
On-Device Objective-C Application Optimization

Framework for High-Performance Mobile Processors

Garo Bournoutian

University of California, San Diego

9500 Gilman Dr. #0404 La Jolla, CA 92093–0404

Email: garo@cs.ucsd.edu

Alex Orailoglu

University of California, San Diego

9500 Gilman Dr. #0404 La Jolla, CA 92093–0404

Email: alex@cs.ucsd.edu

Abstract—Smartphones provide applications that are increas-
ingly similar to those of interactive desktop programs, providing
rich graphics and animations. To simplify the creation of these
interactive applications, mobile operating systems employ high-
level object-oriented programming languages and shared libraries
to manipulate the device’s peripherals and provide common user-
interface frameworks. The presence of dynamic dispatch and
polymorphism allows for robust and extensible application coding.
Unfortunately, the presence of dynamic dispatch also introduces
significant overheads during method calls, which directly impact
execution time. Furthermore, since these applications rely heavily
on shared libraries and helper routines, the quantity of these
method calls is higher than those found in typical desktop-
based programs. Optimizing these method calls centrally before
consumers download the application onto a given phone is
exacerbated due to the large diversity of hardware and operating
system versions that the application could run on. This paper
proposes a methodology to tailor a given Objective-C application
and its associated device-specific shared library codebase using
on-device post-compilation code optimization and transformation.
In doing so, many polymorphic sites can be resolved statically,
improving the overall application performance.

I. INTRODUCTION

The prevalence of mobile processors has grown significantly
over the last few years. At the current rate, mobile processors
are becoming increasingly ubiquitous throughout our society,
resulting in a diverse range of applications that will be ex-
pected to run on these devices. State-of-the-art smartphones
have evolved to the level of having feature-rich applications
comparable to those of interactive desktop programs, providing
high-quality visual and auditory experiences. These mobile
processors are becoming increasingly complex in order to
respond to this more diverse and demanding application base.

From the application perspective, complexity is also grow-
ing within the mobile domain. A decade ago, mobile phone
applications consisted of a few pre-bundled, hand-optimized
programs specifically designed for a given device. Today, there
is a vast quantity of applications available within mobile mar-
ketplaces; Apple’s App Store, for example, had over 775,000
applications available for download at the start of 2013 [1].
Furthermore, mobile applications are now written in high-level,
object-oriented programming languages such as Objective-C or
Java. These applications tend to be highly interactive, providing
visual, auditory, and haptic feedback, as well as leveraging
inputs from numerous sensors such as touch, location, near-
field communication, and even eye tracking. To simplify the
creation of these interactive applications, mobile operating
systems provide foundation libraries to manipulate the device’s
peripherals and provide common user-interface frameworks.

Given this, much of the instruction code being executed will
be coming from these shared libraries and helper routines, in
addition to the application’s own code.

One powerful feature enabled by using a high-level, object-
oriented language is dynamic dispatch. Dynamic dispatch al-
lows for robust and extensible application coding, allowing
multiple classes to contain different implementations of the
same method, with actual method selection occurring dynami-
cally based on the particular run-time instance it is called upon.
Unfortunately, the presence of dynamic dispatch can introduce
significant overheads during method calls, which can directly
impact execution time [2]. It has also been observed that
smartphone applications suffer from increased code size and
sparseness [3], and encounter higher branch mispredictions and
instruction cache misses due to lack of instruction locality. As
this paper will demonstrate, dynamic dispatch exacts a heavy
toll due to the numerous control flow changes that occur from
the large quantity of method call polymorphic sites.

To make matters worse, there is a large diversity of hardware
and operating systems a given application may run on. Often a
single instance of the application is compiled and uploaded to
the marketplace, and then is able to be downloaded and run on
many different devices and operating system versions. When
the application is loaded by the operating system, dynamic
linking and variable offset tables are used to hook into the
device-specific library code. Furthermore, some methods the
application may call will be stubbed out for a particular model
of hardware. For example, if the application calls a method
to query the compass, but the specific device being utilized
does not physically have a compass, the call will simply return
without executing the actual sensor processing instructions. As
one can see, attempting to optimize these polymorphic method
calls centrally before consumers download the application onto
a given phone is hindered by the variability and diversity of
the final execution platform.

