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Abstract—We propose a Time-Division Multiplexing (TDM) based
connection oriented NoC with a novel double time-wheel router ar-
chitecture combined with a run-time parallel probing setup method.
In comparison with traditional TDM connection setup methods, our
design has the following advantages: (1) it allocates paths and time
slots at run-time; (2) it is fast with predictable and bounded setup
latency; (3) it avoids additional resources (no auxiliary network or
central processor to find and manage connections); (4) it is fully
distributed and therefore it scales nicely with network size.

Compared to a packet based setup method, our probe based
design can reduce path setup delay by 81% and increase network
load by 110% in an 8x8 mesh, while avoiding the auxiliary network.
Compared to a centralized method, our solution can double the
success rate, while eliminating the central resource for path setup
and reducing the wire overhead. Synthesis results suggest that our
design is faster and smaller than all comparable solutions.

I. INTRODUCTION

Circuit switching (CS) is frequently adopted for guaranteed
data transfer, since it is a cost-effective technique in real-time
communication [1]. CS means that resources are allocated exclu-
sively to a particular connection for its entire lifetime. Since the
exclusive allocation of a link is very inflexible and potentially
blocks other communications, in the on-chip context two main
variants have been explored: (1) in Time-Division-Multiplexing
(TDM) based CS, resources are allocated exclusively only in
specific time slots, while the other time slots of a finite, repeating
time window can be used by other communications [2]; (2) in
Spatial-Division-Multiplexing (SDM), only part of a link with its
corresponding buffers are exclusively allocated to a connection,
while the remaining wires of the link can be used by other
communications [3]. Because SDM link sharing introduces large
crossbars with low clock frequency and high hardware costs,
TDM based CS is more popular and e.g. used in Æthereal [1],
dAElite [2], Nostrum [4], and so forth.

A main challenge for TDM based CS NoCs is to set up
a contention free path and to allocate the time slots. There
are two categories of techniques for path setup: one is static
scheduling [5]–[7], the other is dynamic (run-time) searching.
Static methods schedule connections at compile time, based on
the premise that all communication requirements are known
beforehand. Thus, they are not well fit for applications like H.264
with requirements for dynamic communication setups or dynamic
mixes of applications.

Thus, we concentrate on dynamic setup in TDM NoCs and
propose a probe based dynamic path searching method with
guaranteed setup delay. In particular, our contributions are:

• We propose a probe based setup method for TDM based CS
NoC. Our method does not resort to an auxiliary network
for connection configuration and imposes no limitation on
search algorithms.

• We present a double orientation time-wheel technique to
enable two-way communication in the probe based setup. A
slot-table is shared by both forward and backward messages.

• We implement a parallel probing search to find a free path.
This algorithm guarantees that, if a shortest path is available,
it is found within 2×D+K +6 time slots, where D is the
distance between source and destination, and K is the total
number of time slots in a slot table.

Taking all together, our design provides shorter critical timing
path, less wire overhead, shorter setup delay and higher success
rate at lower hardware cost than any previously known method.

II. BACKGROUND AND RELATED WORK

Dynamic path searching methods can be divided into central-
ized [2], [8] and distributed solutions [9], [10]. In centralized
solutions a special node is used to schedule all the connections
in the network. This coordinating node can be a processor or a
special hardware accelerator. Path scheduling algorithms running
on hardware accelerators such as HAGAR [8] are about 100-1000
times faster than running as software on a processor [11], [12].
However, centralized setup methods suffer from the lack of scal-
ability. As the network grows, the coordinator node becomes the
bottleneck [8], [12]. Also, since retrying of failed requests causes
the blockage of the following requests, failed setup requests
are usually dropped in centralized setup methods. Furthermore,
centralized solutions often depend on an additional network for
delivering the configuration information to the routers.

