
Introducing Thread Criticality Awareness in

Prefetcher Aggressiveness Control

Biswabandan Panda, Shankar Balachandran

Dept. of Computer Science and Engineering

Indian Institute of Technology Madras, Chennai

Email: {biswa,shankar}@cse.iitm.ac.in

Abstract—A single parallel application running on a multi-
core system shows sub-linear speedup because of slow progress
of one or more threads known as critical threads. Some of
the reasons for the slow progress of threads are (1) load
imbalance, (2) frequent cache misses and (3) effect of synchro-
nization primitives. Identifying critical threads and minimizing
their cache miss latencies can improve the overall execution
time of a program. One way to hide and tolerate the cache
misses is through hardware prefetching. Hardware prefetching
is one of the most commonly used memory latency hiding
techniques. Previous studies have shown the effectiveness of
hardware prefetchers for multiprogrammed workloads (multiple
sequential applications running independently on different cores).
In contrast to multiprogrammed workloads, the performance of
a single parallel application depends on the progress of slow
progress(critical) threads. This paper introduces a prefetcher
aggressiveness control mechanism called Thread Criticality-aware
Prefetcher Aggressiveness Control (TCPAC). TCPAC controls the
aggressiveness of the prefetchers at the L2 prefetching controllers
(known as TCPAC-P), DRAM controller (known as TCPAC-
D) and at the Last Level Cache (LLC) controller (known as
TCPAC-C) using prefetch accuracy and thread progress. Each
TCPAC sub-technique outperforms the respective state-of-the-
art techniques such as HPAC [2], PADC [4], and PACMan [3]
and the combination of all the TCPAC sub-techniques named
as TCPAC-PDC outperforms the combination of HPAC, PADC,
and PACMan. On an average, on a 8 core system, in terms
of improvement in execution time, TCPAC-PDC outperforms
the combination of HPAC, PADC, and PACMan by 7.61%.
For 12 and 16 cores, TCPAC-PDC beats the state-of-the-art
combinations by 7.21% and 8.32% respectively.

I. Introduction

Multi-core systems employ hardware prefetchers at differ-
ent levels of cache hierarchy. These prefetchers predict the
future cache accesses based on the past cache access patterns.
Hardware prefetchers such as stride and stream are commonly
used in multi-core systems. The effectiveness of a hardware
prefetcher depends on how accurately it predicts the future
access patterns (quantified by prefetch accuracy) 1 and how
timely these prefetch requests are. Prefetcher aggressiveness
control techniques such as HPAC [2] and Bandwidth Efficient
Prefetcher [6] have been proposed for multiprogrammed
workloads. Also, techniques such as PACMan [3], PADC [4]
have been proposed for prefetch awareness at the shared Last

1

PrefetchAccuracy =
#DemandHitstoPrefetchedCacheLines

#PrefetchesIssued

0

20

40

60

80

100

C
ri

t
D

o
m

in
a

n
ce

 i
n

%

SPLASH-2X and PARSEC Benchmarks

Fig. 1. Dominance of Critical Threads on 8 core system.

Level Cache(LLC) and shared DRAM controller respectively.
Ebrahimi et al. proposed a technique [5] that achieves fairness
and QOS in the presence of prefetchers. Recently, Ishii et al.
proposed an architecture called Unified Memory Optimizing
(UMO) [13] architecture, that changes the prefetch issue
policies by making it DRAM aware. Their idea is based on
memory access map based prefetching [12]. To the best of our
knowledge, effectiveness of these techniques are not evaluated
for a single parallel application running on a multi-core system.
A single parallel application running on a multi-core system
behaves differently. In parallel applications, multiple threads
of a single application share and communicate data among
themselves. In contrast to multiprogrammed workloads, the
performance metric used for a parallel application is its ex-
ecution time. Parallel applications use different synchroniza-
tion primitives such as locks and barriers. Also, issues such
as workload-imbalance and uneven LLC misses among the
threads cause some of the threads (known as critical threads) to
progress slowly that leads to increase in the overall execution
time. Figure 1 shows the fraction of execution time affected 2

by slow (critical) threads. On an average, for SPLASH-2X [18]
and PARSEC [14] benchmarks (run with 8 threads), more than
40% of the total execution time is affected by the critical
threads.