In this paper, we propose a novel approach to deal with
the unique characteristics of mobile processors and provide
a methodology to tailor a given Objective-C application and
its associated device-specific shared library codebase using on-
device post-compilation code optimization and transformation.
While an application is still compiled normally into binary
code at the time it is added to the application marketplace, we
propose also garnering and embedding class hierarchy metadata
in the static deliverable. Once the application is downloaded
onto a specific device, a novel second pass of code optimiza-
tion is then performed combining the application’s embedded
metadata with the local device’s framework metadata to identify
polymorphic sites that can be replaced with static method

978–3–9815370–2–4/DATE14/©2014 EDAA



calls. This innovative approach widens the information channel
of the application binary and enables otherwise impossible
holistic on-device optimizations. We are able to replace an
average of 76.8% of dynamic dispatch sites with purely static
method calls, greatly reducing the amount of code execution
necessary to resolve method control flow, delivering improved
overall application performance. The result will be an optimized
application that encounters fewer instruction cache misses and
branch mispredictions, which in turn helps alleviate overall
processor power consumption leading to longer battery life.

II. RELATED WORK

Most prior research related to object-oriented programming
languages and, in particular, dynamic dispatch has focused on
standard general-purpose computers and enterprise programs.

Profile-guided approaches are commonly used to enable
dynamic dispatch code optimization. The Call Chain Profile
(k-CCP) model was presented in [4]. Using this model, the
predictability of receiver class distributions was presented,
demonstrating that such distributions are strongly peaked and
relatively stable across program inputs. They also proposed in-
lining run-time tests for the dominant class in order to help
optimize dynamic dispatch for the strongly peaked calls. The
Festival approach attempts to estimate the frequency of virtual
method calls by applying neural network machine learning
algorithms across a set of known programs and workloads to
glean relationships between static code structures and actual
run-time behaviors [2]. By identifying the highly recurring
calls, one can enable targeted method lookup caching to help
ameliorate the most problematic locations. The drawback to
these profile-guided approaches is the necessity of having
accurate profiling workloads. Given that mobile applications are
almost always user interface driven and highly interactive, the
ability to have representative workloads of dynamic execution
is non-trivial.

Class Hierarchy Analysis (CHA) was proposed in [5], where
for each method the set of classes for which that method is
the appropriate target is determined (applies-to set). When a
polymorphic method call is encountered, the applies-to sets
are checked to see if there is any overlap. If not, then the
polymorphic site can be replaced by a static call. This approach
requires knowledge of all class hierarchies, as well as methods
defined within each class. Similarly, the SmallEiffel compiler
leverages type inference to remove polymorphic call sites and
instead replace them with static bindings when possible [6].
Essentially, the entire program is analyzed and a set of all
possible concrete types is identified. All living methods are
duplicated and customized based on the concrete type of the
target. Thus, if only a single matching method exists for a given
call, it is replaced by a regular static call to the target method.
Unfortunately, these approaches require full application code
analysis. Since mobile applications are centrally compiled
without complete knowledge of all device-specific operating
system library code, this approach cannot guarantee correctness.
Furthermore, once the application is compiled into binary code,
extraction of class hierarchy information becomes exceedingly
difficult.

On-the-fly generation of remote device-specific code using
centralized system notes is presented in [7]. The Fiji VM does
aggressive de-virtualization and inlining to mitigate method call
overhead [8]. These approaches typically rely on running within
a Virtual Machine (VM) to enable such JIT optimizations.

