
Mapping Mixed-Criticality Applications on
Multi-Core Architectures

Georgia Giannopoulou, Nikolay Stoimenov, Pengcheng Huang, Lothar Thiele
Computer Engineering and Networks Laboratory, ETH Zurich, 8092 Zurich, Switzerland

Email: firstname.lastname@tik.ee.ethz.ch

Abstract—A common trend in real-time embedded systems
is to integrate multiple applications on a single platform. Such
systems are known as mixed-criticality (MC) systems when the ap-
plications are characterized by different criticality levels. Nowa-
days, multicore platforms are promoted due to cost and perfor-
mance benefits. However, certification of multicore MC systems
is challenging as concurrently executed applications of different
criticalities may block each other when accessing shared plat-
form resources. Most of the existing research on multicore MC
scheduling ignores the effects of resource sharing on the response
times of applications. Recently, a MC scheduling strategy was
proposed, which explicitly accounts for these effects. This paper
discusses how to combine this policy with an optimization method
for the partitioning of tasks to cores as well as the static map-
ping of memory blocks, i.e., task data and communication buffers,
to the banks of a shared memory architecture. Optimization is
performed at design time targeting at minimizing the worst-case
response times of tasks and achieving efficient resource utiliza-
tion. The proposed optimization method is evaluated using an
industrial application.

I. INTRODUCTION

As a result of the prevalence of multicore systems in the
electronics market, the field of embedded systems experiences
an unprecedented trend towards integrating multiple applica-
tions into a single platform. This applies even to real-time
embedded systems for safety-critical domains, such as avionics
and automotive. Applications in these domains, however, are
usually characterized by several criticality levels (CLs), known
as Safety Integrity Levels (SIL) or Design Assurance Levels
(DAL), which express the required protection against failure.

For the integration of mixed-criticality (MC) applications
into a common platform, the existing certification standards
require complete timing isolation among applications of dif-
ferent criticalities. For this, system designers rely mainly on
partitioning mechanisms, e.g., based on the ARINC-653 stan-
dard [1]. No existing standards, however, specify how isolation
is achieved when several cores share platform resources, which
is a common practice for efficiency and cost reasons. Obvi-
ously, if several cores access synchronously e. g., a memory bus,
timing interference among applications of different criticalities
cannot be avoided. Also, the resulting delays cannot be always
bounded, since the certification authorities for applications of
a particular CL typically do not possess any information about
applications of lower CL that are co-hosted on the platform.

In [2], Giannopoulou et al. suggest a scheduling policy for
resource-sharing multicores, which prevents timing interference
among applications of different CLs. This is achieved by
allowing only a statically known set of applications of the
same criticality to be executed across the cores at any time.
Scheduling is implemented through flexible time triggering on

978-3-9815370-2-4/DATE14/ c©2014 EDAA

the core level with static and dynamic barriers on the global
level. This way timing isolation is preserved despite resource
sharing, without any need for hardware support.

In this paper, we extend the work of [2] with the focus
of design optimization under the suggested scheduling policy.
The main contributions can be summarized as follows:

• We introduce an architecture abstraction for memory-
sharing systems, where cores contend for access at the level
of memory banks. This abstraction describes faithfully mod-
ern commercial platforms, such as Kalray MPPA-256 [3].
• We propose a heuristic approach for finding a mapping of
mixed-criticality task sets to multicores and a partitioned
schedule, such that the real-time requirements of the tasks
are met and the workload is balanced among the cores.
• We propose a simulated annealing-based algorithm for
statically mapping the task data and the communication
buffers to global memory banks, such that the effect of bank
sharing on the task response times is minimized.
• Since the above two optimization problems are inter-
dependent, we propose two possible approaches for inte-
grated design optimization.
• We evaluate applicability and efficiency of the design opti-

mization approaches using a real-world avionics application.

Related Work Scheduling of mixed-criticality applications
is a research field attracting increasing attention nowadays.
Vestal introduced the currently dominating MC task model
in [4]. The first MC scheduling algorithms for multicores
appeared recently, among others in [5]–[7]. To comply with the
certification requirements for strict timing isolation, Anderson
et al. proposed scheduling MC tasks on multicores, by adopting
different strategies for different CLs and utilizing a bandwidth
reservation server [8]. Tamas-Selicean and Pop presented an
optimization method for task partitioning and time-triggered
scheduling on multicores [9], complying with the ARINC-
653 standard [1]. Most of these works, however, ignored the
interference when tasks access synchronously shared platform
resources and its effect on schedulability. The scheduling
strategy in [2] seems to be one of the first strategies to explicitly
consider this, while ensuring timing isolation on global level.

