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Abstract—As we move to integration levels of 1,000-core
processor chips, it is clear that energy and power consumption are
the most formidable obstacles. To construct such a chip, we need
to rethink the whole compute stack from the ground up for energy
efficiency — and attain Extreme-Scale Computing. First of all, we
want to operate at low voltage, since this is the point of maximum
energy efficiency. Unfortunately, in such an environment, we have
to tackle substantial process variation. Hence, it is important to
design efficient voltage regulation, so that each region of the
chip can operate at the most efficient voltage and frequency
point. At the architecture level, we require simple cores organized
in a hierarchy of clusters. Moreover, we also need techniques
to reduce the leakage of on-chip memories and to lower the
voltage guardbands of logic. Finally, data movement should be
minimized, through both hardware and software techniques. With
a systematic approach that cuts across multiple layers of the
computing stack, we can deliver the required energy efficiencies.

I. INTRODUCTION

As semiconductor devices continue to shrink, it is clear that
we are about to witness stunning levels of integration on a chip.
Sometime around the end of this decade, as we reach 7 nm, we
will be able to integrate, for example, 1,000 sizable cores and
substantial memory on a single die. There are many unknowns
as to what kind of architecture such a chip should have to make
it general purpose. What is clear, however, is that the main
challenge will be to make it highly energy efficient. Energy
and power consumption have emerged as the true limiters to
developing more capable architectures.

Given the energy efficiency challenge, researchers have
coined the term Extreme Scale Computer Architecture to
refer to computer organizations that, loosely speaking, are
100-1,000 times more capable than current systems for the
same power consumption and physical footprint. For example,
these organizations should deliver a datacenter with a current
physical footprint that provides exascale performace (1018

operations per second) for 20 MW; a departmental server that
provides petascale performance (1015 operations per second)
for 20 KW; and a portable device that provides sustained
terascale performance (1012 operations per second) for 20
W. Extreme-scale computing is concerned with technologies
that are applicable to all machine sizes — not just high-
end systems. Overall, to accomplish these levels of energy
efficiency, it is no exaggeration to say that these systems need
to be designed for energy efficiency from the ground up.

There are certain aspects of these architectures that are
clear. One is that they need to have efficient support for
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concurrency, since only massive parallelism will deliver this
performance. In addition, they should minimize data transfers
— since moving data around is a major source of energy con-
sumption. Finally, they will have to rely on new technologies
that will come online in the next few years. These technologies
include low supply voltage (Vdd) operation, efficient on-chip
Vdd regulation, 3D die stacking, resistive memories, and pho-
tonic interconnects, to name a few.

Perhaps less obvious is that all the layers of the computing
stack will have to be designed for energy efficiency, and
that new energy-efficiency techniques that cut across multiple
layers will have to be designed. In this paper, we outline
some of challenges that appear at different layers of the
computing stack, and some of the techniques that can be used
to address them. Specifically, after a brief background section,
we consider the chip substrate at the level of devices and
circuits, the architecture layer, data movement issues, and the
programming layer.

II. BACKGROUND

For several decades, the processor industry has seen a
steady growth in CPU performance, driven by Moore’s Law [1]
and Classical (or Dennard) scaling [2]. Under classical scaling,
the power density remains constant across semiconductor
generations. Specifically, consider the dynamic power (Pdyn)
consumed by a certain number of transistors that fit in a chip
area A. The dynamic power is proportional to C × V 2

dd × f ,
where C is the capacitance of the devices and f is the frequency
of operation. Hence, the power density is proportional to
C × V 2

dd × f/A. As one moves to the next generation, the
linear dimension of a device gets multiplied by a factor close
to 0.7. The same is the case for Vdd and C, while the f gets
multiplied by 1/0.7. Moreover, the area of the transistors is
now 0.72

×A. If we compute the new power density, we have
0.7C × (0.7Vdd)

2
× f/(0.73

× A). Consequently, the power
density remains constant.

Unfortunately, as the feature size decreased below 130 nm
over a decade ago, classical scaling ceased to apply for two
reasons. First, Vdd could not be decreased as fast as before. In
fact, in recent years, it has stagnated around 1 V, mostly due
to the fact that, as Vdd gets smaller and closer to the threshold
voltage (Vth) of the transistor, the transistor’s switching speed
decreases fast. The second reason is that static power became
significant. The overall result is that, under real scaling, the
power density of a set of transistors increases rapidly with
each generation — making it progressively harder to feed the
needed power and extract the resulting heat.

