
Scalability Bottlenecks Discovery in MPSoC
Platforms Using Data Mining on Simulation Traces

Sofiane Lagraa1,2, Alexandre Termier1 and Frédéric Pétrot2

Université Grenoble Alpes. CNRS, 1LIG, 2TIMA, F-38031 Grenoble

Abstract—Nowadays, a challenge faced by many developers is
the profiling of parallel applications so that they can scale over
more and more cores. This is especially critical for embedded
systems powered by Multi-Processor System-on-Chip (MPSoC),
where ever demanding applications have to run smoothly on
numerous cores, each with modest power budget. The reasons for
the lack of scalability of parallel applications are numerous, and it
can be time consuming for a developer to pinpoint the correct one.
In this paper, we propose a fully automatic method which detects
the instructions of the code which lead to a lack of scalability.
The method is based on data mining techniques exploiting low
level execution traces produced by MPSoC simulators. Our
experiments show the accuracy of the proposed technique on five
different kinds of applications, and how the information reported
can be exploited by application developers.

I. INTRODUCTION

Embedded devices have been powered for some time by
Multiprocessor System on chip (MPSoC), which integrate in
a single die general purpose and specialized computation cores
as well as memory and external interfaces, allowing to reduce
costs and power consumption while increasing performances.
In an extremely competitive market, application developers are
hard-pressed to provide demanding applications (multimedia,
computer vision, software-defined radio, ...) that run smoothly
without draining too much power. They thus require good
profiling tools. However, such profiling tools are still an active
research topic and actual tools are scarce, even though more
and more dedicated hardware is added to support this task [11].

In this paper, we focus on one critical point of parallel
applications, their scalability. Intuitively, a parallel program
is scalable if it runs n times faster on n cores than on 1
core. In this case, it is said that there is a linear speedup.
In practice such scaling cannot be obtained by all programs,
and the well known Amdahl’s law gives a more precise
bound on the maximal speedup that can be reached by a
given application. There are many reasons that can prevent
the scaling of a parallel application: the program can spend
too much time doing synchronization, it can suffer from
congestion on memory accesses or accesses to other external
resources, or there can be load unbalance, or cache trashing,
etc. It is tedious for an application developer to find the correct
reason for a lack of scalability among all those.

Our contribution is to propose a fully automatic method
that discovers the main reasons for lack of scalability of
an application, and reports the exact code lines involved.
The developer can thus directly concentrate on understanding

and solving the problem found, gaining a lot of time in the
profiling process. Our method is based on the analysis by
data mining techniques of low-level execution traces produced
by running the application on a MPSoC simulator. Using
such simulators is already part of the workflow of MPSoC
application development. Indeed, due to the fast evolution
rate of these chips, applications often start to be developed
before the chip physically exists. Because of the complex
execution of these applications on MPSoC, collecting traces
and analyzing them a posteriori has emerged as the best way to
understand the complex interactions between the components
of the MPSoC. Our method thus integrates in the existing
workflow of MPSoC application development, bringing further
benefits for profiling scalability.

The rest of the paper is organized as follows. Section II
states the problem and gives an outline of the proposal.
We detail our approach in Section III. Then, we present
the experimental results on MPSoC platforms running five
software applications in Section IV. Section V briefly reviews
related works, and Section VI concludes and gives some future
research directions.

II. PROBLEM STATEMENT

The approach we present in this paper being based on exe-
cutions traces, we formally define the traces that we consider.
These execution traces, obtained by running applications in
a simulated MPSoC environment, consists of fine grained
information about the execution. These traces, viewed as a
set of events, are collected with the non intrusive simulation-
based trace system to analyse Multiprocessor Systems-on-
Chip software presented in [8]. We first give definitions and
notations used throughout this paper, and then give more
specific details about our traces.