For bounding interference on the shared memory path in
MC settings, Yun et al. proposed a software-based memory
throttling mechanism. In [10], the cores, where low-criticality
tasks are executed, are assigned a limited memory budget so
that schedulability of the high-criticality tasks is guaranteed
while the performance impact on the low-criticality tasks is kept
minimal. Despite bounding the timing effect of interference,
restricting mapping to cores based on the tasks’ CL may lead to
inefficient system utilization. Similarly, the authors of [11], [12]
suggested novel memory controller designs for mixed hard real-
time and soft real-time systems. These methods require special

hardware support as opposed to [2], where task scheduling
prevents MC interference on the shared memory path.

On the topic of memory bank partitioning, recent works [13],
[14] proposed heuristics for mapping data of different applica-
tion threads to DRAM banks in order to reduce the average
thread execution times. Contrary to our work, these methods do
not provide any real-time guarantees. Liu et al. implemented
in [15] a bank partitioning mechanism in terms of modifying
the OS memory management system to adopt a custom page-
coloring algorithm for the data allocation to banks. A similar
mechanism could be used to impose the memory mapping
decisions of our design optimization method. Closer to our ob-
jective lies [16], where the authors rely on a DRAM controller
to partition the data of real-time applications to banks, such
that interference on bank level is eliminated. This controller
could provide the required timing isolation for MC systems
and enable a decrease in the tasks’ response times. However,
it is a hardware solution. Note, also, that the aforementioned
results consider partitioning of the private task data and not of
shared data, on which interference cannot be eliminated.

II. SYSTEM MODEL

This section defines the task and architecture models. The
task model is an extension of the established MC model [4],
accounting also for memory access. For the architecture model,
special emphasis is put on the shared memory subsystem.

Task Model. We consider mixed-criticality periodic task sets
τ = {τ1, . . . , τn} with criticality levels between 1 (lowest)
and L (highest). A task is characterized by a 4-tuple τi =
{Wi, χi,Ci, Ci,deg}, where:

• Wi ∈ N+ is the period,
• χi ∈ {1, . . . , L} is the criticality level,
• Ci is a size-L vector of execution profiles, where Ci(`) =
(emaxi (`), µmaxi (`)) represents an upper bound on the execu-
tion time and number of memory accesses of τi at level of
assurance ` ≤ χi,
• Ci,deg is a special execution profile for the cases when τi
(χi < L) runs in degraded mode. This profile corresponds
to the minimum required functionality of τi so that no catas-
trophic effect occurs in the system. If execution of τi can
be aborted without catastrophic effects, Ci,deg = (0, 0).

For simplicity, we assume that the first job of all tasks is
released at time 0 and that the relative deadline Di of τi is
equal to its period, i. e.,Di = Wi. Also, the parameters of Ci(`)
are monotonically increasing for increasing `. The respective
bounds can be obtained by different tools. For instance, at the
lowest level of assurance (` = 1), the system designer may
extract them by profiling and measurement. At higher levels,
certification authorities may use static analysis tools with more
and more conservative assumptions as the required confidence
increases. Note that the execution profile Ci(`) for each task
τi is derived only for ` ≤ χi. For ` > χi, there is no valid
execution profile since certification at level ` ignores all tasks
with a lower CL. At runtime, if a task with CL greater than χi
requires more resources than initially expected, τi may run in
degraded mode. Then, Ci,deg describes its execution profile.

For any MC periodic task set τ , we seek a scheduling
strategy which can provide an admissible schedule at all levels
of assurance. A schedule is admissible at level ` if and only if:

Core 1

D I

Bank 1 Bank 2 Bank 3 Bank 4

...

Arb1 Arb2 Arb3 Arb4

Core m

D I

Core 2

D I

DRAM

Figure 1. Memory Subsystem Architecture

• the jobs of each task τi, satisfying χi ≥ `, receive enough
resources between their release time and deadline to meet
their real-time requirements w.r.t. execution profile Ci(`),
• the jobs of each task τi, satisfying χi < `, receive enough
resources between their release time and deadline to meet
their real-time requirements w.r.t. execution profile Ci,deg .