In addition, there are further concerns at both ends of the
computing spectrum. At the high end, data centers are affected
by large energy bills while, at the low end, handheld devices



are limited by the energy that can be stored and supplied by
batteries. Overall, all of these trends motivate the emergence
of research on extreme-scale computing.

III. ENERGY-EFFICIENT CHIP SUBSTRATE

To realize extreme-scale computing systems, devices and
circuits need to be designed to operate at low Vdd. This is
because Vdd reduction is the best lever available to increase
the energy efficiency of computing. Vdd reduction induces
a quadratic reduction in dynamic energy, and a larger-than-
linear reduction in static energy. There is evidence that the
most energy-efficient operating point corresponds to a Vdd

value somewhat higher than the threshold voltage (Vth) of
the transistor [3]. This corresponds to a regime that has been
called Near-Threshold Computing (NTC) [4], [5], [6]. Roughly
speaking, for current technology, this corresponds to a Vdd of
about 500 mV rather than the conventional 1 V.

While there are several unclear aspects with NTC, it can
potentially decrease the power consumption by more than 40
times [4], [5]. This is a substantial reduction, and implies
that many more cores can now be placed on a given power-
constrained chip. Unfortunately, there are well-known draw-
backs of NTC. They include a lower switching speed (possibly
10 times lower), and a large increase in process variation — the
result of Vdd being close to Vth. It is possible that researchers
will find ways of delivering NTC devices of acceptable speed.
However, the issue of dealing with high process variation is
especially challenging.

A. The Effects of Process Variation

Process variation is the deviation of the values of device
parameters (such as a transistor’s Vth, channel length, or
channel width) from their nominal specification. Such variation
causes variation in the switching speed and the static power
consumption of nominally-similar devices in a chip. At the
architectural level, this effect translates into cores and on-chip
memories that are slower and consume more static power than
they would otherwise do.

To see why, consider Figure 1. Chart (a) shows a hypothet-
ical distribution of the latencies of dynamic logic paths in a
pipeline stage. The X axis shows the latency, while the Y axis
shows the number of paths with such latency. Without process
variation (taller curve), the pipeline stage can be clocked at
a frequency 1/τNOM . With variation (shorter curve), some
paths become faster, while others slower. The pipeline stage’s
frequency is determined by the slower paths, and is now only
1/τV AR.

Figure 1(b) shows the effect of process variation on the
static power (PSTA). The X axis of the figure shows the Vth

of different transistors, and the Y axis the transistors’ PSTA.
The PSTA of a transistor is related to its Vth exponentially
with PSTA ∝ e−Vth . Due to this exponential relationship,
the static power saved by high-Vth transistors is less than the
extra static power consumed by low-Vth transistors. Hence,
integrating over all of the transistors in the core or memory
module, total PSTA goes up with variation.

Process variation has a systematic component that exhibits
spatial correlation. This means that nearby transistors will typ-
ically have similar speed and power consumption properties.
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Fig. 1. Effect of process variation on the speed (a) and static power
consumption (b) of architecture structures.

Hence, due to variation within a chip, some regions of the chip
will be slower than others, and some will be more leaky than
others. If we need to set a single Vdd and frequency for the
whole chip, we need to set them according to the slowest and
leakiest neighborhoods of the chip. This conservative design
is too wasteful for extreme-scale computing.

B. Multiple Voltage Domains

NTC chips will be large and heavily affected by process
variation. To tolerate process variation within a chip, the most
appealing idea is to have multiple Vdd and frequency domains.
A domain encloses a region with similar values of variation
parameters. In this environment, we want to set a domain with
slow transistors to higher Vdd, to make timing. On the other
hand, we want to set a domain with fast, leaky transistors
to lower Vdd, to save energy. For this reason, extreme scale
NTC chips are likely to have multiple, possibly many, Vdd

and frequency domains. How these domains are selected and
set requires considering many tradeoffs [7].