Definition 1 (Trace event): Let TS be a set of trace sym-
bols. A trace event or an event e = (ts, cpuid, latency, s)
consists of a timestamp ts ∈ [0, tmax], a CPU identifier
cpuid ∈ {1, ...,m}, a latency latency ∈ N+ and a set of
symbols s ⊆ TS representing the event s that has been
performed by CPU cpuid at time ts with a latency latency.
Practically, the trace event has the fixed form represented by
Table I. It consists of, in order of occurrence, which CPU
initiated the transaction, the global date at which the event
occurred in cycles since the power-up of the system, the
program counter of the instruction that produced the access
or the data address accessed, the transaction type which can
be instruction fetch, load/store, load-linked/store-conditional978-3-9815370-2-4/DATE14/ c©2014 EDAA

TABLE I
RAW TRACE FORMAT

CPU Cycle Program Counter Event Access
ID Number / Data Address Type Latency
1 212305 0x10009d60 fetch 28

pairs, and finally the memory access latency as seen by the
CPU. Formally, the instruction address or data address are
noted @i = ei.program_counter ∨ ei.data_address. Trace
events are collected in an execution trace:

Definition 2 (Execution trace): The execution trace ET =
{e1, ..., en} is the ordered set of events produced by all the
CPUs of the MPSoC. The ordering is on timestamps: for all
i, j ∈ [1, n] with i < j we have ei.ts ≤ ej .ts. We also note
∀i ∈ [1, n] ET [i] = ei.

We can now define some metrics on the trace:
Definition 3 (% Time spent): Given an execution trace ET

and an address @i, %_time_spent(@i, ET) is the percentage
of the total execution time of the program spent in this adress.
Let ET (@i) = {e | e ∈ ET ∧ e.s ⊇ {@i}} be the events of
ET that are accesses to @i, we have:

%_time_spent(@i, ET) =

∑
e∈ET (@i)

e.latency∑
e∈ET e.latency

× 100

Definition 4 (% accesses): Given an execution trace ET
and an address @i, %_accesses(@i, ET) is the percentage
of the total number of accesses that were done to @i.

%_accesses =
|ET (@i)|
|ET |

× 100

From these metrics, it is possible to evaluate how detrimen-
tal to performance an access is likely to be:

Definition 5 (Hot predicate, hot access): Given an execu-
tion trace ET and an address @i, a predicate isHot(@i, ET)
is called hot predicate if it answers true when both
%_time_spent(@i, ET) and %_accesses(@i, ET) are sig-
nificantly higher for @i than for the other addresses, and false
otherwise.
An @i for which isHot(@i, ET) = true is called a hot
access.
The definition of hot predicate exhibits the two main char-
acteristics of problematic regions of the code: first, the time
spent and number of accesses are unusually high for a set
of accesses, and second this problem occurs several times in
the execution, further degrading performance. However, such
hot predicate, even if detrimental for performances, may have
no impact at all on the parallel scalability of the application
considered. We thus propose a definition of hot predicates
having an impact on scalability: the scalability hotspots.

Definition 6 (Hotspot): A hotspot HA is a set of hot ac-
cesses appearing consecutively in the execution trace ET .

Definition 7 (Scalability hotspot): Let P1, .., Pk be k ho-
mogeneous MPSoC platforms only differing in their number
of cores, with for all i < j ∈ [1..k] Pi has less cores than Pj .
Let ET1, ..., ETk be execution traces of an application, where

ETi has been produced on platform Pi using all its cores. Let
min_p be a user given threshold, with min_p ∈ [1..k].

A set of accesses HS is a scalability hotspot if:
• For the accesses in HS, the metrics %_time_spent and

%_accesses increase with the number of cores of the
platforms where HS is a hotspot

• HS is a hotspot in at least min_p execution traces of
ET1, .., ETk

Problem statement: Given a set of execution traces
ET1, ..., ETk produced by platforms P1, .., Pk as defined
above and user threshold min_p, our goal is to discover the
scalability hotspots of the traces. Such scalability hotspots
are the parts of the code that are most likely to impact
parallel scalability, and should be investigated in priority by
the application developers. Thus, our objective is to quantify
and pinpoint the bottlenecks in multi-threaded application.

III. SCALABILITY BOTTLENECKS DISCOVERY METHOD

The five major scalability bottlenecks of multi-threaded
workloads on multi-core hardware are: resource sharing, cache
coherency, synchronization, load imbalance, and paralleliza-
tion overhead [5]. For discovering such scalability bottlenecks,
our proposed approach uses data mining techniques in order
to analyze automatically large quantities of execution traces
and discover such bottlenecks of software. This approach
takes as input a set of traces resulting from the simulated
execution of the same program, with the same parameters,
on a simulated MPSoC with a scalable number of cores. We
call each of these MPSoC instances a platform. Our approach
outputs addresses that are the more impacted when running on
more cores, forming what we call scalability hotspots (Def 7).
These addresses can either be addresses of instructions in the
code, pinpointing parts of the code that are responsible of the
scalability issues, or addresses of data, indicating where the
memory of the MPSoC is not used efficiently. Our approach
is described in the following steps.