Traditionally, distributed solutions in TDM NoCs are imple-
mented with configuration packets [9]. Configuration packets such
as setup, tear-down and Ack/Nack, require a separate Best Effort
(BE) network during the connection establishment procedure.
This approach suffers from three major drawbacks. Firstly, us-
ing an additional BE network for the connection setup is an
unnecessary overhead. Secondly, the routing algorithms have to
be deterministic to ensure setup, tear-down and Ack/Nack packets
of a connection are on the same route so that the booked slots
inside the routers along the route can be read/removed correctly,
thus significantly restricting the path searching space. Thirdly,
compared with our probing search, tear-down and Ack/Nack
signals have to be sent in the form of packets. These packets
are often underutilized and contend with setup and other packets.
There is no delay guarantee for configuration packets, rendering
the setup delay unpredictable.

Another kind of distributed path searching method is probe
based searching, although it was only used in CS NoCs without
TDM or SDM link sharing. For NoCs, the concept of probing
was firstly proposed by Wiklund et al. [13]. Pham et al. [10]
developed a backtracking path searching algorithm, which has
better performance than Wiklund’s. Liu et al [14] developed a
parallel probing method for CS NoC. It can complete a search
over all possible shortest paths within O(D) time complexity
where D is the geometric distance between source and desti-
nation. They demonstrated superior performance of this parallel
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Fig. 1. The usage of double orientation time wheel

probing algorithm compared to Pham’s backtracking algorithm.
We adapt Liu’s parallel probing algorithm for TDM based NoCs.

Another track of work uses per-connection Virtual Channels
(VCs) and round-robin arbitration to share links and provide
communication guarantees (e.g. [15], [16]). VCs are expen-
sive resources, since they consist of buffers, multiplexers, de-
multiplexers and require separate flow control. The number of
VCs per router per direction suggested by the authors is limited
to 4, which limits the number of simultaneously supported con-
nections. In section IV-C and table V we compare the hardware
costs of artNoC [15] to our solution, showing better performance
at half the area.

III. MOTIVATION AND DESIGN OUTLINE

A number of previous solutions rely on a BE NoC to support
dynamic establishment of connections. For distributed dynamic
solutions [5], [9], the BE NoC is not only used for delivering
configuration packets, but also for path searching. Centralized
dynamic solutions also depend on a BE NoC [8] for delivery of
configuration information. Stefan et al. eliminate the BE NoC in
dAElite but then they add a tree shaped dedicated configuration
network instead [2]. In AElite certain time slots of a router are
still reserved for configuration message delivery [6]. In addition,
the configuration time of hundreds of cycles is very long.

An additional network for configuration is not cost-effective
[1]. The to-be-allocated resources of the CS network have to be
free at the time of path search and setup such that they can be
used for the very task of connection setup. Besides, delivering all
kinds of messages for connection establishment as BE packets is
also inefficient and limits the selection of routing algorithm, as
we mentioned in Section II.

To avoid these drawbacks, we propose a probe based solution
for TDM NoC, where the probe searches through the network
to find a free path, selects the time slots, and allocates the
network resources for the required slots as it moves forward.
When it arrives at the destination, the path is set up. As tear-
down, Ack/Nack messages are tightly combined with the probe,
our solution is not restricted to deterministic path searching
algorithms. We use the parallel probing algorithm in [14] but
apply it to TDM NoCs. The probe uses the same wires and buffers
as the data uses after the path is set up.

In the following description a channel denotes a simplex
link between two routers together with associated buffers in a
particular time slot; hence, the same link in different time slots
belong to different channels. A probe is sent out by a source
node and travels through free channels, moving from one router
to the next towards the destination. If a free channel is available,
the probe will reserve the channel for future data transfer and go
through the channel to the next router to continue the search. If
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Fig. 2. Overview of the router

at some point no free channel is found, the path search fails.
Ack/Nack messages must be sent back to inform the source
node whether a search failed or succeeded. Besides, Nack signals
also tear down the reserved channels of a connection. To reduce
wire costs, backward Ack/Nack messages are 1-2 bits. In probe
based setup methods both forward (data/probe) and backward
(Ack/Nack) signals are needed.