This paper proposes a prefetcher aggressiveness control
framework called TCPAC. TCPAC consists of three sub-
techniques named TCPAC-P, TCPAC-D and TCPAC-C that
controls the aggressiveness of prefetchers at L2 prefetching
controllers, DRAM controller and at the LLC controller re-
spectively. Aggressiveness of prefetchers can be controlled at
the producer (prefetching controller) by changing the prefetch
degree and the prefetch distance and at the consumers (DRAM
and LLC) by prioritizing/de-prioritizing the prefetch requests
and responses. Overall TCPAC is a holistic design and its main

2Progress of critical threads affect progress of the entire application.978-3-9815370-2-4/DATE14/ c©2014 EDAA

contributions are:

• TCPAC-P: TCPAC-P controls the aggressiveness of
the prefetchers by changing the prefetch degree and
the prefetch distance. TCPAC-P is based on a throt-
tling mechanism where an increase (decrease) in the
prefetch degree and the prefetch distance corresponds
to throttling up (down).

• TCPAC-D: TCPAC-D controls the aggressiveness of
the prefetch requests by changing the DRAM schedul-
ing policy. It assigns priorities to the DRAM requests
based on prefetch accuracy, thread progress and the
criticality of the thread.

• TCPAC-C: TCPAC-C controls the aggressiveness of
the prefetch requests/responses by changing the LLC
replacement policy. The replacement policy is based
on the prefetch accuracy and the criticality of the
thread.

To the best of our knowledge, for parallel applications, this is
the first work that handles the prefetch requests/responses at
different levels of memory hierarchy.

II. Basic Definitions and Motivation

This section defines some metrics we use in our study and
describes the motivation behind introducing TCPAC. Sections
IV, V and VI motivate and propose TCPAC-P, TCPAC-D
and TCPAC-C respectively. The motivation behind introducing
TCPAC is the absolute difference in the progress of the threads.
Some of the reasons for this behavior are: First, workload
imbalance and high LLC misses cause a particular thread to lag
behind all other threads. Second, in case of pipelined parallel
programs, if a particular pipeline stage is slow as compared
to other stages then the threads associated with that particular
stage becomes slow. Techniques such as Criticality Stacks [9],
and Thread Criticality Predictor (TCP) [1] have been proposed
to identify threads responsible for the slow progress of a
parallel application. In this work, we use an extended version
of TCP. To identify the critical threads, TCP uses cache misses
and the corresponding cache miss latencies involved.

A. Definitions

In this section, we define criticality of a thread and in-
troduce some new metrics that we use in this work. We use
TCP [1], that correlates criticality of a thread to its cache
statistics (hits and misses). TCP accounts for L1 and L2 cache
misses and the miss penalty associated with it. A thread is
more critical if it experiences more costly cache misses. We
extend TCP for a three level cache hierarchy. Thread Criticality
(TC) of thread i is defined as

TC(i) = L2hits(i) +
Ri + Li + LLi

L1Penalty(i)
(1)

where,

Ri = Remotehits(i) ∗RemotePenalty(i)

Li = L3hits(i) ∗ L1L2Penalty(i)

LLi = DRAMhits(i) ∗ L1L2L3Penalty(i) (2)

L2hits(i) is the # L1 misses that hit in the local L2. L3hits(i)
is the # L1 misses that also miss in L2 and hit in the shared
L3. Remotehits(i) is the # L1 or L2 misses that hit in the L1

or L2 of the remote cores. DRAMhits(i) is the # L1 misses
that miss in L2 and L3 and hit in the DRAM. We also use
a metric called Normalized Thread Criticality (NTC). NTC of
thread i is defined as

NTC(i) = TC(i)/LS(i) (3)

where, LS(i) is the # committed Load and Store instructions
of thread i. We use LS(i) to minimize the variability in
the # committed Load and Store instructions between two
consecutive epochs. NTC helps in distinguishing threads that
suffer more in terms of miss penalty. Next, we define a metric
called Slack which tracks the difference in TC among the
threads. For a given thread i,

Slack(i) = max(TC(j))∀j=0 to n−1 − TC(i) (4)

where n is the total # threads (0 to n − 1). The thread with
slack=0 is treated as the most critical thread. Slack helps
in finding the most critical thread but in case of parallel
applications, at a given epoch, multiple threads may become
critical. To identify multiple critical threads if any, we use an
algorithm that detects outliers [17] based on the slack values.
The algorithm sorts the slack values in an ascending order.
Then it finds the inner and outer fences based on the slack
values. The outer fence provides a range in the form of [a,b].
Threads with slack value less than a are known as critical
threads. If the # critical threads are more than 1/4th of total
threads then we assume all the threads are non-critical. This
scenario happens when the difference between the slacks is
marginal. The objective of TCPAC is to speedup the critical
threads which are prefetch friendly. To check whether a thread
i is prefetch friendly or not we define a metric called Thread
Progress with Prefetchers (TPP). TPP of a given thread i at a
given epoch j is defined as

TPPij =
NTC(i)j−1 −NTC(i)j
degree(i)j − degree(i)j−1

(5)

Thread i progresses-es at the end of epoch j, if
(i) the denominator is 0 and the numerator is positive or
(ii) the denominator is 6= 0 and TPPij is non-negative. TPPij

becomes non-negative in two cases.
Case1: Increase in degree(i)j compared with degree(i)j−1

causes decrease in NTC(i)j compared with NTC(i)j−1.
Case2: Decrease in degree(i)j compared with degree(i)j−1

causes increase in the NTC(i)j compared with NTC(i)j−1.