Multicore Resource-Sharing Architecture. We consider a
set P of m processing cores, P = {p1, . . . , pm}, Here, the
cores are identical but our approach can be generalized to
heterogeneous platforms. Each core in P has access to a
private cache memory (we restrict our interest to data caches)
and to a shared global memory. The shared (DRAM) memory
is organized in several banks. Each bank must have a sequential
address space (not interleaved among banks) to limit potential
inter-task interference. Under this assumption, two concurrently
executed tasks on different cores can perform parallel accesses
to the shared DRAM without delaying each other provided
that they access different banks. We assume that each memory
bank has a dedicated request arbiter. Also, each core has a
private path (bus) to the shared memory. The private paths
of the cores are connected to all bank arbiters, as depicted
abstractly (for Arb1) in Figure 1. This model of the memory
subsystem seems to fit well commercial platforms, such as the
Kalray MPPA-256 [3].

For the bank arbitration, we consider the policies of first-
come first-served (FCFS) and round-robin (RR). However, other
policies can also be modeled. We assume that only one core can
access a bank at a time and that once granted, a bank access is
completed within a fixed time interval, Tacc (same for read/write
operations and for all banks). In the meanwhile, pending
requests to the same bank from other cores stall execution
on their cores until they are served. Note that we consider
hardware platforms without timing anomalies, such as the fully
timing compositional architecture [17], where execution and
communication times can be decoupled.

We use a graph representation of the potential inter-task
interferences due to memory contention, i.e., the memory inter-
ference graph (MIG) I(V, E), where V = VT ∪VBL ∪VB . Vτ
represents all tasks in τ , VBL all memory blocks BL accessed
by τ , i.e., the task data and communication buffers, and VB all
DRAM banks B. Each memory block (bank) node is annotated
with a corresponding size (capacity) in bytes. I is composed
by two sub-graphs: (i) the bipartite graph I1(VT ∪ VBL, E1),
where an edge e ∈ E1 from τi ∈ VT to blj ∈ VBL with weight
w(e) implies that task τi performs at maximum w(e) accesses
to memory block blj per execution, and (ii) the bipartite graph
I2(VBL ∪ VB , E2), where an edge e ∈ E2 from blj ∈ VBL to
bk ∈ VB denotes the allocation of memory block blj in exactly
one memory bank bk. Note that the weighted sum over all

bl1

bl2

bl3

bank1

bank2

10

20

10

5

5

10

(64)

(16)

bl4

bl5

(512)

(128)

(32)

(32768)

(32768)

τ1

τ2

τ3

τ4

Figure 2. Memory Interference Graph

outgoing edges of a task τi equals the memory access bound
of its execution profile at its own CL, i.e., µmaxi (χi). Figure 2
presents a possible MIG for a set of four tasks, accessing in
total five memory blocks. The memory blocks can be allocated
in two DRAM banks. Ellipsoid, rectangular and diamond nodes
denote tasks, memory blocks, and banks, respectively.

Given a MIG I , any two tasks τi and τj are defined as inter-
fering if and only if ∃k, l, r ∈ N+ : (τi, blk) ∈ E1, (τj , bll) ∈ E1
and (blk, br) ∈ E2, (bll, br) ∈ E2, i.e., they access blocks in
the same bank. In Figure 2 tasks τ1 and τ2 are interfering,
whereas τ1 and τ3 or τ4 are not. Interfering tasks can delay
each other when executed in parallel.

Note that the binding of tasks to processing cores, Mτ :
τ → P and the mapping of memory blocks to banks,
Mmem : BL → B (E2 of I), are not given, but defined
by our method. In particular, the problem that we are address-
ing can be formulated as follows. Given: (i) a periodic MC
task set τ , (ii) an architecture consisting of cores P with a
shared memory, and (iii) a memory interference graph I with
undefined edge set E2; Determine: (i) the binding Mτ of tasks
to cores, (ii) the schedule S on the cores, and (iii) the mapping
Mmem of memory blocks to banks, such that all tasks meet
their MC real-time requirements at all levels of assurance, the
workload is balanced among the cores, and the memory bank
capacities are not violated.

III. MIXED-CRITICALITY SCHEDULING

This section discusses briefly the Flexible Time-Triggered
and Synchronisation-based (FTTS) MC scheduling policy. The
reader is referred to [2] for a more detailed presentation.