Backward Ack/Nack messages constitute a design challenge,
since they associate to a connection, consist of only 1-2 bits,
contain no address information and share wires in TDM manner.
Thus, they must arrive at the right router in the right time slot and
rely on the slot table’s information of the router to move back
towards the source. In figure 1 a connection spans 5 routers. For
the forward data/probe path, the reserved time slots inside each
router follow the sequence 0 → 1 → 2 → 3 → 0. The slot table
of each router records the crossbar configuration information.
To ensure that backward Ack/Nack signals correctly read the
information inside each slot table for traversal, the backward
signals should be sent-out at slot 0 in router 5, then reach router
4 at slot 3, reach router 3 at slot 2, and so forth.

To address this challenge we introduce a double orientation
time wheel. Inside each router, there are two slot counters, of
which one is incremented and the other is decremented; both start
from slot 0. The incrementing slot counter uses the slot table to
configure the forward crossbar for data or probe; the decrementing
counter configures the backward crossbar for Ack/Nack. In this
way, if the Ack/Nack signal is sent out at the correct time slot,
it will be correctly routed back to the source hop by hop.

IV. ROUTER DESIGN AND IMPLEMENTATION

A. Control signals

The implementation uses a mesh topology with 5-port routers
where each port consists of two physical links in opposite direc-
tion. Each link contains a data path, which is used for delivering
the probe during the setup phase and for data transmission after a
connection has been established. Every data path is coupled with
4 control bits: a 2-bit Request signal in parallel to the data path,
and a 2-bit answer (ANS) signal in the opposite direction of the
data path. Their usages are listed in tables I and II, respectively.
Ack/Nack messages are carried by the ANS signal. In the data
transfer phase the same ANS signal can be used for end-to-end
flow control, as shown in table II.

TABLE I
THE USAGE OF REQUEST SIGNAL

Request Usage
00 Idle/data transfer
01 Unused
10 Probe comes in
11 tear-down established connections



TABLE II
THE USAGE OF ANS SIGNAL

ANS Usage in setup Usage in data transfer
00 Idle Ready to receive data
01 Unused Unused
10 Nack (Path search failed) Unused
11 Ack (Path established) Receiver buffer full

TABLE III
THE PROBE FORMAT

Lookahead routing (5 bits) Dest.addr (6 bits) Src.addr (6 bits)
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Fig. 3. Detailed router architecture

In total there are only 4 control wires for each channel, which,
we believe, is the minimum overhead for probing based setup.
The probe format is also compact. A probe just contains the
destination address and look-ahead routing information. In an
8 × 8 mesh, the minimum width of a probe is 11 bits. Since
the source node address is required by certain path searching
algorithms (e.g. our parallel probing in this paper), a probe can
become 17 bits in this case, as shown in table III.

B. Detailed router architecture

The slot-table structure is illustrated in figure 3. Rows in a slot-
table represent time slots, and columns denote output links. The
input channel id (In a 5 port router, it equals to dlog 25e = 3 bits)
is written into a vacant cell to book an output link for a certain
slot. Each router has 5 outputs and thus the slot table width is
15 bits. This slot-table information, accessed by the incrementing
slot counter, is used for forward crossbar configuration, while the
decrementing slot counter is in charge of the backward direction.
The cell content including its column number can be translated
into two sets of configuration bits for the configuration of the
forward crossbar and the backward crossbar, respectively. The
translation logic is a simple logic decoder.

Inside each router, all input signals are latched. Then, the
request signal is checked as follows:
”00” data: the data is directly forwarded according to the the

corresponding slot table cell;
”11” erase connection: This signal will be firstly delivered

through the crossbar according to the reserved slot table’s
information. Then, the corresponding slot table cell can be
cleared at the beginning of the next cycle.

”10” setup probe: Based on the look-ahead routing information
of the probe, arbitration for output channels commences.
If a probe fails, backward ANS is used to notify the
source node and cancel the reserved slot table cells hop
by hop. We will explain this complicated process later.
If a probe succeeds in acquiring one cell, it is delivered
through the crossbar to the next router immediately. The
slot table update is removed from the critical timing path
and scheduled at the very beginning of the next cycle.
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Fig. 4. ANS signal management
To reduce the critical timing path, look-ahead routing is used.