However, current designs for Vdd domains are energy inef-
ficient [8]. First, on-chip Switching Voltage Regulators (SVR)
that provide the Vdd for a domain have a high power loss, often
in the 10-15% range. Wasting so much power in an efficiency-
first environment is hardly acceptable. In addition, small Vdd

domains are more susceptible to variations in the load offered
to the power grid, due to lacking as much averaging effects as
a whole-chip Vdd domain. These variations in the load induce
Vdd droops that need to protected against with larger Vdd

guardbands [9] — also hardly acceptable in an efficiency-first
environment. Finally, conventional SVRs take a lot of area and,
therefore, including several of them on chip is unappealing. If,
as a result, only a few are included in a large NTC chip, the
variation inside the Vdd domain itself may negate some of the
benefits of setting up the domain in the first place.

C. What is Needed

To address these limitations, several techniques are needed.
First, an extreme-scale chip needs to be designed with devices
whose parameters are optimized for low-Vdd operation [10].
For example, simply utilizing conventional device designs can
result in slow devices.

Importantly, voltage regulators need to be designed for high
energy efficiency and modest area. One possible approach is
to organize them in a hierarchical manner [11]. The first level
of the hierarchy is composed of one or a handful of SVRs,
potentially placed on a stacked die, with devices optimized
for the SVR inductances. The second level is composed of



many on-chip low-drop-out (LDO) voltage regulators. Each
LDO is connected to one of the first-level SVRs and provides
the Vdd for a core or a small number of cores. LDOs have high
energy efficiency if the ratio of their output voltage (Vo) to their
input voltage (Vi) is close to 1. Thanks to systematic process
variation, the LDOs in a region of the chip need to provide
a similar Vo to the different cores of the region. Since these
LDOs take their Vi from the same first-level SVR and their
Vo is similar, their efficiency can be close 95%. In addition,
their area is negligible: their hardware reuses the hardware of a
power-gating circuit. Such circuit is likely to be already present
in the chip to power-gate the core. Finally, level converters
between the resulting Vdd domains can be designed efficiently,
by combining them with latches [12].

To minimize energy waste, the chip should have extensive
power gating support. This is important at NTC because
leakage accounts for the larger fraction of energy consumption.
Ideally, power gating should be done at fine granularities, such
as groups of cache lines, or groups of functional units. Fine
granularities lead to high potential savings, but complicate
circuit design. New algorithms need to be designed, possibly
at the runtime system level, to control power gating from the
software.

Finally, the architectural-level variation parameters of the
chip should be made visible to the runtime or operating system.
This includes, for each of the core clusters, the Vdd and fre-
quencies supported, as well as the static power consumed. The
software can then use this information for better assignment
of clusters or cores to jobs.

IV. A STREAMLINED ARCHITECTURE

A. Simple Organization

For highest energy efficiency, an exteme-scale architecture
should be mostly composed of many simple, throughput-
oriented cores, and rely on highly-parallel execution. NTC
substantially reduces the power consumption, which can then
be leveraged by increasing the number of cores that execute
in parallel — as long as the application can exploit the
parallelism. Such cores should avoid speculation and complex
hardware structures as much as possible.

Cores should be organized in clusters. Such organization
is energy-efficient because process variation has spatial corre-
lation and, therefore, nearby cores and memories have similar
variation parameter values — which can be exploited by the
scheduler.

To further improve energy efficiency, a cluster typically
contains a heterogeneous group of compute engines. For
example, it can contain one wide superscalar core (also called
latency core) to run sequential or critical sections fast. The
power delivery system should be configured such that this
core can run at high Vdd in a turbo-boost manner. Moreover,
some of the cores may have special instructions implemented
in hardware. These may include special synchronization or
transcendental operations.

B. Minimizing Energy in On-Chip Memories

A large NTC chip can easily contain hundreds of Mbytes
of on-chip memory. To improve memory reliability and energy

efficiency, it is likely that SRAM cells will be redesigned
for NTC [13]. In addition, to reduce leakage, such memory
will likely operate at higher Vdd than the logic. However,
even accounting for this fact, the on-chip memories will incur
substantial energy losses due to leakage. To reduce this waste,
the chip may support power gating of sections of the memory
hierarchy — e.g., individual on-chip memory modules, or
individual ways of a memory module, or groups of lines in
a memory module. In principle, this approach is appealing
because a large fraction of such a large memory is likely to
contain unneeded data at any given time. Unfortunately, this
approach is too coarse-grained to make a significant impact on
the total power consumed: to power gate a memory module,
we need to be sure that none of the data in the module will
be used soon. This situation will likely be rare in the general
case. Instead, what we need is a fine-grained approach were
we power-on only the individual on-chip memory lines that
contain data that will be accessed very soon.