The non-preemptive FTTS scheduling policy combines time
and event-triggered task activation. A global FTTS schedule
repeats over a scheduling cycle equal to the hyper-period H
of the tasks in τ . The scheduling cycle consists of fixed-
size frames (set F). Each frame is divided further into L
flexible-length sub-frames. The beginning of frames and sub-
frames is synchronized among all cores. The frame lengths
can differ, but they are bounded by the minimum period in
τ . Each sub-frame (except the first of a frame) starts once all
tasks of the previous sub-frame complete execution across all
cores. Synchronisation is achieved dynamically via a barrier
mechanism. Each sub-frame contains only tasks of the same
CL. Note that the sub-frames within a frame are ordered in
decreasing order of their CL and that within a sub-frame, tasks
are scheduled sequentially on each core following a predefined
order. An illustration of a FTTS schedule S is given in Figure 3
for seven tasks, a hyper-period of H = 200 ms, four frames of
equal lengths (50 ms), each with L = 2 sub-frames. A cycle of

S includes H/Wi invocations of each task τi, i.e., the number
of jobs of τi that arrive within a hyper-period.

At runtime, the length of each sub-frame varies based on
the different execution times and accessing patterns that the
concurrently executed tasks exhibit. E.g., in Figure 3, the first
sub-frame of f1 finishes earlier when τ1, τ2 run w.r.t. their level-
1 profiles (cycle 1) than when at least one task runs w.r.t. its
level-2 profile (cycle 2). The sub-frame worst-case lengths
can be computed offline for each schedule by applying worst-
case response time (WCRT) analysis under memory contention.
Function barriers : F × {1, . . . , L} → RL defines the worst-
case length of all sub-frames in a frame, for a particular level
of assurance. We denote the worst-case length of the i-th sub-
frame of f at level ` as barriers(f, `)i. Note that ` corresponds
to the highest level execution profile that the tasks of f exhibit
at runtime.
Runtime behavior. Given an admissible FTTS schedule S and
the barriers function, the scheduler manages task execution on
each core within each frame f ∈ F as follows (init., `max = 1):
• For the i-th sub-frame, the scheduler triggers sequentially

the corresponding jobs. Upon completion of the jobs’ execu-
tion, it signals the event and waits until the remaining cores
reach the barrier.
• Let the elapsed time from the beginning of the i-th sub-
frame until the barrier synchronisation be t. Given `max:

`max = max{ arg min
`∈{1,...,L}

{t ≤ barriers(f, `)i}, `max},

the scheduler will trigger jobs in all next sub-frames such
that tasks with CL lower than `max run in degraded mode.
• The two previous steps are repeated for each sub-frame,
until the next frame is reached.

Note that the decision on whether a task will run in degraded
mode affects only the current frame.
Admissibility. Let S be a FTTS schedule constructed such that
all H/Wi jobs of each task τi ∈ τ are scheduled on the same
core within their release times and deadlines. S is `-admissible
if and only if it fulfils the following condition:

L∑
i=1

barriers(f, `)i ≤ Lf ,∀f ∈ F , (1)

where Lf denotes the length of frame f . If the condition holds
for all frames f ∈ F , all scheduled jobs in S can meet their
deadlines at level of assurance `. If it holds for all levels
` ∈ {1, · · · , L}, it follows that schedule S is admissible.

IV. MIXED-CRITICALITY DESIGN OPTIMIZATION

This section suggests approaches for task and memory map-
ping optimization for a MC task set scheduled under FTTS. For
each optimization problem, we assume an existing solution to
the other one. Finally, we show how to solve both optimization
problems in an integrated manner.

A. Task Mapping (Mτ + S) Optimization

A possible approach to scheduling and task mapping opti-
mization was suggested in [2] and is summarized below.

This approach implements a heuristic method based on sim-
ulated annealing (SA) [18]. Initially, it selects a dimensioning
of the FTTS cycle and frame lengths and generates a random

0 50 100 150 200 40050 100 150

Figure 3. Global FTTS schedule for 2 cycles (dark annotation: CL 2, light: CL 1)

task mapping solution. In this solution, all jobs released by the
tasks in τ within a hyper-period H must be scheduled, with
every job scheduled in a frame between its release time and
absolute deadline. By applying SA, the design space for task
mapping is explored. Particularly, new solutions are found by
applying two possible variations with certain probabilities: (i)
re-mapping all jobs of a randomly selected task to a different
core or (ii) re-allocating one job of a randomly selected task to
a different FTTS sub-frame. Design space exploration (DSE)
terminates when the algorithm converges to a solution or a
computational budget is exhausted.

