Scalable Liveness Verification for
Communication Fabrics

Sebastiaan J.C. Joosten and Julien Schmaltz
School of Computer Science, Open University of The Netherlands
Institute for Computing and Information Sciences, Radboud University Nijmegen
Eindhoven University of Technology, The Netherlands

Abstract—In the realm of multi-core processors and systems-
on-chip, communication fabrics constitute a key element. A large
number of queues and distributed control are two important
aspects of this class of designs. These aspects make decomposition
and abstraction techniques difficult to apply. For this class of
designs, the application of formal methods is a real challenge.
In particular, the verification of liveness properties is often
intractable. Communication fabrics can be seen as a set of queues
and flops interconnected by combinatorial logic. Based on this
simple but powerful observation, we propose a novel method
for liveness verification. Our method directly applies to Register
Transfer Level designs. The essential aspects of our approach
are (1) to abstract away from the details of queue implementa-
tions and (2) an efficient encoding of liveness properties in an
SMT instance. Experimental results are promising. Designs with
hundreds of queues can be analysed for liveness within minutes.

I. INTRODUCTION

Going parallel is the major trend to gain performance out
of more transistors [5]. Communication fabrics — also called
Networks-on-Chips — have become a key component in the
design and verification of multi-core architectures [1], [6]. For-
mal guarantees about the correct behaviour of communication
fabrics is key to ensure system correctness. These on-chip
communication networks constitute a class of systems char-
acterised by a large number of queues and distributed control.
The former induces a large state-space. The latter prevents the
application of abstraction techniques — e.g., localisation [12].
In particular, verifying liveness of communication fabrics is a
very hard problem [3].

In this context, recent results rely on the use of high-level
models to extract invariants, which are then used to improve
hardware model checking [3], [7], [12]. These approaches pro-
vide promising results. Still, they require a high-level model,
which is not always available or does not directly correspond
to the actual Register Transfer Level (RTL) design.

We propose a novel approach for liveness verification of
RTL designs of communication fabrics. Our approach does
not require a high-level model and scales up to designs with
hundreds of queues. Similar to all related works, our method
is sound but incomplete. The central ideas of our technique are
an abstraction from the details of queue implementations, an
abstraction from timing details, and the expression of liveness
as the average values of wires along lasso runs. Another
important part of our approach is to use recent results showing
that many inductive invariants can be derived automatically [9].

978-3-9815370-2-4/DATE14/(©2014 EDAA

These invariants are very similar to those generated from high-
level models, e.g., by Chatterjee and Kishinevsky [3]. We then
describe a network and liveness properties as a satisfiability
modulo the theory of reals and integers (SMT) problem.

Queues are replaced with uninterpreted functions and a
set of queue properties. These properties capture essential
characteristics of any queue. Our SMT encoding distinguishes
three behaviours of a wire: the initial value until the start of
the lasso, its value at the start of the lasso (we call this time
now), and its average value over the lasso. Using these average
values, liveness of a wire means that its average value is not
0. If a wire is not 0 on average, it is 1 infinitely often. To
relate all values, we add several properties to the SMT instance.
In doing so, we abstract away from irrelevant timing details.
The soundness of our approach follows from the correctness
of these individual properties. Experimental results show that
our method can prove liveness of realistic and large designs.
Our method fails to prove some artificial cases. Section III-B
gives an analysis on when this occurs, and on how one could
circumvent this. Our contributions are summarised as follows:

e We propose a novel liveness verification approach
dedicated to communication fabrics.

e We provide experimental results showing its benefits
and limitations.

e The implementation of our approach together with ex-
amples are publicly available at: genoc.cs.ru.nl

II. PRINCIPLES

A. A simple example

R

Queue
|

>
A\ AN

Fig. 1: A queue and two flops.