The lookahead information denotes the desired output directions
of the next router of a probe. This information is pre-computed
in parallel with the arbitration and cross-bar traversal process of
a probe. After the crossbar traversal, the probe will be updated
and carry the new information before it reaches the next router.

The proposed router takes one slot per hop for all messages:
request, probe/data as well as Ack/Nack. In our implementation,
by default each time slot is one cycle.

Several aspects of our router deserve to be noticed.
1) Backward ANS signal management: We have mentioned in

Section III that Ack/Nack signals must be sent out at the correct
time slot. In the following we explain how to realize this scheme.

As figure 4 illustrates, a probe arrives when router C at
incrementing slot counter is 3 and decrementing slot counter is
1. However, when it fails in router C, a signal ANS=”10” will be
sent back. The ANS should use slots 3→ 2→ 1 to pass routers
C, B, and A, respectively. To this end, ANS is buffered in router
C for 2 slots, until the decrementing slot counter becomes 3.

We designed an ANS table at each input port for such buffering
purpose. Each table cell is 2 bits wide. The rows represent time
slots. The writing position of the table is pointed at by the
incrementing slot counter; the reading position is pointed at by
the decrementing slot counter. After a cell is read and ANS is
sent back, it will be erased at the beginning of the next cycle.
The maximum buffering time is K cycles, where K is the total
slot number in the time window.

2) Predictable delay and setup polices: All kinds of message
delays in our NoC are predictable, which are proportional to the
distance between source and destination, with 1 cycle per hop (by
default a slot corresponds to 1 cycle).

Moreover, the delay of a single search is also predictable.
Suppose the distance between source and destination is D and
the total slot number in the time window is K. Assume minimal
routing. Then it takes at most 2D+K + 6 cycles for the source
to receive an Ack/Nack. D cycles are for sending the probe from
source to destination, D+K cycles for returning the ANS signal,
and 6 cycles are consumed in the source and destination nodes.

We study two connection setup polices (adopted from [14]):
Retry until success: In this policy, the source node keeps retrying
a request until it successfully sets up a connection. In this case
the worst delay for setup is unbounded, because it is unknown
when a free path becomes available.
Retry before deadline: In this policy, a deadline is attached to
each setup request, which denotes the time when the connection
has to be set up. The residual time (RT ) is the deadline minus
the current time. Since it can take 2D+K+6 cycles to set up a
connection, a new connection is launched or an old is retried only
when RT > 2D +K + 6. Otherwise, the request is discarded.

3) Path searching algorithms: Unlike other distributed path
setup solutions [9], our probe based solution imposes no con-
straint on the routing algorithm. Hence, any probe searching



algorithm with reasonable hardware cost is applicable. However,
to achieve high performance we implemented the adaptive parallel
probing algorithm proposed by Liu et al. [14]. Parallel probing
searches all shortest paths between a given source and destination
in parallel. If at least one shortest path is free it will be found
and allocated in constant time. To achieve this, a probe is copied
from the input of a router to up to two outputs if there are two
productive directions towards the destination. In the process many
parallel paths may be allocated by the travelling probes, but all
of them except one will be de-allocated as quickly as possible.

However, we replaced Liu’s complicated priority comparison
arbitration mechanism with a smaller and faster round-robin
arbitration. Since each probe may have two productive output
directions and may book two slot cells, the corresponding 2-bits
ANS cell is used to record the number of booked slots. Hence,
the value of a cell will be decreased when a Nack signal from the
downstream router is sent back. Thus, it requires that a cell can
be written by both the incrementing and decrementing counter.
Fortunately, our router operating mechanism can guarantee that
there is no conflict. A Nack signal is only returned to its upstream
router when its own ANS cell value becomes zero.