A task mapping solution is considered optimal if all jobs
meet their deadlines at all levels of assurance (admissible S)
and the worst-case sub-frame lengths are minimized, implying
a balanced workload distribution. Based on these requirements,
we define the cost function of the optimization problem as:

Cost(S) =

{
c1 = maxf∈F

{
max`∈{1,...,L} late(f, `)

}
if c1 > 0

c2 = ‖barriers‖3 if c1 ≤ 0,

where late(f, `) expresses the difference between the worst-
case completion time of the last sub-frame of f and the length
of f :

late(f, `) =

L∑
i=1

barriers(f, `)i − Lf . (2)

If late(f, `) > 0, the tasks in f cannot complete execution
by the end of the frame for their `-level execution profiles.
Therefore, with this cost function, we initially guide DSE
towards finding an admissible solution. When such a solution
is found, cost c1 becomes negative or 0. Then, c2, i.e., the 3rd
norm of all sub-frame lengths, ∀f ∈ F ,∀` ∈ {1, . . . , L}, is
used to minimize the worst-case lengths of all sub-frames.

Note that the barriers function is computed for each visited
solution. We estimate the WCRT of each task in every frame
f by considering the worst-case delay that the concurrently
executed tasks (in the same sub-frame) can cause to it. This
delay, denoted as di(f, `), depends on the memory mapping
Mmem, which defines which of the concurrently executed
tasks are interfering with τi, and the bank arbitration policy.
For bounded di(f, `), the WCRT of τi in frame f at level ` is
computed as:

WCRTi(f, `) = emax
i (`) + µmax

i (`) · Tacc + di(f, `). (3)

The task mapping optimization method can be easily ex-
tended to account for fixed task preemption points, depen-
dencies among tasks with equal periods, mapping constraints,
solution ranking, among others. Please refer to [2] for a more
detailed discussion.

B. Memory Mapping (Mmem) Optimization

The goal of memory mapping optimization is to determine
a static allocation of the tasks’ private data and communication
buffers (memory blocks) BL to memory banks B of the shared
DRAM (E2 of MIG I), so that the timing interference of tasks
when accessing the memory is minimized. Also, the total size
of the allocated memory blocks in a bank should not surpass the
bank capacity. This constraint holds for the memory mapping
in Figure 2.

For this purpose, we adopt a heuristic method based on
SA, similar to the task mapping optimization problem. The
method is presented in the form of pseudocode in Listing 1.
It receives as inputs an initial temperature T0, a temperature
decreasing factor a ∈ (0, 1), the maximum number of consecu-
tive variations with no cost improvement that can be checked
for a particular temperature Failmax, a stopping criterion in
terms of the final temperature Tfinal, and a stopping criterion
in terms of search time (computational budget) timemax. It
returns the best encountered solution(s) in the given time.

The algorithm starts with an arbitrary solution S, satisfying
the bank capacity constraints. If GenerateInitialSolution can
provide no such solution, exploration is aborted. Otherwise,
DSE is performed by examining random variations of the
memory mapping. Particularly, Variate selects arbitrarily a
memory block and remaps it to a different memory bank such
that no bank capacity constraint is violated. The new solution
S′ is accepted if e−(Cost(S′)−Cost(S))/T is no lesser than a
randomly selected real value in (0,1). The cost of S′ is, also,
compared to the minimum observed cost, Costmin. If it is
lower than Costmin, the new solution and its cost are stored,
even if transition to S′ was not admitted. The temperature
T of SA is reduced geometrically with factor a. Reduction
takes place every time a sequence of Failmax consecutive
solutions are checked, none of which improves Costmin. After
temperature reduction, exploration continues from the so-far
best found solution (Scur_best). DSE terminates when the
lowest temperature Tfinal is reached or the computational
budget timemax is exhausted.