01 @implementation Animal : NSObject

02 -(void) makeSound {

03 /* Display string... */

04 }

05 @end

06 @implementation Cow : Animal

07 -(id) init {

08 self = [super init]; /* 1 */

09 self->sound = @"Moo";

10 return self;

11 }

12 @end

13 @implementation Pig : Animal

14 -(id) init {

15 self = [super init]; /* 1 */

16 self->sound = @"Oink";

17 return self;

18 }

19 @end

20 int main(int argc, const char * argv[]) {

21 NSAutoreleasePool *pool =

[[NSAutoreleasePool alloc] init]; /* 2 */

22 Cow *myCow = [[Cow alloc] init]; /* 2 */

23 [myCow makeSound]; /* 1 */

24 Pig *myPig = [[Pig alloc] init]; /* 2 */

25 [myPig makeSound]; /* 1 */

26 [pool release]; /* 1 */

27 return 0;

28 }

Fig. 1. Simple Objective-C Application

The domain of native-execution mobile processors intro-
duces unique challenges related to mitigating dynamic dispatch
overhead. Since mobile applications are highly interactive and
frequently utilize polymorphism both within the application’s
local source code and externally into common foundation
library code, a solution that can statically analyze the combi-
nation of the original application code and its interaction with
common device-specific libraries becomes necessary.

III. MOTIVATION

In order to illustrate the overhead of dynamic dispatch,
a simple Objective-C application is shown in Figure 1. This
application defines three classes, a parent class (Animal) that
extends from the foundation base class NSObject, as well as two
child classes (Cow and Pig) that both extend from Animal and
override the default init instance method defined in NSObject.
Objective-C uses the syntax of [obj method:argument]

in order to send a message (identified by the selector method)
to the receiver obj. Due to dynamic dispatch, the resolution
of the method selector to the underlying C method pointer
implementation occurs at runtime. For the sake of simplicity,
assume that any methods whose implementation is not defined
herein will send no subsequent messages. With this assumption,
this simple application will result in the sending of 11 messages
when executed, as shown in the code comments.

Unlike regular C function calls, where control flow uncondi-
tionally moves to the target function label, Objective-C message
sending is quite complicated. Indeed, during runtime resolution
of a message, the current class and all superclass metadata is
searched to see if the selector exists within that class’s method
list. This process is very cumbersome and involves complex
memory traversals. The source code for the iOS Objective-C
method lookup is provided in [9].

In order to avoid repeatedly traversing frequently selected
methods, a software-based method cache exists for each class
to quickly map implementations for a given selector. The vast
majority of lookups are able to be resolved by the software
cache. Yet, even if a message lookup hits the method cache, the
overhead is still substantially more than a pure C function call.
Examining the cache lookup portion of the iOS objc msgSend
routine [10] will show that even if the cache lookup results in
an immediate cache hit (on the first index of the cache), 21
instructions are executed, 3 of which are conditional branches.
Referring back to the example application in Figure 1, each of



TABLE I. RELATIVE TIME PER METHOD CALL

Type of Method Call Intel Core i5 iPhone 4S

IMP-cached message send 1.00X 21.55X

C++ virtual function call 1.99X 3.96X

Objective-C message send 12.57X 69.46X

the 11 message calls will necessitate executing at minimum 21
instructions plus conditional branching. The key observation is
that this behavior can have tangible consequences on the overall
processor performance. Primarily, the number of additional
instructions executed during each method call contributes to
increased execution time.

In order to get a current perspective on the implementation
overheads of both C++ virtual function calls and Objective-C
message sends, a basic benchmark of these calls within the
Apple Cocoa framework was conducted. Each type of method
call was executed 10 billion times, and the overall run-time
was captured. The normalized execution time overhead for each
type of method call is shown in Table I. The measurements
were taken on a regular desktop computer using an Intel Core
i5 as well as on an iPhone 4S. It is interesting to note that
on a desktop computer, the time overhead of C++ virtual
function calls is comparable to caching the implementation
pointer of an Objective-C method and using that to repeatedly
send messages (IMP-cached message send). Yet, when run on
a mobile processor, the overhead of even IMP-cached message
sends is quite apparent. Given the architectural differences
between Intel x86 and iPhone ARM-based SoC, it appears the
overhead of dynamic dispatch is more salient in the latter.