B. Thread Criticality and Hardware Prefetching

Hardware prefetchers play an important role in improving
the execution time of a program by reducing and hiding the
cache miss latencies. To further improve the execution time,
intelligent prefetcher aggressiveness control policies have been
proposed that changes the prefetch degree and the prefetch
distance dynamically. On top of it, efficient LLC management
techniques and DRAM scheduling techniques provide special
care to the prefetch requests/responses at the LLC controller
and DRAM controller respectively. These techniques further
improve the execution time. In the literature, techniques such
as HPAC [2], PADC [4], and PACMan [3] have been pro-
posed for prefetching controllers, DRAM controller and LLC
controller respectively. HPAC uses prefetch metrics such as
prefetch accuracy, cache pollution and bandwidth consumption
to control the aggressiveness of a prefetcher. Similarly, PADC

prioritizes the prefetch requests using prefetch accuracy at
the DRAM controller, but in case of parallel applications, the
accuracy of the prefetchers remain similar across non-critical
threads as each thread uses shared data structures during the
parallel phase. We find this trend in 8 out of the 10 applications
from SPLASH-2X and PARSEC that we use in our study.
Applications such as ferret and waterspatial do not
fall in this trend. The above mentioned techniques are oblivious
to the criticality of a thread and usually give more shared
resources and prioritize threads with high prefetch accuracy
that are progressing. Some of the examples from the literature
are:
(i) Prefetcher aggressiveness control techniques such as HPAC
[2] and Bandwidth Efficient Prefetcher [6] prioritize threads
that have high prefetch accuracy, high prefetch coverage and
less cache pollution.
(ii) DRAM scheduling policy such as TCM [11] prioritizes
applications based on memory access behavior 3. PADC [4]
introduces prefetch awareness at the DRAM controller by pri-
oritizing the prefetch requests based on the prefetch accuracy.
(iii) Shared LLC replacement policy such as TA-DRRIP [10]
keeps the cache lines of the threads that are cache-friendly and
cache-fitting for more time.
(iv) Similarly, PACMan [3], a technique that ensures prefetch
awareness at the LLC, mostly de prioritizes prefetched cache
lines (keeps them for small fraction of time at the LLC) by
changing the LLC replacement policy.
For these reasons, recently, techniques such as CSHARP [8]
and PAMS [16] have been proposed specifically for parallel
applications. Applying the above state-of-the-art techniques
meant for multiprogrammed workloads directly to a single
parallel application may be effective but biasing them towards
the critical threads may be more effective in improving the
execution time. As Figure 1 shows the dominance of critical
threads, we find there is a need for introducing thread criticality
to the state-of-the-art techniques. We do this by identifying
and allocating more shared resources to the critical threads
and prioritizing the requests/responses of critical threads.

Shared LLC Controller

Interconnect

PFERn-1

CORE0

PFER0

COREn-1

DRAM CONTROLLER LL(i)

L(i)

L2hits(0) L2hits(n-1)

L3hits(i)

, DRAMhits(i)

LS(n-1)LS(0)

Pf_Acc(i), , LS(i)

L2 CacheL2 Cache

Pf_Acc(0) Pf_Acc(n-1)

TCPACL2hits(i),

i✄ �✁ ☎ i ☎ ✂-1)

. . .

Fig. 2. Organization of TCPAC (Private L1 caches are not shown.)

III. TCPAC

We use TPP(i), Slack(i) and PfAcc(i) (prefetch accuracy)
of a thread i to control the aggressiveness. TCPAC collects

3Latency sensitive or bandwidth sensitive.

Algorithm 1 TCPAC

1: for all i, where i is the the thread id, at a given epoch j
do

2: new phase=0 // variable used to detect changes in the
program phase at the end of every epoch.