To illustrate our approach, consider the example in Fig-
ure 1. It shows a small network consisting of a source injecting
packets, two single-bit flops, a queue, and a sink consuming
packets. Whenever a packet enters the queue, the first bit is
raised. If the first bit is high, and the second is low, the bits
swap values at the next clock cycle. A packet leaves the queue

if it exists, the sink is available, and the second bit is high.
As a packet leaves the system, the second bit is set to zero.
Should the first bit be high, the system is considered full and
no packets can enter the queue.

Our method can be applied with different queue implemen-
tations, but we focus on one specific queue implementation in
this paper. Its interface is shown in Figure 2. For our imple-

enqueue —P>
dequeue —P»
data_in =

rst —’ f
clk

Fig. 2: Queue interface.

— not_empty
—» not_full
—» data_out

FIFO

mentation, a high enqueue wire puts the packet available on
data_in in the queue if and only if the queue is not full.
Similarly, the dequeue wire may take a high value while the
queue is empty without changing the queue state.

Consider the liveness property stating that packets leave
the queue infinitely often, formally expressed as:

OOnot_empty A dequeue
In this example, we also have the following equivalences:

O0enqueue <> 00— bit 0
OO0dequeue <> OO bit 1

Put more generally, liveness of the entire system is implied by
packets flowing in the queues. We focus on the property that
any packet in any queue is eventually able to leave.

The proof of this property is by contradiction, i.e, we are
looking for a counter-example. Such a counter-example is an
infinite run of the system in which from some time 7' wire
not_empty or wire dequeue is always zero. Such infinite
runs are represented by finite runs with a lasso (See Theorem 9
in [2]). For this proof to work, we assume fairness of all sinks
and sources, i.e., the source offers a packet infinitely often,
and the sink is ready to accept infinitely often.

The core idea of our approach is to express the fact that ‘a
wire is stuck at zero’ as ‘the average value of the wire over the
lasso is equal to zero’. We develop an SMT encoding of this
property together with relevant information about the network.
Our encoding is an over approximation as we only encode
properties of the network which do not depend on timing. For
instance, we add to the SMT encoding the invariant that the
sum of the two bits equals the number of packets in the queue.
In this example, this invariant is sufficient to prove liveness of
the queue. Until now, our technique has been able to prove
liveness of many realistic examples.

B. Runs and lasso’s

We briefly justify the fact that infinite runs of commu-
nication fabrics are represented by finite runs with a lasso.
The argument is completely similar to the one used to justify

bounded model checking (e.g. Theorem 9 of [2]). Since there
are only finitely many possible states of the network, some of
the states are in the run infinitely often (after time 7). Since
the sink and the source are fair, the events of offering and
accepting packets occur infinitely often as well. This means
that we pick two times (after time 7), say time n and time
n + [, such that:

e the state of the network at time n is identical to the
state at time n + [

e between time n and time n + [, a packet is offered
at least once, and the sink is ready to accept at least
once

From this run, we construct a lasso run as follows. Up to time
n+1[, our constructed lasso run is identical to the original run.
At time n + [, all inputs start behaving exactly as they have
at time n, such that the state at time ¢ + [is exactly the same
as at time ¢ for ¢ > n. Since n > 7, our new run is also a
counter-example.

Formally, we consider a lasso run of a network that is
described in terms of some input bits X. By input bits, we
mean all bits that are relevant to the current state. This includes
input wires, flop values, and possibly the output of some ‘black
box’ components. We describe the run as follows:

1) For every input bit x € X and time ¢t € N, v(z,t) €
B describes the value of bit z at time {. When we
combine input bits to create some new value w (e.g.
w=3%x1 A Xp), we write v(w,t) for its value at time
t (for our example: v(w,t) = v(x1,t) A v(xa,t)).

2) The run has a lasso of [clock ticks, starting at time
n. That is: v(z,t) = v(z,t+1) for t > n (and for all
wires).

Note that v(z,t) is not a variable that is calculated any-
where in our approach, nor is it one that occurs in the final
SMT encoding. Instead, we will relate all variables of the SMT
encoding to v, such that any run gives an assignment to the
SMT variables. Soundness of our approach will follow from
checking every property added to the SMT instance against its
interpretation according to v.