In addition to dynamic dispatch increasing dynamic instruc-
tion counts, there are also repercussions in terms of the in-
struction cache and branch predictor performance. With regard
to the instruction cache, spatial locality is paramount for ideal
performance. As the control flow of the application changes,
spatial locality is degraded. Every polymorphic call necessitates
a jump to the dispatch instructions, wherein a cache lookup may
occur entailing more control flow changes. This behavior can
manifest in terms of increased L1 instruction cache misses.

Regarding branch prediction, the increase in conditional
branches to deal with method cache lookups can impact overall
performance. Prediction structures, such as the global history
register, may become polluted with these dispatch-related con-
ditional branches. Furthermore, most dynamic dispatch ap-
proaches rely on indirect (register-based) branching, wherein
target address prediction becomes an issue. According to [11],
despite specialized hardware to predict indirect jump targets,
41% of mispredictions come from indirect jumps. To exacerbate
matters, those results are based on a desktop processor with
specialized indirect jump prediction hardware. Most mobile
processors, being area and power constrained, often employ
simplified branch prediction hardware.

It becomes apparent that dynamic dispatch not only in-
creases execution time due to executing more instructions, but
also increases entropy in many of the processor’s hardware pre-
dictive structures like caches and branch predictors. If possible,
one would like to replace as many polymorphic sites with direct
function calls in order to ameliorate these overheads.

IV. METHODOLOGY

One of the primary challenges to optimizing dynamically
dispatched applications on mobile processors is the vast di-
versity of hardware, OS versions, and consumer applications.
Mobile applications are developed in a loosely general-purpose

Fig. 2. High-Level On-Device Optimization Framework

fashion and the compiled code is uploaded to a central market-
place (e.g. Apple AppStore). This application is then down-
loaded onto numerous devices, each of which may vary in
terms of hardware functionality and foundation library routines.
This one-to-many relationship is ideal from a scalability and
validation perspective, but has drawbacks in terms of possible
compile-time optimizations. Since most mobile ecosystems are
based on highly-flexible frameworks and foundation libraries,
where much flexibility is built in to the framework in the form
of dynamically-dispatched messages within the framework base
classes, oftentimes only a limited portion of the framework code
is used by a particular application.

Many compile-time solutions already exist to help reduce
the overhead of dynamic dispatch, but require the ability to
view the entire program space during compilation in order to
make correct decisions [5], [6]. Unfortunately, applications that
are downloaded onto the smartphone are pre-compiled binaries
that have already been flattened. The ability to identify object-
oriented class hierarchy information is extremely difficult, as
the compiler-optimized assembly code will just consist of mes-
sage sending using register values. To overcome this limitation,
high-level class hierarchy and method information needs to be
propagated onto the target device to enable a second-level of
optimization to take into account the actual foundation code
that is present on the device.

Furthermore, mobile processors often possess a large num-
ber of sensors and gadgets that can vary from device to device.
For example, some devices may only have a GPS and ac-
celerometer, while others also contain a compass, thermometer,
barometer, etc. As the foundation libraries and applications
often contain code to handle a wide range of sensors, for
those devices that lack a given sensor the associated code is
unnecessary. Pruning away such dead code reduces the quantity
of polymorphic sites; removing unneeded method implementa-
tions reduces the possible targets for sending messages.