A. Trace collection

The trace files are obtained by running the same multi-
threaded program on different instances of the multi-processor
platform, each instance differing from the other by its number
of processors (either by instantiating more processors, or
simply by having only a subset of all processors actually
active). From each platform instance, the execution traces are
saved into trace files. These trace files are used for discovering
scalability hotspots across the platform instances. Each trace
file corresponding to a MPSoC platform, the following steps
are applied independently of the other trace files: the feature
extraction and feature-based clustering.

B. Feature extraction

Trace processing may include transformation of the original
traces into simplified ones, along with reduction of dimension-
ality by extraction of only the most informative features from
a huge amount of execution traces. Extracting the features may
improve the recognition process and make easier the extraction

of the critical zones through the consideration of only the most
important traces representation. For a trace of a given platform,
each trace line gives information on an access to an address.
For each such address, we compute the following statistics,
called features: %_time_spent and %_accesses according
to definitions 3 and 4. The features are represented by the
following address-feature vector of the platform j ∈ [1, p]
where the platforms are numbered in [1, p] and platform j has
by convention 2j cores and has corresponding raw trace ETj :

Xpj = [X1, X2, ..., Xnj] (1)

where ∀i ∈ [1, nj] Xi = v(@i, x, y, z), with nj the num-
ber of different addresses in the trace ETj , the feature
vector v with x = %_time_spent(@i, ETj) and y =
%_accesses(@i, ETj).

In the traces, we have only the address of the executed
instruction and information about the source code (i.e. in-
struction or line number in the source code). In order to
have a higher level of granularity in the traces and facilitate
the interpretation of the results, we use the symbol table of
the executable to determine using well-known techniques [2]
the function to which this instruction belongs. In the feature
vector, z = ei.function is the function name. These features
give first performance metrics at the level of granularity of the
address, similar to those provided by gprof [6] at the level
of granularity of functions. Transforming each trace ETj as
a feature vector Xpj

first allows an important compression of
the volume of data mining algorithms will have to process.
We also show in the following sections that the features of
vector Xpj are sufficient for discovering scalability hotspots.

C. Feature-based clustering

This step allows to discover automatically groups of a set
of accesses using clustering algorithm. Clustering is a data
mining technique for organizing data elements into similarity
groups, called clusters such that the data elements in the
same cluster are similar to each other and data element
in different clusters are very different from each other. A
classical clustering algorithm is k-means [7]. The k-means
algorithm is the best known partitional clustering algorithm. It
is also widely used among all clustering algorithms due to its
simplicity and efficiency. Given a set of data points and the
required number of k clusters (k is specified by the user), this
algorithm iteratively partitions the data into k clusters based
on a distance function such as Euclidean distance. Each cluster
has a cluster center called the centroid. The centroid, usually
used to represent the cluster, is simply the mean of all the data
points in the cluster, which gives the name to the algorithm,
since there are k clusters. The clustering is the basis of our hot
predicate definition. The clusters are obtained by applying k-
means clustering algorithm on Xpj

with the number of clusters
k as an input parameter. The result of k-means algorithm is
the cluster feature vector (2) of the platform j which is the
extension of the address-feature vector (1) with the cluster
identifier assigned to each address performed by processors.

XpjclusterV ector = [X ′1, X
′
2, ..., X

′
nj

] (2)

Where X ′i = v(@i, x, y, z, C@i
), and C@i

∈ [1, k] is the
identifier of the cluster for address @i such as k is the
maximum number of clusters.

In this work, we set the number of clusters k = 2 as we are
interested to distinguish two types of accesses: hot accesses
within a hot cluster and other accesses in the second cluster
called normal cluster. Formally, the hot cluster is based on its
centroid that satisfies the following definition:

Definition 8 (Hot Cluster): Let two centroids cp0(xp0 , yp0)
and cp1

(xp1
, yp1

) of the platform having p processors such as
cp0
∈ C0 and cp1

∈ C1 where C0 and C1 are two clusters and
x is the percentage of the time spent %_time_spent and y is
the percentage of accesses %_accesses. C1 is a hot cluster if
cp1 > cp0 which is true if (xp1 −xp0) + (yp1 − yp0) > 0 , and
normal cluster otherwise.