C. Encoding liveness as averages

To describe the counterexample, we need to say some-
thing about the long term behaviour of the property “the
queue is not empty and the dequeue signal is high”, i.e.
not_empty A dequeue. Such a property is described in terms
of the input wires X . In this example, the property requires that
the not_empty wire is high, the sink is high (i.e. accepts),
and bit 1 is high. We define the following property specific
variables:

T. A persistency variable for a property w. Boolean T},
is true iff: v(w,t) =1 for t > n.

F, We write F,, as a shorthand for 7-,, (which is true
iff v(w,t) =0 for t > n).

a, An average value to relate several properties in the
lasso, this is a fraction:
n+li—1

v(w,t
=3 D

t=n

We can now express ‘never w’, by ‘F,’. In our example, we
aim at dlSprOVmg Fnot_empty/\dequeue = Fnot_empty/\bit 1Asink-
To prove that this results in a contradiction, we use several
other properties of the network.

We take the reader through several properties that apply to
networks in general by investigating the example in Figure 1.
To distinguish the general properties added to all networks
from those specific to the example, we number all properties
which end up as assertions in the final SMT instance. The first
properties directly follow from the definitions of 7', F, and a.

Ty < (aw=1) (1)
Fy (aw) 2
Ty — v(w,n) 3)
To express Equations 3 to 6, we use a description of the

network state at time n. For this purpose we use the following
variables to describe the state of the network:

F, = —wv(w,n) 4
Ty = v(w,n+1) (5)
F, = w(w,n+1) (6)

¢, A current value for every input bit x. This is an SMT
Boolean: ¢, = v(z,n).

In the SMT instance, we express Equations 3 and 4 in terms
of ¢. For v(w,n + 1), in many cases this can be expressed in
terms of the previous state, thus using c. If v(w, n+1) depends
on the value of input wires at time n + 1, this is not possible.
In that case, we simply omit Equations 5 and 6.

D. Relating average values

For our example, using that F,, implies —v(w,n), we see
that either —Cpot_empty OF —Chit 1 O "1Cgink. We also use that
we are in a lasso. This implies that if bit 1 is raised, it must
also be lowered at some point for the state of the network to
return to the current state. Indeed, for flop x with driving wire
d we know:

if d drives flop = 7

Qg = Qg
In addition to relating T" and F' to averages, we also relate
averages amongst themselves. In particular:

if u—wv)
ifuAv=w ©)]

Ay, < Gy
Ay +ay < ay+1

To recognise equalities like v — v and u A v = w, we use the
rewrite system from [9], namely:

A—p = Qtrye — Ap
apvg = Gp + aq — ap ® aq
apng = Gp @ aq
The reader may verify that the system above reduces to a
system with only 4+ and ®. The operator ® is not introduced,
as it should be treated as intermediate syntax. We eliminate ®
by using:
(az +ay)®a, =a, ®a;+ayQa,
a, ® (az +ay) =a; ®a, +ay;a,
g @ Gy = Agpy
If these were averages over a single time unit (I = 1), ® can

be interpreted as multiplication, and the equations would be in
the ‘Arithmetic sum-of-product format’ considered in [10]. To

see that for other values for [, note that the values for a in their
rewritten form are linear equations. Doing the rewriting first
(on v, using multiplication for ®), and then taking the average,
will result in the same equations as taking the average first,
and then rewriting (using ® as uninterpreted syntax).

This allows us to write down a linear expression in place
of every a,, such that each resulting term a. has just a
conjunction of input bits as c. The averages can then more
easily be related amongst themselves using Equations 8 and 9.

We related the values of 7" and F' to the averages a, and
the averages amongst each other. For our example:

anot_empty + Gpit 1Asink S anot_empty/\bit 1Asink + 1

A property of the queue is that if no packets leave in
the 1asso, anot_empty 18 €ither O or 1. This implies that for
Gnot_emptyAbit 1nsink = O to hold, two situations can apply:

® Onot_empty = 0: the queue remains empty while the
bits are high (otherwise a packet could enter)

® Qnot_empty = 1: the queue remains full, and both bits
are low (since apit 1asink = 0)

To exclude these two situations, we use the following inductive
invariant. Suppose ¢ denotes the number of packets in the
queue, fo denotes the value of bit 0, and f; that of bit 1:

q=fo+ f1
Such invariants can be found automatically [9].