4) Timing, synchronization and scalability considerations: Our
design minimizes the critical timing path. The critical path length
consists of an input probe checking logic (4 gate delays), a round-
robin arbiter (8 gate delays), a multiplexer (2 gate delays), a
crossbar (4 gate delays), and a look-ahead routing information
updating logic (2 gate delays). Thus, our router is very fast even
though it only contains 1 pipeline stage.

Our design can also be applied in a mesochronous or asyn-
chronous environment by adding synchronization tokens for slot
update handshaking, similar to the technique used in Æthereal [1].
Our double time-wheel design does not impose any additional
requirement on synchronization. If such synchronization efforts
are required, we need to add 1 pipeline stage in the router to
compensate the latency introduced by synchronization.

Considering hardware scalability, the main cost of adding a
time slot is the increase in buffers. For each router, this will raise
25-bit buffer space in total (15 bits for the slot table, 10 bits for
the 5 ANS tables in total). In our current design, we use registers
for storage.

C. Implementation costs and comparison
The router synthesis results with TSMC 90nm technology is

listed in table III. In our default settings, the effective link width
for data is 32 bits, and the total link width is 36 bits. The
additional wires are always 4 bits. This value does not increase
with network size or the number of slots1.

TABLE IV
THE ROUTER SYNTHESIS RESULTS WITH 90NM TECHNOLOGY
Slots in the

time window
Critical path
length (ns) Area (um2) Power (mW)

1 0.7 8730 5.8
4 0.7 12226 6.8

16 0.7 22608 9.7

As table IV suggests, the router area goes up linearly with the
slot number. One additional slot increases the area by 991 um2.

1Since the probe width is 17 bits, it requires that the forward data/probe path
is at least 17-bit wide. However, if the data width used in data transfer is smaller
than 17 bits, some wires of a link are inevitably wasted and thus regarded as
additional wires.

We compare our synthesis results with other works reported in
the literature. A conclusive comparison is difficult to perform be-
cause the different NoCs support different features. Nevertheless,
we try to present a fair comparison based on available data.

The synthesis results of our router with TSMC 65nm, 90nm and
130nm, with different effective data path width and different slot
numbers, are listed in table V and compared with others’ results
by assuming that all the routers are used for an 8 × 8 mesh.
Generally speaking, our work has the shortest critical timing
path2. Lusala’s work [9] has the same critical timing path length
but it is a mix of SDM channels and TDM channels. Its hardware
cost is 5 times higher but offers more routing flexibility3. The
area of our implementation is only slightly bigger than dAElite.
However, dAElite [2] does not include the hardware cost for the
scheduler. Finally, our work has the smallest additional wires per
link for control/configuration4.

TABLE V
COMPARISON WITH OTHER PUBLISHED DESIGNS BY USING THE SAME DATA

PATH WIDTH AND SILICON TECHNOLOGY
Critical

path
length (ns)

Area
Additional

wires
per link

Auxiliary
network

Data width 16 bits, 130 nm technology
artNoC [15] 2-flit

buffers, 4 VCs 2 0.06mm2 8 No

Our work 8-slot 1.3 0.03mm2 5 No
Data width 48 bits, 65 nm technology
Lusala [9] 3 SDM
lanes, 3 time slots 0.5 0.05mm2 20 Yes

Our work 9-slot 0.5 0.01mm2 4 No
Data width 64 bits, 90 nm technology
dAElite [2], 4 slots above 1.08 0.016mm2 10 Yes
Our work, 4-slot 0.7 0.017mm2 4 No
Data width 68 bits, 130 nm technology
HAGAR [8], 1 slot 2 20 kNand 5 Yes
Our work, 1-slot 1.3 5.5 kNand 4 No

V. PERFORMANCE EVALUATION

A. Experiment settings

Each resource node generates setup requests according to a
Poisson distribution and pushes them into a queue. Uniform
random, shuffle, and other traffic patterns are used for evaluation.
An FSM pops a request from the queue and sends it out when
an output slot is available. Then the FSM waits for a success
or failure notification, upon which it either retries the request,
discards it, or commences the data transfer. Any data point that is
shown in the figures comes from simulation of 10 million cycles,
of which the first 5% are discarded as a warm up period.