By definition, we consider that the hot cluster will always
have the label C1. The hot predicate isHot for an address @i

simply consists in testing if @i is in the hot cluster or not. The
set of hot accesses for platform Pj is thus Hotj = {@i | @i ∈
[1, nj] ∧ isHot(@i, ETj) = true}. Hot cluster give, for each
platform, the set of hot accesses of that cluster. Now when
considering all platforms together, it becomes interesting to
check if there are set of hot accesses that are found in several
hot clusters, indicating that they are problematic for several
platforms. Furthermore, for these sets of hot accesses found
in several platforms, if their performance statistics decrease
with the number of cores, it is a high indication that these
hot accesses are scalability hotspots. We present in the next
two sections these two last steps for discovering scalability
hotspots.

D. Growth rate of hot cluster

The hot clusters are computed independently for each plat-
form. The next step of the analysis, presented in this section,
is to determine if there is a correlation between the increase
of number of cores in platforms and the statistics determining
the hot clusters. This way we can determine if the hot clusters
can help to determine a scalability problem.

Definition 9 (Performance loss): Given the hot clusters ex-
tracted from each platform, we say that an application loses its
performance if the centroid of the hot cluster evolves across
platform instances, i.e. both %_time_spent and %_accesses
of the centroid grow with the number of cores.
Such a performance loss is illustrated in Fig. 1.

Discovering the impact of the loss of performance of
scalability hotspots is not an easy task. When the number
of processors grows in the platform instances, the distance
between the centroids of the two clusters grows too. Thus,
we define a metric based on the euclidean distance between
the centroids of the clusters. It measures the evolution of the
distance in a multi-core platform relative to the distance in the
one core platform. This principle is inspired from the speed-
up metric. This metric is necessary to evaluate the impact

%time

%freq

Platform 1 Platform 2 Platform 3 Platform 4

Hot cluster

Normal cluster

%time %time %time

%freq %freq %freq

Fig. 1. Hot cluster evolution

of scalability hotspots on application performance. Therefore,
this metric is called the growth rate metric.

Definition 10 (Growth rate): The Growth rate (Grp) refers
to how much the distance between the two centroids
cp1

(xp1
, yp1

) and cp2
(xp2

, yp2
) of the platform having p pro-

cessors grows relative to the corresponding distance between
the two centroids c1(x1, y1) and c2(x2, y2) of the platform
having 1 processor.

Grp =

√
(xp1

− xp2
)2 + (yp1

− yp2
)2√

(x1 − x2)2 + (y1 − y2)2
(3)

Where p is the is the number of processors in a platform.
Grp is a value, typically between 1 and 100, estimating how
many times the hot clusters grows over platforms, compared to
how much the hot cluster containing the scalability bottlenecks
patterns decrease the performance of the platform, i.e. how
much effort is wasted in communication, synchronization or
waiting state. Thus, the centroid of the cluster provides a scale
for measuring the cluster evolution over different platforms.

The interest of computing the growth rate is not only to
measure the impact of the scalability bottlenecks but also
to aid the developer to make a decision if a given program
needs to be optimized. If the growth rate for two platforms
with increasing number of cores is close to zero, it is likely
that the program has no parallel scalability problem, or if
one exists, it is not possible to detect it with our metrics.
Otherwise, large positive values of growth rate indicate that
the instructions contained in the hot clusters are likely to cause
parallel scalability bottlenecks. The next section will focus
on pinpointing the instructions of the hot clusters that the
developer should investigate in priority.

E. Frequent scalability bottlenecks mining

It is vital to understand bottlenecks in platforms and their
impact over the scalability for optimizing application perfor-
mance and design future hardware. From the hot accesses,
the developer wants to discover the frequent hot accesses
common in each platform in order to focus on the parts
of the code to improve. For this, we describe the frequent
scalability hotspot mining method which discovers the set of
hot accesses on multi-threaded application across multi-core
platforms instances. A delicate problem is to find the frequent