To relate the invariant to our instance, we need to define
integers to describe the state:

q; A state variable for every queue ¢, which is an integer
indicating the number of packets in queue ¢ at time n.

fi A state variable for every flop i, which is an integer
indicating its output at time n.

For flops, this state variable is related to our instance via:

e < (fi =1) (10)
—cz < (fi = 0) Y

E. Queue properties.

For every queue i of size s, we used the following
properties:

0<q<s (12)

qi = 0 <> Cnot_empty (13)

Qi = S <7 TCnot_full (14)

Tenqueve — Tnot_empty (15)

Tdequeue — Thot_fu11 (16)

Fenqueve — (Cnot_empty — Tnot_empty) (17)
Q(enqueue A not_full) = @(dequeue A not_empty) (13)

Equation 18 states that for every packet entering the queue
in the lasso, it must also leave, for the queue to return to its
original state.

Some networks contain data dependencies. Instead of look-
ing at all possible packets in brute force, we form different
expressions for several data types. We consider a packet to be
of a certain type, if some set of its bits is high. To determine
what types to consider, we find out what data bits occur in
the averages found among Equation 18. Each average variable
Gy AzsA---» CONtAiNing some data-bits in its conjunction (among
the x’s) constitutes a type of packet. For these types, we add
a variable:

d; state variable indicating the number of packets for a
particular data type on some queue.

We write dto to indicate that the output data has the type we
care about, and dti for input. These properties hold for all
queues:

(di = 4:) = (g = 0V v(dto,n)) (19)
(di = 0 A Cot_empty) — —v(dto,n) (20)
_‘Fenqueue/\not_full A Faes — dz =0 (21)

j}?enqueue/\no‘c_full A T(enqueue/\not_full)%dti —d; = q; (22)
Fenqueue/\dti A cnot_empty A v(dto, n) — Tnot_empty/\dto (23)

G(enqueue A not_full A dti) — @(dequeue A not_empty A dto) (24’)

F Summary

In the final SMT instance, we defined the following vari-
ables:

q; Integer indicating the number of packets in queue ¢ at
time n.

fi Integer indicating the flop output at time n.
¢ Boolean denoting v(z,n).

d; Integer indicating the number of packets with a certain
kind of data in a queue at time n.

T, Boolean T, true iff: v(w,t) =1 for t > n.
F,, Boolean shorthand for 71-,,.

a, Real: average value arising wherever T or F' is
created.

In our implementation, the first three variables can be defined
for the entire network. The last four variables are defined where
needed: they occur in the property we are trying to disprove,
or in a property of one of the other variables. These properties
are exactly the properties which have been numbered in this
section. Next to these, we add invariants on ¢, f and d, and
we add the negation of the property that all queues are live.

III. EXPERIMENTAL RESULTS
A. Verification Flow

Figure 3 shows the different steps of our approach. The
input to our method is an RTL description of the on-chip
network architecture using the Verilog hardware description
language. The Verilog file is parsed and interpreted using
a parser developed by Centaur Technology [8]. These files
are translated to one EMOD module. During this translation,
queues are identified by special tags, and their inner working
is hidden as a black box. The rest of the design is identified

Hardware (Centaur L, . - Property
design (iacriz) machine | _|Translation| _|qescription
(Verilog) (Haskell) (SMT)

Fig. 3: Verification Flow.

as combinatorial logic and flops. An SMT instance is created
from our definition of liveness, and from properties that hold
for the combinatorial logic, flops, and queues.

The Centaur translator targets a subset of Verilog. Arith-
metic and bitwise operations are supported, as well as non-
blocking assignments. A (syntactic) limitation is that no blocks
can be used. Transistor-level constructs, real variables, hi-
erarchical identifiers, and multi-dimensional arrays are not
supported. After this translation, all wires are assigned Boolean
expressions, in which X and Z values can be regarded as input
wires.