To come close to this ideal scenario, we can use eDRAM
rather than SRAM for the last levels of the cache hierarchy
— either on- or off-chip. EDRAM has the advantage that it
consumes much less leakage power than SRAMs. This saves
substantial energy. However, eDRAM needs to be refreshed.
Fortunately, refresh is done at the fine-grained level of a cache
line, and we can design intelligent refresh schemes [14], [15].

One approach to intelligent refresh is to try to identify the
lines that contain data that is likely to be used in the near future
by the processors, and only refresh such lines in the eDRAM
cache. The other lines are not refreshed and marked as invalid
— after being written back to the next level of the hierarchy
if they were dirty. To identify such lines we can dynamically
use the history of line accesses [14] or programmer hints.

Another approach to intelligent refresh is to refresh dif-
ferent parts of the eDRAM modules at different frequencies,
exploiting the different retention times of different cells. This
approach relies on profiling the retention times of different
on-chip eDRAM modules or regions. For example, one can
exploit the spatial correlation of the retention times of the
eDRAM cells [15]. With this technique and similar ones, we
may refresh most of the eDRAM with long refresh periods, and
only a few small sections with the conventional, short refresh
periods.

C. Minimizing Energy in the On-Chip Network

The on-chip interconnection network in a large chip is
another significant source of energy consumption. Given the
importance of communication and the relative abundance of
chip area, a good strategy is to have wide links and routers,
and power gate the parts of the hardware that are not in use at
a given time. Hence, good techniques to monitor and predict
network utilization are important.

One characteristic of on-chip networks is that they are
especially vulnerable to process variation. This is because the
network connects distant parts of the chip. As a result, it has to
work in the areas of the chip that have the slowest transistors,
and in those areas with the leakeast transistors.

To address this problem, we can divide the network into
multiple Vdd domains — each one including a few routers.



Time 

Vdd (mV) 

800
 

700
 

600
 

500
 

4Vdec 

Fig. 2. Changes to the Vdd of a domain over time.

Due to the systematic component of process variation, the
routers in the same domain are likely to have similar values of
process variation parameters. Then, a controller can gradually
reduce the Vdd of each domain dynamically, while monitoring
for timing errors in the messages being transmitted. Such
errors are being detected and handled with already-existing
mechanisms in the network. When the controller observes an
error rate in a domain that is higher than a certain threshold, the
controller increases the Vdd of that domain slightly. In addition,
the controller periodically decreases the Vdd of all the domains
slightly, to account for changes in workloads and temperatures.
Overall, with this approach, the Vdd of each domain converges
to the lowest value that is still safe (without changing the
frequency).

Figure 2 shows an example of the way the Vdd of a domain
converges to a low, safe Vdd. In the figure, time is measured in
50-µs epochs, and pointers represent errors. We can see that
the reduction in Vdd at each step (∆Vdec) gets progressively
smaller as time goes by. Moreover, when errors are detected,
Vdd is increased. With this support, each domain converges to
a different low Vdd, saving substantial energy in the process.
We call this scheme Tangle [16].

V. REDUCING DATA MOVEMENT

As technology scales, data movement contributes with an
increasingly larger fraction of the energy consumption in the
chip [17]. Consequently, we need to devise approaches to
minimize the amount of data transferred. In this section, we
discuss a few mutually-compatible ways to do it.

One approach is to organize the chip in a hierarchy of
clusters of cores with memories. Then, the system software
can map a program’s threads to a cluster and allocate their data
in the memories of the cluster. This hardware organization and
co-location for locality reduces the amount of data movement
needed.

Another technique consists of using a single address space
in the chip and directly manage in software the movement
of data used by the application in the cache hierarchy. Many
of the applications that will run on an extreme-scale 1,000-
core chip are likely to have relatively simple control and data
structures — e.g., performing many of their computation in
regular loops with analyzable array accesses. As a result, it is
conceivable that a smart compiler performing extensive pro-
gram analysis [18], possibly with help from the programmer,
will be able to manage (and minimize) the movement of data
in the on-chip memory hierarchy.