Several performance metrics are used:
• Metrics for retry until success policy:

total setup delay includes the waiting time for a request in
the queue and the setup delay for a request, which extends
from the first time sending the request until final success.

2The dAElite [2] [18] did not report its critical path for a 5-port router with
90 nm. However, the critical timing path of a 3 port router with 65nm is reported
as 1.08 ns. Thus it is safe to deduce that with 90 nm, it is more than 1.08ns.

3In SDM any of the 4 lanes of an input port can be forwarded to any of the
4 lanes of an output port. But in our TDM scheme, one TDM time-slot can be
forwarded only to the next time slot.

4From the implementation of HAGAR, we deduce that each link requires 2
bits to connect to the center node, 1 bit to distinguish the BE and GS packets, 1
bit to distinguish normal GS flits and link free signal, and 1 bit for stall/go flow
control, so the additional wires are 5 bits/link in total.
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Fig. 5. Performance comparison under uniform traffic. Each connection delivers 100 flits.

offered load refers to the required data transfer per connec-
tion multiplied by the injection rate of setup requests. Sup-
pose the injection rate is 1/2000 cycles, and each connection
delivers 100 flits of data after setup, then the offered load is
100/2000=0.05 flits/cycle.

• Metrics for retry before deadline policy:
request success rate denotes the ratio between established
and desired paths and indicates the number of the requested
paths could be established.
master percentage denotes the percentage of nodes which
can send out setup requests. These nodes are uniformly
randomly distributed in the system.

B. Comparison of different path searching algorithms
Three path searching algorithms are implemented and com-

pared, which are X-Y, minimal adaptive and parallel probing. In
this experiment, the retry until success policy is applied. After a
connection is established, 100 flits of data are delivered before
the connection is released. E.g. when the window size (total slot
number in the time window) is 1 (no TDM link sharing), it takes
100 cycles for data delivery; when the window size is 16 slots,
it takes 1600 cycles. The actual time for data delivery equals to
the required data transfer time multiplied by window size.

The results under uniform random traffic are shown in fig-
ure 5a, suggesting that parallel probing is the best path searching
algorithm. E.g. at offered load 0.16 and when the window size
is 1, the average setup delay of parallel probing is only 80% of
minimal adaptive, and 50% of the X-Y algorithm. We also have
evaluated algorithms with different window sizes, e.g. 16 slots.
Their results suggest the same ranking. Consequently we choose
parallel probing as the default path searching algorithm for the
following experiments.

C. Comparison with distributed setup
We re-implement a packet based distributed path setup method

according to Lusala’s work [9] for comparison. Since with a BE
packet based setup method, the message delay is unpredictable,
we apply the retry until success policy.

The average total setup delay versus offered load in an 8 × 8
mesh under uniform random traffic is shown in figure 5b. We
observe that our parallel probing method has shorter average setup
delay than the packet setup method of [9]. E.g. when the window
size is 16, at load 0.26, the average total delay of our probing
method (refer to probe-16-slot) is 52 cycles, while the packet
based method needs 134 cycles. Also, the saturation point of the
network is 15-18% higher in our probe based solution, which
translates into a correspondingly higher network utilization.

We also observe that increasing the number of slots in a time
window can help to ameliorate both network utilization and setup
delay, although the time required for data delivery and hardware
costs increases.

Besides 8× 8 NoC, we made comparison in different network
sizes (6× 6 and 16× 16) and with different slot number (1 and
16), see figure 5c. We use solid, red lines to represent the setup
delay of our method and dashed, black lines for the packet based
method. The probe based setup has 30% to 80% lower delay and
a 10% to 40% higher saturation point in this comparison.

In addition to uniform random, we use other traffic patterns
for evaluation. As figure 6 shows, under shuffle traffic probe
based setup has 81% delay reduction and an up to 110% higher
saturation point. Under tornado traffic, we find upto 50% delay
reduction and a 55% higher saturation point (not shown in the
figure).

Thus, we conclude that our method offers better performance
than the packet based method and without any auxiliary network.
The drawbacks of the packet based method discussed in section
II accounts for its inferiority.