We recognise which wires are used for queues, and abstract
away from the queues themselves. After a tree of modules is
built, each queue in the list of those identified by the hardware
designer is syntactically replaced by a function. Flops are
treated similarly. Concretely, the EMOD file expresses values
using AND, XOR and NOT, but also using queue specific
functions. To give an example, the following value could
determine whether a transfer occurs in a sequence of two
queues:
(AND (not_empty Q1) (not_full Q2))

If the original RTL contained any cycles, the translation to
EMOD gets rid of them, or fails.

B. Fully automated verification of various networks

We have fully automated the verification of networks using
a tool in Haskell. Properties ¢;, d;, and f; are declared in an
SMT instance as integers. The averages a are declared as reals
(which are actually fractions). The other variables T, F', and ¢
become Boolean variables. This allows us to add the properties
shown in Equations 1 to 24.

To verify a particular network, we start with the liveness
property we wish to verify, and add the properties shown in
Equations 1 to 24 when needed. By ‘when needed’, we mean
that we do not add the network properties for everything in
the network. We merely add the properties introduced by the
negation of the liveness property we wish to verify, plus all
variables introduced in doing so, until no new variables are
introduced by the properties added. This way, our tool focuses
on the cone of influence, which allows us to analyse networks
with a large data size without any performance penalty.

Since we are merely adding properties to the SMT instance
that hold for every run, we can be certain that if the instance
yields UNSAT, we have proven the desired property. Hence our
encoding is sound. Our encoding is not complete. Although our
approach works for all designs we encountered in literature, we
artificially constructed some networks for which our approach
finds false counter-examples.

- Credit o
counter

(a) Two queues.

(b) A credit counter with a queue.

Fig. 4: Two layouts with parallel queues

1) Parallel queues: Figure 4 shows how a queue can be
placed in parallel with something else: packets accepted from
the source are put in the top queue, and something is added to
the bottom component as well. On an abstract level, the two
layouts are the same (assuming the credit counter is initially
empty). Like the queue, the credit counter accepts tokens until
it is ‘full’. While full, it prevents packets from entering at the
source. Similarly, the top queue is prevented from releasing its
packets in case the credit counter is empty. This means that in
the unreachable case that the top queue is full, and the bottom
half is empty, the system is in deadlock.

These designs illustrate that the invariants added to the
SMT instance prevent us from getting false positives. In the
case of Figure 4a, the generated linear invariant ensures that
this state is not reached. The invariant generated for that
network, which suffices to prove deadlock freedom of both
queues, and liveness at the input is the following:

Gtop = Qbottom

For our implementations in Figure 4b, the credit counter
is not abstracted as a queue. The internal state is given
by the state of some flops in the credit counter. We have
two implementations for a credit counter of size 3. In one
implementation, we count the number of credits in a unary
way (similar to a shift register). Our method finds the following
invariant required to prove deadlock freedom:

Qtop:f0+fl+f2

In a different implementation, we use only two flops, and count
binary: packets may enter if either bit is zero. Once again, our
method finds the desired invariant:

Qtop:f0+2'f1

Limitations of invariants: if we make a slight modifi-
cation, and decide that the credit counter should hold at most
two credits, the invariants are not strong enough to express
that both flops are never simultaneously high. If we allow a
packet to enter (or leave) in such a case, the invariant does not
hold for that transition. In this particular case, our method does
not find any invariants. A deadlock configuration is found in
which the top queue is full, while the credit counter is empty.
To strengthen the invariants found by our method, we suggest
credit counters to be abstracted the way queues are.

2) Buffered virtual channels: Figure 5 is an example
from [12]. Packets in the queue labelled as ‘Buffer’ are
identified by a bit, such that packets originating from Inl are
routed to B3, and those originating from In2 are routed to B4.
The arbiter alternates between accepting packets from Inl and

Fig. 5: Buffered virtual channels.