In this case, the architecture supports simple instructions
to manage the caches, rather than providing hardware cache
coherence transparent to the programmer. Writes do not in-
validate other cached copies of the data, and reads return
the closest valid copy of the data. While the machine is
now certainly harder to program, it may eliminate some data
movement inefficiencies associated with the hardware cache
coherence — such as false sharing, or moving whole lines
when only a fraction of the data in the line is used. In addition,
by providing a single address space, we eliminate the need to
copy data on communication, as in message-passing models.

A third way of reducing the amount of data transfers is
to use Processing in Memory (PIM) [19]. The idea is to
add simple processing engines close to or imbedded in the
main memory of the machine, and use them to perform some
operations on the nearby data in memory — hence avoiding
the round trip from the main processor to the memory.

While PIM has been studied for at least 20 years, we
may now see it become a reality. Specifically, companies such
as Micron and Samsung are building 3-D integrated circuits
that stack one or more dies of memory with a die of logic.
For example, Micron’s Hybrid Memory Cube (HMC) [20] is
a memory chip that contains a die of logic sitting below a
stack of 4 or 8 DRAM dies, connected using through-silicon-
vias (TSVs). Currently, the logic die only includes advanced
memory controller functions plus self-test and error detection,
correction, and repair. However, it is easy to imagine how to
augment the capabilities of the logic die to support Intelligent
Memory Operations [21]. These can consist of preprocessing
the data as it is read from the DRAM stack into the processor
chip. They can also involve performing operations in place on
the DRAM data.

Finally, another means of reducing data transfers is to sup-
port in hardware efficient communication and synchronization
primitives, such as those that avoid spinning in the network.
These may include dynamic hierarchical hardware barriers,
or efficient point-to-point synchronization between two cores
using hardware full-empty bits [22].

VI. PROGRAMMING EXTREME-SCALE MACHINES

The system software in extreme-scale machines has to
be aware of the process variation profile of the chip. This
includes knowing, for each cluster, the Vdd and frequency it
can support and the leakage power it dissipates. With this in-
formation, the system software can make scheduling decisions
that maximize energy efficiency. Similarly, the system software



should monitor different aspects of hardware components, such
as their usage, the energy consumed, and the temperature
reached. With this information, it can make decisions on what
components to power gate, or what Vdd and frequency setting
to use — possibly with help from application hints.

Application software is likely to be harder to write for
extreme-scale architectures than for conventional machines.
This is because, to save energy in data transfers, the program-
mer has to carefully manage locality and minimize communi-
cation. Moreover, the use of low Vdd in NTC requires more
concurrency to attain the same performance.

An important concern is how users will program these
extreme-scale architectures. In pratice, there are different types
of programmers based on their expertise. Some are expert pro-
grammers, in which case they will be able to map applications
to the best clusters, set the Vdd and frequency of the clusters,
and manage the data in the cache hierarchy well. They will
obtain good energy efficiency.

However, many programmers will likely be relatively inex-
perienced. Hence, they need a high-level programming model
that is simple to program and allows them to express locality.
One such model is Hierarchical Tiled Arrays (HTA) [23],
which allows the computation to be expressed in recursive
blocks or tiles. Another possible model is Concurrent Col-
lections [24], which expresses the program in a dataflow-like
manner. These are high-level models, and the compiler still
has to translate them into efficient machine code. For this, the
compiler may have to rely on program auto-tuning to find the
best code mapping in these complicated machines.

VII. CONCLUSION

Attaining the 100-1,000 improvement in energy efficiency
required for extreme-scale computing involves rethinking the
whole computing stack from the ground up for energy effi-
ciency. In this paper, we have outlined some of the techniques
for energy efficiency that can be used at different levels of the
computing stack. Specifically, we have discussed the need to
operate at low voltage, provide efficient voltage regulation,
and support simple cores organized in clusters. Memories
and networks can be optimized by reducing leakage and
minimizing the guardbands of logic. Finally, data movement
can be minimized by managing the data in the cache hierarchy,
processing in memory, and utilizing efficient synchronization.
A major issue that remains in these machines is the challenge
of programmability.
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