In order to accomplish this goal of improving mobile
application performance, a novel on-device application code
optimization framework is proposed. When applications are
compiled using the mobile ecosystem toolchain, they are also
analyzed in order to extract high-level application metadata,
including class hierarchies and method implementations. This
metadata is included in the application bundle that is uploaded
onto the marketplace. Similarly, each new operating system
release that is compiled will also analyze and annotate high-
level class hierarchy and method implementation attributes,
including the information in the OS system updates. Once an
application is downloaded onto a given device, an on-device



Fig. 3. Example Class Hierarchy and Method Partial Ordering

code analysis and transformation process will occur. Using the
metadata from both the OS and the application, a complete
object-oriented hierarchy view is available. Optimizations and
code transformations are applied, also taking into account de-
vice specific attributes such as available peripherals and sensors.
The result of this optimization will be a new application binary
that can then be run on the device as would normally occur. A
high-level overview of this framework is shown in Figure 2.

The key theory of this approach is the decomposition of
the application’s optimization process across multiple points
in time. While many software optimizations can be achieved
during regular compilation, the ability to do interprocedural
optimization on mobile applications is problematic. The con-
tents of operating system foundation libraries are not known for
certain, so full application visibility is impaired during applica-
tion compilation. This paper will show how a specific type of
interprocedural optimization, dynamic dispatch resolution, can
be accomplished by extracting partial class hierarchy informa-
tion from multiple sources, and then employing a post-process
code transformation on the application binary when all the
necessary pieces of information become available. By widening
the information channel from just pure binary instructions to
also include class and method hierarchy metadata, powerful
post-compilation code transformations can be performed.

The following subsections provide a detailed explanation on
the steps involved in this framework.

A. Extracting Source Code Metadata
The first step of this framework is to capture high-level

information related to the object-oriented classes and methods
that would otherwise be unavailable by the time the application
arrives on the mobile device. When a developer creates an
application and compiles it for inclusion in the mobile market-
place, the critical information related to class hierarchies and
message calls are captured. Similar to [5], the goal is to glean
information about the possible receiver classes of each method
being compiled.

Figure 3(a) shows a simple class hierarchy. Consider the
case where the method y defined in class D sends the following
message: [self x]. This would result in dynamic dispatch
to determine which implementation of x to call based on
the instance of self that exists at runtime. For example,
the program may have instantiated class E, which inherits
method y from class D, so the receiver of the message sent
to self would be of type E at runtime and would need to
determine which implementation of the method x to select.
But, one may notice that no subclass of class D contains
an overriding implementation of method x, and that the only
possible implementation of method x in class D or any of its

subclasses is the one defined in class B. Thus, the dynamic
dispatch code of [self x] can be replaced with a direct
method call to B::x.

At the time the application is compiled, information on
the complete class hierarchy is not present due to much
functionality coming from foundation code which can vary
across devices. So, in order to allow this class hierarchy analysis
to occur at a later time, the application compiler toolchain is
augmented to extract the known class hierarchy information
and store it as part of the application deliverable. In a similar
vein, the same class hierarchy information is captured for the
vendor-provided OS foundation library classes and stored for
later reference. Once the application is downloaded onto the
phone, the combined metadata from the application and OS
will provide the complete view of all class hierarchies.

An additional stage of analysis is done for the foundation
libraries to identify code that is needed for hardware-specific
features. For example, there may be specific classes and meth-
ods that exist to interact with an ambient temperature sensor
only present on some hardware devices. If the device lacks this
sensor, the corresponding foundation code that interacts with
and processes the sensor data is never used. By identifying
these classes and methods, device-specific dead code can be
eliminated when the OS is installed on the target device.
The effort to annotate the foundation library source code
with information about the physical properties required for the
code’s operation can be done centrally by the vendor and does
not require any special effort from application developers.

B. Pruning Unused Classes and Methods
Once the particular application and foundation library are

both present on a given physical device, pruning of unused
classes and methods can be performed. As mentioned earlier,
mobile foundation libraries are highly flexible and provide a
myriad of framework base classes that may not all be utilized by
an application. In order to reduce the sparseness of instruction
code, unneeded library instruction code can be pruned away.
Instead of having the application dynamically load the entire
set of foundation libraries, only those libraries that are required
by the application can be statically linked into the application
binary. While the resulting binary will be relatively larger
than the original application code, it is important to note that
instruction code as a whole is quite small compared to other
application data such as bitmaps, sound files, and databases,
so the impact on overall storage space is trivial. On the other
hand, the benefit is a much more compact instruction space that
will reduce sparseness.