patterns that decrease the performance when the number of
processors increases. We thus need to discover the frequent
scalability hotspots, and do so using frequent itemset mining
algorithm existing in data mining for mining instructions
memory addresses that belong to the hot clusters through all
platform instances. The extracted patterns are the most likely
to be responsible of scalability issues. In the frequent itemset
mining algorithm, the first input is a multiset of transactions
D = {t1, .., tp} defined over items in our case, the items
are the hot accesses of all platforms, i.e. Σ = ∪i∈[1,p]Hotj ,
where ∀ti ∈ D ti ⊆ Σ. To do this, we transform the set of
hot accesses into a set of transactions D by merging all hot
clusters in a same transaction table. Each hot cluster becomes
a transaction, i.e. a set of hot accesses. The second input
is a minimum support threshold min_p ∈ [1, p] where p is
the number of platform instances. Frequent itemset mining
algorithms then extract all the frequent hot accesses, i.e. all
the hot accesses is ⊆ Σ that appear in more than min_p
transactions of D. Once we have the transactions, we can
use a state of the art frequent itemset mining algorithm.
We use LCM [15], the most efficient one according to the
FIMI contest [1], to which we provide the minimum support
threshold min_p and the transactions of hot accesses.

Example: Let a number of platform instances p = 3, a
minimum support threshold min_p = 2 and set of hot accesses
and the functions contained in their hot cluster respectively.
We assume the following transactions:
Platform 1 itemset is {0x01,0x02,0x03,0x9,0x10} ∈
Hot1, where {0x01,0x02,0x03} ∈ function f1 and
{0x9,0x10} ∈ function f2.
Platform 2 itemset is {0x11,0x12,0x13,0x19,0x20}
∈ Hot2, where {0x11,0x12,0x13} ∈ function f3 and
{0x19,0x20} ∈ function f4.
Platform 3 itemset is {0x31,0x32,0x33,0x19,0x20} ∈
Hot3, where {0x31,0x32,0x33} ∈ function f5 and
{0x19,0x20} ∈ function f4.
The frequent pattern is thus {0x19,0x20} ∈ function f4,
occurring in platforms 2 and 3.

The discovered frequent hot accesses with their frequencies
pinpoint the scalability bottlenecks in the source code, and
should be investigated by the developer.

IV. EXPERIMENTATIONS AND RESULTS

This section presents the experimentations and important
results of our proposed method for detecting the scalability
problem in multi-processors platforms.

A. Simulation environment and Hardware architecture

Our experimentations are done on a parameterizable simu-
lated MPSoC architecture in which we can vary the number
of processors. It is implemented using the SoCLib [13] infras-
tructure, which is a set of interoperable, VCI/OCP compliant,
hardware component models in SystemC. We use the CABA
(Cycle Accurate, Bit Accurate) simulation models, which
include processors, caches, memories, and so on. The traces
are generated using a non intrusive simulation-based trace

system for MPSoC software [8]. The processor simulation
is done using interpretive Instruction Set Simulators (ISS).
We performed our experiments on five applications that run
on this platform: Matrix multiplication, parallel Motion-JPEG
decoder, SPLASH-2 [3] parallel benchmarks suite: Ocean (that
simulate large scale ocean movements), Fast Fourier transform
(FFT) and LU decomposition factors a matrix as the product of
a lower triangular matrix and an upper triangular matrix. The
hardware platform architecture is a coherent shared memory
multiprocessor that contains n MIPS32 processors such as
n = {1, 4, 8, 16}, interfaced with one data cache and one
instruction cache. It also contains one memory and others
peripherals components: a timer, an interrupt controller, a
frame buffer, a block device, a tty.

B. Results

In this section, we show the different results found in
experimented applications. The scalability hotspots in multi-
threaded applications that undergo evolution across scalable
platforms are discovered and the hot accesses are distinguished
from other accesses. Table II shows the frequent hot patterns
discovered having a minimum support threshold min_p =
25%. The frequent patterns discovered from hot clusters in
each platform Pi running the same multi-threaded applications
highlight the common critical zones.

TABLE II
SCALABILITY HOTSPOTS

Software scalability hotspot % Occurrence
pattern

Matrix Multiplication [1000825c:10008268] 75 %
cpu_mp_wait

Ocean [100235b0:100235dc] 75 %
lock_acquire

Motion-JPEG

[100023b4:100023d0] 75 %
soclib_fb_write

[100171a4:100171d4]

50 %__malloc_lock
[100171e0:10017200]

__malloc_unlock

FFT
10044650 (data address)

75 %[1000b0a0:1000b0a8]
cpu_mp_wait

LU

[10013c60:10013c80]

100 %__muldf3
[100147b8:10014830]