In2 if one is offered. It is persistent in the sense that if the
‘Buffer’ is full, and the packet from Inl (or In2) is offered, at
the next clock tick the packet from Inl (In2) is offered to the
Buffer again. The data dependent invariants corresponding to
this network are found in this approach, and every buffer in
the network can be proven live (provided all sources and sinks
are fair).

Limitations of one-step simulation: We can modify the
arbiters’ behaviour such that it allows packets from Inl more
often than the packets from In2. For instance, it can take two
packets from Inl, and then only one from In2. In this case,
the properties presented so far are insufficient to verify that BS
is live (or that packets from In2 are eventually accepted). To
prove this, one could add these equations to the SMT instance:

Ty = v(w,n+2) F,— wwn+2)

Note that these are similar to Equations 5 and 6. In essence,
these equations add a one-step simulation to our analysis. The
equations above allow us to perform a two-step simulation.
Unfortunately, adding these equations has a severe impact on
the performance of the analysis.

3) Other networks and scalability: Next to the networks
described above, we have analysed the network in Figure 5
without the queue called Buffer (with its outputs and inputs
connected with a wire instead). In all cases, we proved liveness
of all queues, with extra queues added at the sources and
sinks (thereby verifying their liveness as well), and under the
assumption of fairness of sources and sinks.

To illustrate the scalability of our approach, we took the
network in Figure 5 (with the buffer), and cloned it several
times, connecting the outputs to the inputs (Outl to Inl, Out2
to In2). All queues could be verified to be live. The time it
took to verify this property is shown in Figure 6.

The measurements were performed using one core on a
1.8 GHz Intel Core i7-2677M!, using Z3 as the SMT solver.
A network with 25 repetitions containing 279 queues (25
repetitions of 11 queues - for of which are at sinks or sources,
plus four queues for the unattached sinks and sources) is
analysed in 25 seconds. When investigating a network with
26 repetitions, we aborted the execution after 10 minutes. We
consider 280 queues to be a rough limit for networks with
medium complexity, at which the current SMT solvers tend to
fail for solving the instances.

1Using one core increases the base frequency to 2.9GHz

25

20 =>&=Solving SMT
[%]
2 =&=Generation
8 15
[T
w
£
GJ
g
=

0 5 10 15 20 25 30

Repetitions of the network

Fig. 6: Execution times for cascaded buffered virtual channels.

IV. RELATED WORK AND DISCUSSION

Recent advancements in progress verification for com-
munication fabrics are based on micro-architectural models.
Chatterjee et al. [4] introduced a language — called xMAS
— for the description of executable specifications of micro-
architectures. This language is restricted to eight primitives
with well-defined semantics. Chatterjee and Kishinevsky [3]
demonstrated how inductive invariants can be automatically
derived from an XMAS model. Such invariants are then used
to improve hardware model-checking of safety properties and
deadlock freedom [7]. Ray and Brayton [12] proposed a semi-
automatic approach dedicated to xXMAS models of credit-based
flow control systems. They manually add buffer relations as
invariants to prune the search. In all these works, a high-level
xMAS model is required. An implicit assumption is that the
invariants derived from the xXMAS model must match with
the RTL description. There exist useful design components
which cannot be expressed using the 8 primitives of the xXMAS
language [14]. Even if our method imposes some restriction
on the input design, it does not necessitate the existence of an
xMAS model and directly applies to RTL designs.

The examples mentioned so far are rather small network
components. Verbeek and Schmaltz [13] developed a deadlock
detection algorithm for xMAS models and applied it to the
verification of large networks. Their work applies directly
to the xXMAS level. The question of translating their results
obtained on XMAS models to RTL designs is still open.

V. CONCLUSIONS AND FUTURE WORK

We presented a novel verification method for liveness
properties of RTL designs of on-chip communication networks.
Our method abstracts away from queue implementations and
timing details. Liveness properties are expressed using the
average values of wires along lasso runs. Properties together
with a representation of the network are translated to an SMT
instance. Experimental results demonstrates the scalability of
our approach to fabrics with hundreds of queues. It is sound
but incomplete. Our method fails on some artificial examples.