A straightforward analysis of the application’s class hier-
archy will provide a list of all possible classes that can be
instantiated. This list is then used to identify any corresponding
class definitions in the foundation library. These foundation
classes are marked to be preserved. Then, a depth-first search
is conducted on each preserved class to identify any required
parent classes also defined in the foundation library that should
be preserved. Lastly, the final set of preserved foundation
classes that are uniquely required for the given application is
statically linked into the application binary using hex-editing
and address relocation where necessary.

Device-specific dead code in the foundation libraries is also
removed whenever a new OS version is installed. A simple
hex post-processing of the foundation code can remove unused
classes/entry points for nonexistent hardware features.



TABLE II. DESCRIPTION OF BENCHMARK APPS

Bubbsy Graphical world-based game (uses Cocos2D)

Canabalt Popular run and jump game

DOOM Classic 3D first person shooter

Gorillas Turn-based angle shooter (uses Cocos2D)

iLabyrinth Puzzle navigation game (uses Cocos2D)

Molecules 3D molecule modeling and manipulation

Wikipedia Online encyclopedia reader

Wolfenstein 3D 3D first person shooter

C. Optimizing Dynamic Dispatch Sites
To improve mobile processor application performance, as

many polymorphic sites as possible should be removed. Many
approaches exist to identify and replace resolvable dynamic
message sending calls with static procedure calls. This paper
relies on the same algorithm as defined in [5], in particular
because that algorithm supports dynamically typed languages,
such as Objective-C. The challenge for mobile processors is that
applications are developed separately from the target device
and foundation libraries, and require the additional metadata
described earlier to enable post-processing of the compiled
assembly code with visibility across the entire program space.

First, those classes that define new method implementations,
versus those that simply inherit the implementation from their
parent, are identified. A partial order of all methods is con-
structed, where one method M1 is less than another method M2

iff M1 overrides M2. Figure 3(b) shows the partial ordering
corresponding to the example class hierarchy presented in
Figure 3(a). An initial applies-to set is computed for each
method containing the defining class and all its subclasses.
Then, a top-down traversal of the partial method ordering is
conducted, where each of the immediately overriding method’s
applies-to sets are subtracted from the current method’s applies-
to set. Thus, all methods will have an applies-to set that lists the
set of classes for which that method is the appropriate target.

The application binary, including the statically linked foun-
dation libraries, is now analyzed using a Perl script to try to
identify polymorphic site optimizations. When a polymorphic
call is encountered in the binary (i.e. an opcode calling the
objc msgSend routine is detected by the Perl script), the

metadata related to that call site is queried to get information
on the receiver and selector. The class set that is inferred for
the receiver is tested to see if any overlap exists in all the
matching method applies-to sets. If no overlap exists, then the
polymorphic site can be replaced by a static call since only one
possible method implementation exists for that polymorphic
site. In other words, the binary is hex-edited to replace the
call to objc msgSend routine with a call opcode targeting the
static address for the identified method implementation.

Furthermore, in the event that the static method imple-
mentation is very short (e.g. less than 15 instructions), the
static call can then be replaced by inlining the target method’s
instructions. While normal optimizing compilers often employ
code inlining for short routines, since the original code had
dynamic dispatch the compiler would have been unable to
resolve which routine to inline. Now that the dynamic dispatch
site has been optimized using the additional information related
to foundation libraries and the application’s class hierarchies, a
second pass for identifying inlining can be employed.