Memory mapping affects the WCRT of a task τi by defining
which of the tasks that can be concurrently executed to τi
are interfering with it. The less interfering tasks, the lower
the delay τi experiences when accessing the shared memory.
Therefore, to evaluate a memory mapping solution we select a
cost function that reflects the increase in task WCRT due to
interference on the DRAM banks. We represent this in terms of
a two-dimensional matrix D (n× n), where Di,j describes the
maximum delay task τi can suffer when executed concurrently
with τj . Di,j is positive if τi and τj (i 6= j) are (i) of the
same criticality level and (ii) interfering, i.e., accessing memory
blocks in at least one common bank.

Algorithm 1 Modified SA for Memory Mapping Mmem

Input: T0, a, Failmax, Tfinal, timemax
Output: S̄best

1: S ← GenerateInitialSolution()
2: if S == ∅ then
3: return null
4: end if
5: S̄best ← {S}, Scur_best ← S, Costmin ← Cost(S)
6: T ← T0
7: FailCount ← 0
8: time ← StartTimer()
9: while time < timemax and T > Tfinal do

10: S′ ← Variate(S)
11: if e−(Cost(S′)−Cost(S))/T ≥ Random(0,1) then
12: S ← S′

13: end if
14: UpdateBestSolutions(S′)
15: if Cost(S′) < Costmin then
16: Scur_best ← S′

17: Costmin ← Cost(S′)
18: FailCount ← 0
19: else
20: FailCount ← FailCount+ 1
21: end if
22: if FailCount == Failmax then
23: T ← a · T
24: S ← Scur_best
25: FailCount ← 0
26: end if
27: end while

For the computation of D, two classes of bank arbitration
policies are of particular interest. The class of fair schedulers
are characterized by that an upper bound on the WCRT of a task
can be derived independently of other concurrently executed
tasks and their execution profiles. Here, an access request
issued by a task can wait for at most a fixed number of access
requests from other tasks before it is served. In this class
of schedulers fall FCFS, RR, and TDMA. The other class
of work-conserving schedulers is characterized by that an
access issued by a task may have to wait for all concurrent
tasks to finish issuing accesses before it is served. In this
class fall fixed-priority policies. Here, we can still compute an
upper WCRT bound by considering the execution profiles of
the concurrent tasks. Note that FCFS and RR also fall in this
class and hence, the upper bound computed here is also valid
for them.

In particular, for the FCFS and RR policies, the required
delay bound can be refined given that each access from τi can
be delayed by at most one access from any other concurrently
executed task to the same bank. That is because each core has
at most one pending request at a time. This yields:

Di,j =
∑

b,bl:(τi,bl)∈E1
∧(bl,b)∈E2

∑
bl′:(τj,bl′)∈E1
∧(bl′,b)∈E2

min{w((τi, bl)), w((τj , bl′))}·Tacc

As an example, matrices D are given below for a general work-
conserving arbitration policy and for FCFS/RR, respectively,
based on the MIG of Figure 2.

0 20·Tacc 0 0
10·Tacc 0 10·Tacc 0

0 10·Tacc 0 0
0 0 0 0

0 10·Tacc 0 0
10·Tacc 0 10·Tacc 0

0 10·Tacc 0 0
0 0 0 0

We assume that tasks τ1, τ2, τ3 are of CL 2, whereas τ4 has
CL 1. D represents the worst-case mutual delays for the case
when τ1, τ2, τ3 can be executed in the same FTTS sub-frame.
Note that the worst-case delay of each task τi can be derived
from D as

∑
τj∈τ D(i, j) if all tasks with CL χi would run

in parallel. This information is used for WCRT analysis for a
particular task mapping solution, see Eq. 3 (factor di(f, `)).

In the memory mapping optimization problem, the more
distributed the memory blocks are across the banks, the less
mutual delays will be incurred. One alternative to solve this
optimization problem, is to compute (part of) the Pareto set of
memory mapping solutions with minimal interference between
any two tasks of the same CL. Algorithm 1 maintains such a
set S̄best of non-dominated solutions. In particular, a newly
visited mapping solution S′ with matrix D′ is inserted to the
set S̄best if it has a lower value for at least one element of D′
than the corresponding element of any solution in S̄best. If a
solution S ∈ S̄best is dominated by S′, then S is removed from
the set. This update is performed by UpdateBestSolutions.

Another alternative is to define a cost function Davg as
the average over all elements of matrix D, i.e., the average
delay tasks of the same CL cause to each other when interfer-
ing on shared banks. Then we can find the best solution in
terms of Davg. In this case, S̄best contains only one solution
characterized by the minimum encountered Davg .

