers, which limit
the benefits of pipelining — but it enjoys a higher clock
frequency. Therefore, it needs a minimum of 4 buffers per VC.
The latency-equivalent of the baseline single-cycle VC-based
router is the router with one ElastiStore at the inputs and the
outputs, while the two-cycle pipelined router is equivalent to
an elastic router that also contains an intermediate ElastiStore.
Each ElastiStore costs V' + 1 buffers. Table I summarizes the
buffer requirements in each case.

TABLE I
BUFFER COMPARISON OF BASELINE AND ELASTISTORE-BASED ROUTERS.

Stages | Baseline | ElastiStore
I-stage[3NV + N2(V + 1)N
2-stage|4NV + N|3(V + 1)N

Even with this lower amount of buffering — which translates
directly to area/power savings — the ElastiStore-based routers
achieve similar network performance when compared to single
and two-cycle VC-based routers. Figures 8(a) and (b) depict
the latency-load curves of both single-cycle routers under
comparison when varying the number of VCs. In all cases,
the performance of the routers is indistinguishable both at low
and at high loads. The same conclusion is drawn by the results
shown in Figures 8(c) and (d) for the case of two-stage routers.
Therefore, the savings of ElastiStore are offered to the NoC
designer for free, without trading off performance.

Multiple physical EB-based networks of simpler routers [4],
with each one mapped to one VC, enjoy higher clock fre-
quencies, due to the removal of the VA stage. However,
when compared with ElastiStore-based routers under equal
network bisection bandwidth, they suffer in performance, as
verified by our experiments that are omitted due to space
limitation, because of the high serialization latency imposed
by the narrower channels per physical network.

Finally, VC-based routers can be simplified with static
destination-based VC allocation that does not allow packets to
change VC and keep the one given to them at the source. This
feature can be also applied to ElastiStore routers. Although this
option favors the complexity of the routers, as done in [14],
the static allocation of VC (a) reduces the overall throughput
by increasing head-of-line blocking per static VC, and (b)
complicates adaptive routing.

B. Hardware Implementation

The proposed single-stage and two-stage ElastiStore routers,
using lookahead RC, have been implemented in VHDL and
mapped to an industrial low-power 40 nm standard-cell library
under worst-case conditions (0.8V, 125°C), using the Cadence
digital implementation flow. The generic router models have
been configured to 5 input-output ports, as needed by a 2D
mesh network, and to 4 VCs per port, while the flit width was
set to 64 bits. The area/delay curves obtained for all designs —
after constraining the logic-synthesis and back-end tools, and
the extraction of physical layout information (each output is
loaded with a wire of 2 mm) — are shown in Figure 9.

85000

80000 r b
75000
70000

65000

Area (pmz)

60000

55000
2-stage ElastiStore
50000 [1-stage ElastiStore =——s—
Baseline ——w—
45000 L L L L L L L L

12141618 2 22242628 3

Delay (ns)

Fig. 9. Hardware implementation results of ElastiStore routers.
Figure 9 includes the performance of a single-cycle 4-

VC router with LRC and 3 buffers per input VC and two

ElastiStore-based routers with the same number of VCs. Both

ElastiStore routers lie below the baseline router. The single-
stage router has the same delay as the baseline VC-based
router, albeit with significantly lower area, due to buffer
reduction. Both single-stage routers could have improved their
speed by using VA-SA speculation [15]. Even though the two-
stage ElastiStore router requires more area than the single-
stage router at its minimum delay point, it ends up being
more area-efficient when the delay constraint is relaxed. At
high delays, however, the most area-efficient implementation
is the single cycle ElastiStore router.

The measured power consumption follows the trend of the
area measurements, assuming that both the baseline and the
ElastiStore architectures can clock-gate the unused VCs. Clock
gating, in our case, is simpler and more fine grained. Also,
since a latch-based implementation is not a unique characteris-
tic of elastic buffering and can also be applied to the design of
larger FIFOs, both the baseline and ElastiStore designs can use
them to decrease their area/power requirements proportionally.

VII. RELATED WORK

ElastiStore is related to two thrusts of prior research: (a)
elastic flow control, and (b) shared-buffering in NoC routers.

Elastic buffers were employed in [4] as a low-cost buffering
mechanism, which replaces the monolithic buffers of worm-
hole routers. The support for VCs was offered via multiple
physical networks, or via a hybrid EB/VC flow control that
employs a combination of EBs (in the links) and regular
VC buffers [16], [6]. Similar hybrid techniques have been
employed in [8], [7], with the extra feature that the VC
buffer space accompanying EBs was shared among VCs.
While these solutions successfully allow for separation of
traffic flows (facilitated by the VC buffers), they still rely
on a single valid/ready interface between the EBs in each
link. This interface cannot distinguish the different flows. So,
the challenge is to ensure that all the flits of a blocked VC
are drained from the EBs in an orderly fashion (i.e., placed
contiguously in a VC buffer with no interleaving), so that the
EBs in the links may be used by a non-blocked VC. To achieve
this goal, the hybrid EB/VC architectures rely on non-trivial
control logic that coordinates the VC traffic flows.

Instead, ElastiStore avoids this complication by employ-
ing individual handshaking interfaces (or stored readies) for
each supported VC, so that the various VC traffic flows
are inherently logically separated and easily guided to their
respective parallel buffer slots. The presence of a shared
buffer in ElastiStore is instrumental in optimizing the use of
available buffer space within the NoC router. In essence, the
proposed mechanism achieves the same objective as the sig-
nificantly more expensive shared-buffering and buffer-stealing
schemes [17], [18], [19], [20].