We see two possible ways of improving our method. First,
our way of relating 7" and F' values via averages may be less
efficient than translating the corresponding properties to func-
tionally reduced AIGs, and then inspecting their structure [11].

This may have a positive influence on the scalability of our
approach. Second, instead of writing a large SMT instance,
we could try applying the ideas of our approach to an existing
bounded model checker. This may speed up the model checker,
or put differently, make our method complete (instead of just
sound) without imposing a large performance penalty on the
networks we could already handle.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their apposite, con-
structive, and detailed comments. This research is supported
by NWO project Effective Layered Verification of Networks
on Chips (ELVeN) under grant no. 612.001.108.

REFERENCES

[1] L. Benini and G. De Micheli. Networks on Chips: a new SoC paradigm.
IEEE Computer, 35(1):70-78, January 2002.

[2] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking
without bdds. In W. Cleaveland, editor, Tools and Algorithms for the
Construction and Analysis of Systems, volume 1579 of Lecture Notes in
Computer Science, pages 193-207. Springer Berlin Heidelberg, 1999.

[3] S. Chatterjee and M. Kishinevsky. Automatic generation of inductive
invariants from high-level microarchitectural models of communication
fabrics. In T. Touili, B. Cook, and P. Jackson, editors, Proceedings
of the 22nd International Conference on Computer Aided Verification
(CAV’10), volume 6174 of Lecture Notes in Computer Science. Springer,
July 2010.

[4] S. Chatterjee, M. Kishinevsky, and U. Y. Ogras. xmas: Quick formal
modeling of communication fabrics to enable verification. /EEE Design
& Test of Computers, 29(3):80-88, 2012.

[S] W.J. Dally. The end of denial architecture and the rise of throughput
computing. In Design Automation Conference, 2009. DAC’09. 46th
ACM/IEEE, pages xv—xv. IEEE, 2009.

[6] W.]J. Dally and B. Towles. Route packets, not wires: on-chip intercon-
nection networks. In Proceedings of Design Automation Conference
(DAC’01), pages 684—689, 2001.

[71 A. Gotmanov, S. Chatterjee, and M. Kishinevsky. Verifying deadlock-
freedom of communication fabrics. In Verification, Model Checking,
and Abstract Interpretation (VMCAI ’11), volume 6538, pages 214—
231, 2011.

[8] W. A. J. Hunt and S. Swords. Centaur technology media unit
verification. In Computer Aided Verification, pages 353-367, 2009.

[9] S.1J.C.Joosten and J. Schmaltz. Generation of inductive invariants from
register transfer level designs of communication fabrics. In Formal
Methods and Models for Codesign (MEMOCODE), 2013 Eleventh
IEEE/ACM International Conference on, pages 57-64. IEEE, 2013.

[10] S.-I. Minato and F. Somenzi. Arithmetic boolean expression manipu-
lator using bdds. Formal Methods in System Design, 10(2-3):221-242,
1997.

[11] A. Mishchenko, S. Chatterjee, R. Jiang, and R. K. Brayton. Fraigs: A
unifying representation for logic synthesis and verification. Technical
report, ERL Technical Report, 2005.

[12] S.Ray and R. K. Brayton. Scalable progress verification in credit-based
flow-control systems. In W. Rosenstiel and L. Thiele, editors, DATE,
pages 905-910. IEEE, 2012.

[13] F. Verbeek and J. Schmaltz. Hunting deadlocks efficiently in mi-
croarchitectural models of communication fabrics. In Proceedings of
the International Conference on Formal Methods in Computer-Aided
Design, FMCAD ’11, pages 223-231, Austin, TX, 2011.

[14] F. Verbeek and J. Schmaltz. Automatic generation of deadlock detection
algorithms for a family of micro architectural description languages.
IEEE International High Level Design Validation and Test Workshop
(HLDVT’12), November 2012.