__unpack_d

In matrix multiplication application, we see that the scal-
ability hotspot contains synchronisation addresses in the
cpu_mp_wait function, decreasing the performance by its
evolution in each platform instance as shown in Fig. 3. The
pattern represents a sequence of instructions in a loop as shown
in Fig. 2. The particular loop means that the processors are
in a ’wait’ state waiting to be ’notified’ of work to be done.
Therefore, it induces load imbalance of the tasks in cores,
with a high impact on scalability as shown by the growth
rate in Fig. 3. In Splash’s Ocean application, like the first
experiment the growth rate increases with the number of cores
of the platform. The discovered scalability hotspot contains

Fig. 2. Scalability hotspot in assembly code for the matrix multiplication
application.

10008250: <cpu_mp_wait>
...

1000825c: sync
10008260: lw v0,-17120(v1)
10008264: bnez v0,10008260 <cpu_mp_wait+0x10>
10008268: nop

the address range grouped into lock_acquire function. The
lock_acquire function acquires access to a specific lock being
represented by a given lock set. If the lock is already controlled
by another thread then the calling thread will spin. It means
that the high number of accesses and their high percentage of
execution time are grouped in synchronization operations into
number of barriers (locks) encountered per processors when
they access to the critical section. In Motion-JPEG application,
some addresses in the hot cluster are present in each platform:
the frequent pattern is a loop of soclib_fb_write function
responsible for displaying the decoded image. The evolution
of this loop is stable in both 4, 8 and 16 CPUs platforms. Other
results are detected by the approach, the frequent accesses to
the data addresses are called by set of instruction belonging
to memcpy, and specially to the __malloc_lock and __mal-
loc_unlock functions that copies the values from one memory
block to another, and protect/release that memory blocks
from corruption during simultaneous allocations, respectively.
In LU application, the scalability hotspots is the software
functions: __unpack_d and __muldf3. These functions are
associated with the manipulation of floating-point numbers
and contained in fp-bit and libgcc libraries of GCC complier,
respectively. Regarding the impact of discovered scalability
hotspots in applications, there are more important and signifi-
cant growth rate increases across platform instances in matrix
multiplication and Ocean applications which is not the case
for Motion-JPEG and LU and a little evolution of patterns
in FFT (Fig. 3). Thus, these results indicate that Motion-
JPEG, FFT and LU applications are sufficiently optimized
unlike Matrix multiplication and Ocean applications. In [4],
the author analyzes the performance of Ocean application and
notes that the increased communication cost is the reason for
speed-up degradation. With our tool, we confirm that by the
detection of the increased accesses to the lock. These results
confirm the interest of our approach, and its ability to provide
both visual clues on the sources of scalability issues as well
as precise code location that the developer should examine.

V. RELATED WORKS AND DISCUSSION

Profiling critical jobs in parallel platforms and identifying
bottlenecks inside applications is hard [10]. Recently, new
solution based on data mining has been applied in execution
traces for discovering contention in MPSoC platform [12] but
this solution is for contention detection. In [14] the authors
propose Scal-Tool. Scal-Tool is a tool that isolates and quanti-
fies scalability bottlenecks such as insufficient caching space,
load imbalance, and synchronization in parallel applications
running on distributed shared memory machine. Scal-Tool is

 0

 10

 20

 30

 40

 50

 60

1 4 8 16

G
ro

w
th

 r
at

e

#Processors

Matrix_Multiplication
Splash-2/Ocean

MJPEG
FFT
LU

Fig. 3. Growth rate evolution over platform instances running five multi-
threaded applications

based on an empirical model that uses Cycles Per Instruc-
tion (CPI) equations, and uses as inputs the measurements
from hardware event counters in the processor. In [5], the
authors propose speedup stacks which is a representation that
quantifies the impact of individual components of scalability
bottlenecks. It isolates and quantitatively estimates the cycle
count impact of different scalability bottlenecks. A cycle stack
(a.k.a CPI stack) is used in [9] to analyze multi-threaded
programs and understand performance bottlenecks for multi-
core environments as there could be other factors that were not
seen in a single core environment. They simulate the analyzed
program and capture cycle stacks for each individual thread
and employ a statistical data analysis technique that extracts
important trends from data.
The originality of our approach compared to the non-
exhaustive list of works above is that first, it targets explic-
itly MPSoCs and/or multi-core processors and addresses the
delicate problem of scalability. Second, it not only quantifies
the bottlenecks but also it pinpoints them in source code.
Third, we provide a framework with exact measures adapted
to instruction-level traces unlike the related work based on
estimations. Hence, using our framework, the scalability bot-
tleneck patterns discovered help the user to improve his/her
multi-threaded applications. Once the hotspots discovered, the
developer focuses only on pinpointed section for improving
the performance of the multi-threaded applications.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new approach for discov-
ering the scalability hotspots that reduce the parallel perfor-
mance in MPSoC platforms running embedded software. The
proposed approach uses data mining techniques on simulation
traces, thus offering several advantages. It can profile the
parallel embedded software in one (intra platform) or multiple
platforms (inter platforms), and it is applicable on embedded
systems as well as on parallel machines as long as detailed
information on the memory accesses are available. It can be