C. Integration of Task and Memory Mapping Optimization

The problems of optimizing Mτ +S and Mmem are inter-
dependent. Namely, DSE for the optimization of the task
mapping requires information on the memory mapping for
computing function barriers. Similarly, Davg, i.e., the cost
of a memory mapping solution, can be refined for a particular
task mapping, depending on the tasks that can be executed in
parallel. In the following, we outline two alternative approaches
towards an integrated optimization solution.
I. Task mapping optimization for each memory mapping

in Pareto set As discussed previously, one can compute
using Algorithm 1 part of the Pareto set S̄best of memory
mapping solutions that minimize the interference between
any two tasks of the same CL. These solutions consider that
all tasks of the same CL are potentially executed in parallel
(worst-case task mapping). The next step is to solve the task
mapping optimization problem for each memory mapping
in the set S̄best. Finally, the combination of solutions which
minimizes ||barriers||3 is selected.

II. Iterative task and memory mapping optimization Since
the complexity of computing the Pareto set solutions for the
memory mapping optimization problem can be prohibitive,
one can select an iterative solution to the two problems.
Then, for each visited solution during DSE for Mτ + S, a
memory mapping optimization is also performed to find the
solution with minimized cost ||barriers||3.

V. EXPERIMENTAL EVALUATION

To evaluate the proposed design optimisation approaches,
we use an industrial implementation of a flight management

Table I. MINIMIZED COST, ADMISSIBILITY AND OPTIMIZATION TIME
FOR THE THREE DESIGN OPTIMIZATION ALTERNATIVES

No mem. info Integr. appr. I Integr. appr. II
Min. ||barriers||3 893.8 545.2 545.2
Admissibility FALSE TRUE TRUE
Initial Mmem opt. - 5.8 sec -
Mτ + S,Mmem opt. 2 sec 60.5 min 8.2 min

system. It consists of 13 tasks (7 of CL 1, 6 of CL 2) for sensor
reading, localization, and computation of the nearest airport.
The periods of the tasks vary among 200 ms, 1 sec, and 5
sec. Their worst-case execution times were derived through
measurements on a real system. For the level-2 profiles Ci(2) of
tasks τi with χi = 2, we augment the worst observed execution
times by a factor of 2. Similarly, for the memory accesses, we
consider pessimistic bounds and derive the Ci(2) parameters
by multiplying these bounds by 1.5. For MIG I , we model the
following memory blocks: one block per task with size equal
to the size of its data as measured on the deployed system, and
one block per communication buffer with known size, too.

For a platform with 8 cores and a shared DRAM with
8 banks, each arbitrated according to a RR policy (Tacc =
180µs), we perform design optimization under the following
settings: (i) optimization of Mτ + S by ignoring structure
of the memory subsystem, (ii) optimization of Mτ + S and
Mmem according to integrated approach I of Section IV-C,
and (iii) similarly, according to integrated approach II. Note
that for WCRT analysis in the first case, it is assumed that all
tasks of the same CL are interfering. Therefore, each access
of a task is delayed by all cores with at least one mapped task
in the same FTTS sub-frame.

Table I compares the minimum encountered cost for the
Mτ + S problem (||barriers||3) as well as the time needed
for optimization under the three settings. The SA algorithm
was configured with parameters: a = 0.9, Failmax = 100,
T0 based on the cost of 300 random solutions, Tfinal = 0.1,
timemax = 60 min. For the optimization of Mτ + S, the
probabilities of selecting a sub-frame or core variation were
0.85 and 0.15, respectively. The FTTS cycle (H = 5 sec) was
dimensioned with 25 frames (200 ms each).

Note that the minimized cost for the task mapping problem
when memory mapping is accounted for (integrated approaches)
is 38.3% lower than when it is ignored. This leads the first
optimization alternative to fail in finding an admissible schedule
for the considered task set, although admissible schedules exist
when the memory blocks are distributed appropriately among
the DRAM banks. For the particular case study, integrated
approaches I and II result in the same optimized combination of
task and memory mapping. The difference in time requirements
stems from the different complexity of the two optimization
problems. For integrated approach I, task mapping optimization
was repeated for the 2461 memory mappings of the initially
computed Pareto set. For integrated approach II, memory
mapping optimization was respectively performed for the 9266
visited task mapping solutions. However, a memory mapping
optimization in the second case converged much faster (avg. 50
ms) than a task mapping optimization in the first case (avg. 1.47
sec).