V. EXPERIMENTAL RESULTS

In order to assess the benefits from this proposed frame-
work, an actual commercial mobile processor is utilized. The
target mobile device chosen is an iPhone 4S (dual ARM Cortex-

Fig. 4. Reduction in Polymorphic Sites

A9 800MHz processor, 512MB DRAM) running the iOS 5.1.1
operating system (Darwin Kernel 11.0.0). A set of eight open-
source, interactive Objective-C iOS applications are used to
benchmark the optimizations. A listing of these benchmarks
and their respective descriptions is provided in Table II.

Each application is compiled using Xcode IDE version
4.1.1. One copy of the compiled application is the baseline
without leveraging the proposed dynamic dispatch optimiza-
tion framework, and another version contains the optimized
binary code. Figure 4 shows a comparison of the quantity of
polymorphic call sites between the two versions of a given
application’s binary code. A large majority of dynamic dispatch
calls were able to be replaced by static method calls, resulting
in a geometric mean reduction of 76.8% of polymorphic sites
across all benchmarks.

In order to evaluate the corresponding performance im-
provement of reducing dynamic dispatch sites, both the baseline
and optimized code will need to be executed on the physical
device. This is necessary, as the vast majority of mobile appli-
cations are highly interactive and require touchscreen stimuli
in order to realistically function. The selected benchmarks are
no exception to this characteristic. By running the application
directly on the phone and interacting with the application, the
dynamic control flow will closely resemble typical usage. An
additional benefit of running the application code directly on the
smartphone is that the correctness of the code transformations
are validated since they are executed directly on the processor.

The GNU gcov test coverage tool is leveraged to instrument
executed code and to capture the dynamic execution frequen-
cies of each line of source, as well as how many call and
branch instructions occurred. In particular, both the settings of
Generate Test Coverage Files and Instrument Program Flow
are enabled in the Xcode compiler, and the GCOV PREFIX
and GCOV PREFIX STRIP environment variables are set to
redirect the generated output profiles for all source files into
a central path. As a result, when the application is executed
on the phone, a corresponding .gcda coverage file is created
for every source file. These coverage files are then downloaded
from the phone and analyzed to determine the percentage of
dynamic instructions that are control flow related.

To generate the dynamic instruction profiles for the bench-
marks, both the baseline and optimized versions of the appli-
cations are launched on the phone and used normally for 5
minutes. As we are interactively using the application, the exact
user input and resulting control flow will vary between every
single run. In order to help reduce any outliers and noise, this
process of running the application for 5 minutes is repeated 10
times to generate an arithmetic mean for each application.



TABLE III. TOTAL APPLICATION SIZE INCREASE COMPARED TO ORIGINAL BINARY CODE AND RESOURCE FILES

Bubbsy Canabalt DOOM Classic Gorillas iLabyrinth Molecules Wikipedia Wolfenstein 3D Geometric Mean

10.3% 1.9% 6.7% 5.5% 15.4% 8.0% 10.1% 17.5% 7.9%

Fig. 5. Executed Polymorphic Calls

After collecting and analyzing all the gcov coverage files,
the dynamic instruction count for polymorphic call sites is as-
certained and shown in Figure 5. The geometric mean reduction
of dynamically executed polymorphic calls across benchmarks
is approximately 73.1%, which is quite significant.

As one can recall from Section III, every call to
objc msgSend incurs at minimum 3 conditional branches

(assuming the implementation is found in the first cache entry
that is queried). If the method implementation requires further
cache searching or a full class hierarchy search, the amount of
control flow operations becomes significant. As polymorphic
sites are replaced by static calls, the amount of control flow
operations decreases. Furthermore, in the cases where static
method inlining can be employed, all control flow is essentially
obviated. Figure 6 shows the ratio of control flow instruc-
tions that are dynamically executed at runtime compared to
other instructions, such as arithmetic or memory. The baseline
proportion of control flow instructions has a geometric mean
of 20.6%, whereas in the optimized case the mean is 17.0%
illustrating the reduction in overall control flow instructions.