In shared-buffer schemes, designers predominantly use ei-
ther linked lists [18], or table-based approaches [17] to coor-
dinate traffic flow through the buffers. Each VC must maintain
its own set of pointers to identify where its flits are located
in the buffer, regardless of the size of the buffer, while
taking care deadlock avoidance. While the cost of control
logic is amortized in routers with large buffer space, the
overhead becomes significant in low-cost routers with minimal
buffer space. ElastiStore requires no pointer logic whatsoever
and avoids protocol-level deadlocks by construction, thereby
offering a zero-cost solution to this critical issue.

VIII. CONCLUSIONS

As multi-core systems transition to the many-core realm,
the pressure on the interconnection network is substantially
elevated. The NoC is expected to undertake the expanding
demands of the ever-increasing numbers of processing ele-
ments, while — at the same time — its area/power footprint
remains severely constrained. Hence, low-cost NoC designs
that achieve high-throughput and low-latency operation are
imperative for future scalability. The NoC router’s buffers
are major consumers of area and power, and key enablers
of high performance. Moreover, buffers are used to facilitate
VCs, which are instrumental in further enhancing performance
and allowing deadlock freedom. In this paper, we proposed
ElastiStore that extends the notion of elastic buffering to
multiple VCs. ElastiStore reduces the buffer requirements to
nearly the minimum possible, while still achieving the same
performance as the much more expensive, traditional VC-
based routers.

REFERENCES

[1] J. Handy, “NoC interconnect improves SoC economics,” Objective
analysis - Semiconductor market research, 2011.

[2] W.]. Dally, “Virtual-Channel Flow Control,” in Proc. of the Intl. Symp.
on Computer Architecture, May 1990, pp. 60-68.

[3] J. Browne, “On-Chip Communications Network Report, 2012.”

[4] G. Michelogiannakis, J. Balfour, and W. J. Dally, “Elastic buffer flow
control for on-chip networks,” in IEEE Int. Symp. on High Performance
Computer Architecture, 2009.

[5] A. Roca, C. Hernndez, J. Flich, F. Silla, and J. Duato, “Silicon-aware
distributed switch architecture for on-chip networks,” Journal of Systems
Architecture, vol. 59, no. 7, pp. 505 — 515, 2013.

[6] G. Michelogiannakis and W. Dally, “Elastic buffer flow control for on-
chip networks,” IEEE Trans. on Computers, vol. 62, no. 2, Feb. 2013.

[7] S. M. Hassan and S. Yalamanchili, “Centralized buffer router: A low la-
tency, low power router for high radix nocs,” in [EEE/ACM International
Symposium on Network on Chip, April 2013.

[8] A. K. Kodi, A. Sarathy, and A. Louri, “ideal: Inter-router dual-function
energy and area-efficient links for network-on-chip (noc) architectures,”
in Proc. of Intl Symp. on Comp. Architecture, 2008, pp. 241-250.

[91 M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,

A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood,

“Multifacet’s general execution-driven multiprocessor simulator (gems)

toolset,” SIGARCH Computer Architecture News, vol. 33, 2005.

J. Cortadella, M. Kishinevsky, and B. Grundmann, “Synthesis of Syn-

chronous Elastic Architectures,” in Proc. ACM/IEEE Design Automation

Conference, Jul. 2006, pp. 657-662.

OCP-IP protocol specification. www.ocp-ip.org

W. J. Dally and B. Towles, Principles and Practices of Interconnection

Networks. Morgan Kaufmann, 2004.

S. Ma, N. Enright Jerger, and Z. Wang, “Whole Packet Forwarding:

Efficient Design of Fully Adaptive Routing Algorithms for Networks-

on-Chip,” in Proc. of the Intern. Symp. on High Performance Computer

Architecture, Feb. 2012, pp. 467-478.

F. Gilabert and et al., “Improved utilization of noc channel bandwidth by

switch replication for cost-effective multi-processor systems-on-chip,” in

NOCS, 2010, pp. 165-172.

R. D. Mullins, A. F. West, and S. W. Moore, “Low-latency virtual-

channel routers for on-chip networks,” in Proc. of the Intl. Symp. on

Computer Architecture, 2004, pp. 188-197.

B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu, “A QoS-Enabled

On-Die Interconnect Fabric for Kilo-Node Chips,” IEEE Micro, vol. 32,

no. 3, May 2012.

C. Nicopoulos and et al., “Vichar: A dynamic virtual channel regulator

for network-on-chip routers,” in IEEE/ACM Intern. Symp. on Microar-

chitecture, 2006, pp. 333-346.

M. Lai, Z. Wang, L. Gao, H. Lu, and K. Dai, “A Dynamically-Allocated

Virtual Channel Architecture with Congestion Awareness for On-Chip

Routers,” in Design Automation Conference, 2008.

W. Su, J. S. Shen, and P. A. Hsiung, “Network-on-Chip Router Design

with Buffer-Stealing,” in ASP-Design Automation Conference, 2011.

A. T. Tran and B. M. Baas, “RoShaQ: High-performance on-chip router

with shared queues,” in IEEE Intern. Conf. on Computer Design, Oct.

2011, pp. 232-238.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]