In general, depending on the sizes of the search spaces of
the task mapping and memory mapping optimization problems,
one algorithm can perform faster than the other. Regardless
of which algorithm is chosen, results confirm that memory
mapping optimization cannot be ignored as maximizing the
slack time at the end of each FTTS frame is crucial for an even

workload distribution and also, for enabling the scheduling of
additional tasks that may be added later.

VI. CONCLUSION

This paper presents a design optimization method for mixed-
criticality periodic task sets on multicores. Task mapping is
optimized under the FTTS scheduling policy. At the same time,
the tasks’ private and shared data are mapped to memory banks
to minimize the task interferences on the shared memory. Two
alternative integrated solutions to the optimization problems are
presented. Evaluation with an industrial application shows that
accounting for and optimizing memory mapping can greatly
reduce the task response times. This increases the probability
of finding admissible scheduling solutions and enables efficient
resource utilization.
Acknowledgment The research leading to these results has
received funding from the European Union Seventh Framework
Programme (FP7/2007-2013) under grant agreement number
288175.

REFERENCES

[1] ARINC, “ARINC 653-1 avionics application software standard interface,”
http://www.arinc.com/, Tech. Rep., 2003.

[2] G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele, “Scheduling
of mixed-criticality applications on resource-sharing multicore systems,”
in EMSOFT, 2013, pp. 1–15.

[3] “Kalray mppa-256 manycore platform,” http://www.kalray.eu/products/
mppa-manycore/mppa-256/.

[4] S. Vestal, “Preemptive scheduling of multi-criticality systems with vary-
ing degrees of execution time assurance,” in RTSS, 2007, pp. 239–243.

[5] S. Baruah, B. Chattopadhyay, H. Li, and I. Shin, “Mixed-criticality
scheduling on multiprocessors,” Real-Time Systems, pp. 1–36, 2013.

[6] O. Kelly, H. Aydin, and B. Zhao, “On partitioned scheduling of fixed-
priority mixed-criticality task sets,” in TrustCom, 2011, pp. 1051–1059.

[7] R. Pathan, “Schedulability analysis of mixed-criticality systems on
multiprocessors,” in ECRTS, 2012, pp. 309–320.

[8] J. Anderson, S. Baruah, and B. Brandenburg, “Multicore operating-
system support for mixed criticality,” in Workshop on Mixed Criticality:
Roadmap to Evolving UAV Certification, 2009.

[9] D. Tamas-Selicean and P. Pop, “Design optimization of mixed-criticality
real-time applications on cost-constrained partitioned architectures,” in
RTSS, 2011, pp. 24–33.

[10] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memory access
control in multiprocessor for real-time systems with mixed criticality,”
in ECRTS, 2012, pp. 299–308.

[11] M. Paolieri, E. Quiñones, F. J. Cazorla, G. Bernat, and M. Valero,
“Hardware support for wcet analysis of hard real-time multicore systems,”
in ISCA, 2009, pp. 57–68.

[12] S. Goossens, B. Akesson, and K. Goossens, “Conservative open-page
policy for mixed time-criticality memory controllers,” in DATE, 2013,
pp. 525–530.

[13] Y. Kim, J. Lee, A. Shrivastava, and Y. Paek, “Operation and data mapping
for cgras with multi-bank memory,” in LCTES, 2010, pp. 17–26.

[14] W. Mi, X. Feng, J. Xue, and Y. Jia, “Software-hardware cooperative dram
bank partitioning for chip multiprocessors,” in Network and Parallel
Computing, ser. LNCS, 2010, vol. 6289, pp. 329–343.

[15] L. Liu, Z. Cui, M. Xing, Y. Bao, M. Chen, and C. Wu, “A software
memory partition approach for eliminating bank-level interference in
multicore systems,” in PACT, 2012, pp. 367–376.

[16] J. Reineke, I. Liu, H. D. Patel, S. Kim, and E. A. Lee, “Pret dram
controller: bank privatization for predictability and temporal isolation,”
in CODES+ISSS, 2011, pp. 99–108.

[17] R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, and
C. Ferdinand, “Memory hierarchies, pipelines, and buses for future
architectures in time-critical embedded systems,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 28,
no. 7, pp. 966 –978, 2009.

[18] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simu-
lated annealing,” Science, vol. 220, pp. 671–680, 1983.