The code size overhead of creating the optimized version
of an application is small. Applications usually include many
other resource files in addition to the binary code, such as
images, sound files, and config files. Applications typically
consume 5–30MB of storage space on the device, of which
the contribution of binary code is rather low. Nevertheless,
since our proposal requires adding metadata used for post-
processing and generating a transformed version of the binary
code (while still preserving the original binary code), there is
an increase to application size. Table III shows the increase
for the total application size compared to the original binary
code and resource files (the additional cost of metadata and
transformed version of the code). Since most high-performance
smartphones can store 16GB or more, this modest increase in
size is acceptable.

Another important consideration for mobile processors is
power. As shown, the proposed framework results in reductions
to the number of control flow instructions that are executed.
This has direct implications on power stemming from the
branch predictor hardware. Branch predictors can contribute
10% or more of the total processor’s power dissipation [12].
Reducing the number of conditional branches results in fewer
branch predictor hardware queries, saving power.

Fig. 6. Ratio of Control Flow Instructions

VI. CONCLUSIONS

A novel framework for enabling on-device application opti-
mization has been presented. Critical class and method hierar-
chy information is extracted during application compilation and
conveyed along with the application binary when downloaded
onto a device. The application is post-processed on the device,
leveraging the complete knowledge of the underlying hardware
features and OS foundation libraries that are present on the
device. A device-specific optimized version of the applica-
tion is created which greatly reduces the number of dynamic
dispatch instructions. The benefits of such an approach have
been demonstrated on real-world interactive mobile applications
running on a commercial processor.

REFERENCES

[1] Apple Inc., “App store press release,” Jan. 2013. [Online].
Available: http://www.apple.com/pr/library/2013/01/07App-Store-Tops-
40-Billion-Downloads-with-Almost-Half-in-2012.html

[2] C. Zhang, H. Xu, S. Zhang, J. Zhao, and Y. Chen, “Frequency estimation
of virtual call targets for object-oriented programs,” in Proc. of ECOOP,
2011.

[3] A. Gutierrez, R. Dreslinski, T. Wenisch, T. Mudge, A. Saidi, C. Emmons,
and N. Paver, “Full-system analysis and characterization of interactive
smartphone applications,” in Proc. of IISWC, 2011.

[4] D. Grove, J. Dean, C. Garrett, and C. Chambers, “Profile-guided receiver
class prediction,” in Proc. of OOPSLA, 1995.

[5] J. Dean, D. Grove, and C. Chambers, “Optimization of object-oriented
programs using static class hierarchy analysis,” in Proc. of ECOOP,
1995.

[6] O. Zendra, D. Colnet, and S. Collin, “Efficient dynamic dispatch without
virtual function tables: the SmallEiffel compiler,” in Proc. of OOPSLA,
1997.

[7] R. Teodorescu and R. Pandey, “Using JIT compilation and configurable
runtime systems for efficient deployment of java programs on ubiquitous
devices,” in Proc. of Ubicomp, 2001.

[8] F. Pizlo, L. Ziarek, E. Blanton, P. Maj, and J. Vitek, “High-level
programming of embedded hard real-time devices,” in Proc. of EuroSys,
2010.

[9] Apple Inc., “objc class source code,” Feb. 2010. [On-
line]. Available: http://www.opensource.apple.com/source/objc4/objc4-
437/runtime/objc-class.m

[10] ——, “objc msgSend source code,” Feb. 2010. [On-
line]. Available: http://www.opensource.apple.com/source/objc4/objc4-
437/runtime/Messengers.subproj/objc-msg-arm.s

[11] J. Joao, O. Mutlu, H. Kim, R. Agarwal, and Y. Patt, “Improving the
performance of object-oriented languages with dynamic predication of
indirect jumps,” in Proc. of ASPLOS, 2008.

[12] D. Parikh, K. Skadron, Y. Zhang, M. Barcella, and M. Stan, “Power
issues related to branch prediction,” in Proc. of HPCA, 2002.