D. Comparison with centralized setup

In this section, we will compare with two different dynamic
centralized setup solutions.

1) Comparison with a centralized solution using hardware
accelerator for path scheduling: We compare with HAGAR [8]
by choosing the retry for deadline policy. We use request success
rate versus offered load5 as metric, since it has been reported in
[8]. However, in [8], setup delay data is not reported. Actually
the success rate should be related to the setup delay to make it a
useful metric. Moreover, the limitation of [8] is that the supported
window size is only 1.

We compare a 6 × 6 and a 16 × 16 network with 200 flits
of data for each connection. The deadline is 200 cycles (just for
setup not including data communication), which means the total
setup delay of a successful request should be smaller than 200
cycles. Otherwise the request fails.

Figure 7 shows that the success rate of our method is better
than HAGAR’s. For example, in a 6×6 NoC at master percentage
50% and at offered load between 0.6 and 1.0, with 1 slot window
size, our solution offers about 34% higher success rate; with 16
slots in total, this figure rises to 100%. In a 16 × 16 NoC, our
design has even more advantages. At an offered load between
0.6 and 1.0, our solution offers 170% higher success rate with

5The metric offered load in this paper is the same as route rate in [8].
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Fig. 6. Comparison with packet based setup in
8 × 8 mesh with shuffle traffic. Each connection
delivers 100 flits.
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Fig. 8. Worst case and average delay of probe
based setup with retry before deadline policy. Each
connection delivers 200 flits.

16 slots in total. Again, increasing the window size enhances the
setup performance.

The average and worst case total setup delay is reported in
figure 8. The worst case delay (dashed lines) is always bounded
and never exceeds 200 cycles, as required by the retry before
deadline policy.

2) Comparison with a centralized solution using software
based path scheduler: We compare with the software based
centralized scheduler proposed by Stefan et al. [12], which can
be used by dAElite [2]. Since the detailed delay analysis is not
provided in that paper, we approximately calculate the expected
delay figures based on the data given. The average time required
for scheduling a path grows linearly with the distance between
source and destination and for a distance of 4 hops it takes about
1200 cycles [12]. Thus, the sum of the request arrival rates of all
the nodes together should not exceed 1/1200 per cycle, otherwise
the scheduler is overloaded and requests have to be discarded.

Thus, let us ignore the path configuration and message commu-
nication delay and make an estimation. In a 6× 6 network, with
uniform random traffic, the average distance is 4 hops. Suppose
each connection delivers 200 flits, then at offered load 0.1 the
injection rate of requests per node per cycle is about 1/2000. At
master percentage 50%, the total injection rate of all the nodes
is 36/2000 ∗ 0.5 = 9/1000, which exceeds the capability of the
scheduler. Even if all served requests can successfully find a path,
the success rate is still less than 1/1200÷9/1000 ≈ 9.3%, much
less than in our work and HAGAR’s (both above 90%). If path
configuration and message communication delay is added, and
considering the fact that not all served requests can succeed in
finding a path, the success rate is even lower.

VI. CONCLUSION AND FUTURE WORK

We have proposed a TDM circuit switching NoC with a
parallel probing setup method by developing a double time-wheel
technique. Our simulation results demonstrate that our solution
is superior in terms of setup delay, network performance and
hardware cost to all previously reported comparable solutions.
The main reasons are due to

• that we use a distributed setup method that scales well with
network size;

• that we propose a double time-wheel router with a parallel
path search that searches effectively through all the possible
shortest paths in parallel;

• that we use the available network resources also for path
search, setup and configuration, thus incurring minimal extra
hardware cost.

Although in our experiments each connection uses only one
of the TDM slots of a time window, our design can support

connections with multiple slots. This can be realized by sending
out multiple requests for one connection, of which each request
will build a path with one slot. However, this is inelegant and
raises complications due to massive contentions. Therefore, we
will tackle this problem next by developing a sophisticated
technique for allocating multiple slots within a time window for
a connection.
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