performed on homogeneous or heterogeneous architectures
with different type of processors in order to select the most
appropriate processors type running a given multi-threaded
program. The approach uses data mining techniques which
help in the discovery process of the unknown scalability
bottlenecks of a given application from traces. The approach
only requires one parameter, and then is completely automatic.
It can thus be very helpful in reducing the amount of work a
programmer has to do.
To the best of our knowledge, this is the first work reporting
the use of data mining on traces to identify the scalability prob-
lem in multi-processors platforms. Our experimental results
indicate that our approach based on data mining techniques
discovers unknown specific problems of a given application
and specific instructions decreasing the performance. The
quantified and pinpointed scalability bottlenecks help the de-
velopers to understand better the scalability problems of their
parallel applications. Our future plan consists on varying the
number of clusters k in order to distinguish more finely several
types of performance problems.

REFERENCES

[1] Workshop on frequent itemset mining implementations, 2004.
"http://fimi.ua.ac.be/fimi04/".

[2] R. M. Balzer. Exdams: extendable debugging and monitoring system.
In AFIPS, pages 567–580, New York, NY, USA, 1969. ACM.

[3] W. S. Cameron, O. Moriyoshi, T. Evan, S. J. Pal, and G. Anoop. The
splash-2 programs: characterization and methodological considerations.
In ISCA, pages 24–36, 1995.

[4] M. Dipperstein. Splash-2 ocean performance analysis.
michael.dipperstein.com/ocean/speedup.ps. Technical report, 2003.

[5] S. Eyerman, K. D. Bois, and L. Eeckhout. Speedup stacks: Identifying
scaling bottlenecks in multi-threaded applications. In ISPASS, 2012.

[6] J. Fenlason and R. Stallman. Gnu gprof. 2003. [Accessed April 6th
2008].

[7] J. A. Hartigan and M. A. Wong. A K-means clustering algorithm.
Applied Statistics, 28:100–108, 1979.

[8] D. Hedde and F. Pétrot. A non intrusive simulation-based trace system
to analyse multiprocessor systems-on-chip software. In RSP, pages 106–
112, 2011.

[9] W. Heirman, T. E. Carlson, S. Che, K. Skadron, and L. Eeckhout.
Using cycle stacks to understand scaling bottlenecks in multi-threaded
workloads. In Proceedings of the 2011 IEEE International Symposium
on Workload Characterization, IISWC ’11, pages 38–49, 2011.

[10] R. Hoffmann and T. Rauber. Profiling of task-based applications on
shared memory machines: scalability and bottlenecks. In Euro-Par,
pages 118–128, Berlin, Heidelberg, 2007. Springer-Verlag.

[11] A. B. T. Hopkins and K. McDonald-Maier. Debug support strategy for
systems-on-chips with multiple processor cores. IEEE Transactions on
Computers, 55(2):174–184, 2006.

[12] S. Lagraa, A. Termier, and F. Pétrot. Data mining mpsoc simulation
traces to identify concurrent memory access patterns. In DATE, pages
755–760, 2013.

[13] SoCLib Consortium. A library of cycle accurate system simulation
models. http://www.soclib.fr, 2010.

[14] Y. Solihin, V. Lam, and J. Torrellas. Scal-tool: pinpointing and quantify-
ing scalability bottlenecks in dsm multiprocessors. In Supercomputing,
New York, NY, USA, 1999. ACM.

[15] T. Uno, M. Kiyomi, and H. Arimura. Lcm ver. 2: Efficient mining
algorithms for frequent/closed/maximal itemsets. In FIMI, 2004.