3: if (| avg MPKI(i)−MPKI(i)j |≥ 0.03) then
4: new phase=1
5: else
6: new phase=0
7: end if
8: compute Slack(i), TPPij

9: end for
10: sort the Slack(i)s’ in the ascending order
11: Find the thread ids’ which are outliers [17] and count

them
12: if ((# outliers ≤ 1/4th of total # threads) and

(new phase==0)) then
13: Use TCPAC-P at the prefetching controllers, TCPAC-

D at the DRAM controller and TCPAC-C at the LLC
controller

14: else
15: Use HPAC at the prefetching controllers, PADC at the

DRAM controller and PACMan at the LLC controller
16: end if

and uses the above metrics at a regular epoch (epoch length
of 100K cycles) and resets it to zero after making a decision.
Each thread maintains a set of counters to calculate the relevant
metrics across two consecutive epochs. Algorithm 1 explains
the basic flow of TCPAC. The first part of the algorithm(line
number 2 to 7) detects change in the program phase. It is
based on the MPKI4 of a particular thread i at the LLC. In the
line number 12, TCPAC tries to identify the critical threads
and it counts them. If the if condition is satisfied then TCPAC
policies kick in, else TCPAC uses the state-of-the-art policies.
Organization of TCPAC: We incorporate TCPAC on multi-
core systems with a three level cache hierarchy and hardware
prefetchers enabled at the private L2 caches. Figure 2 shows
the organization of TCPAC which is placed beside LLC with
an access latency equivalent to the LLC latency. At regular
epochs, TCPAC calculates various metrics, finds out the critical
threads and their progress. Then it responds to the L2 prefetch-
ing controllers, the DRAM controller and the LLC controller.
TCPAC calculates metrics such as progress (PROGRESS),
criticality (CRIT) and uses PfAcc (ACC) of the threads. In
the interconnect, bus, and in the entries of DRAM Request
Buffer (MRB), TCPAC augments the requests/responses with
extra bits for the above metrics. At a given epoch j, for a
thread i, PROGRESS=1, if thread i progresses as per the
conditions mentioned in section II-A, else PROGRESS=0.
Similarly CRIT=1, if a particular thread is identified as critical.
ACC=1, if the PfAcc ≥ 0.55. TCPAC collects the above metrics
just before the end of an epoch and makes decisions by the
end of an epoch. Please note, all these calculations are not in
the critical path of program in execution.

IV. TCPAC for Prefetchers - (TCPAC-P)

TCPAC-P controls the aggressiveness of L2 prefetchers
(at the prefetching controllers) based on the prefetch metrics

4Misses Per Kilo Instructions.

TABLE I. Decisions based on TCPAC-P

CASE CRIT ACC PROGRESS THROTTLING RATIONALE

1 1 1 1 Degree + = 2 Minimize criticality

2 1 1 0 Degree − = 2 Minimize criticality

3 1 0 1 No Change Prefetcher Insensitive

4 1 0 0 Degree − = 1 Minimize criticality

5 0 1 1 Degree + = 1 Minimize pollution

6 0 1 0 Degree − = 1 Minimize pollution

7 0 0 1 Degree − = 2 Cache friendly

8 0 0 0 Degree − = 2 Minimize pollution

– prefetch accuracy, progress and criticality of the threads
as communicated by TCPAC framework. At the prefetching
controllers, we throttle the prefetcher by changing the prefetch
degree and the prefetch distance. Our aggressiveness control
mechanism speeds up the critical threads that leads to reduction
in the cache misses.
Limitations in Prior Approaches: Prior technique such as
HPAC [2] controls the aggressiveness of a prefetcher by
using metrics such as prefetch accuracy, cache pollution and
bandwidth consumption at the DRAM. Based on these metrics,
the local prefetching controller throttles a particular prefetcher.
It also uses a global controller which enforces throttling
decisions based on bandwidth consumption at the DRAM
information from other threads. HPAC works well for most of
the multiprogrammed workloads but thread criticality oblivious
HPAC is less effective in case of a single parallel application
running on a multi-core system. Figure 3 shows the correlation
between the prefetch metrics used in the HPAC and the thread
progress in terms of improvement in execution time on an 8
core system. We use multivariate linear regression modeling
to find this correlation. On an average, the correlation is
just above 40%. Applications such as streamcluster and
swaptions have high correlation because these applications
are mostly dominated by a single thread throughout the entire
execution of the program and all the throttling decisions are
based on a particular thread only. For other applications,
multiple threads are critical. Also, HPAC does not evaluate
the utility 5 of each throttling decision because of which, on
an average, for an eight core system, 31% of the decisions
made by HPAC is back-lashed.

0

20

40

60

80

100

SPLASH-2X and PARSEC Benchmarks

Correlation Between metrics used in HPAC and Thread Progress in %

Fig. 3. Correlation between Prefetch Metrics and Thread Progress on

8 core system.

TCPAC-P: To address these issues, we propose TCPAC-P.
TCPAC-P increases the prefetch degree of critical threads more
aggressively as compared to non-critical threads. Increase in
the aggressiveness improves the execution time but it also
comes with its own cost. Frequent increase in the prefetch
degree saturates the off-chip bandwidth and causes shared LLC
pollution. To minimize the negative interference because of
the prefetch requests, we use metrics such as PROGRESS,

5At a particular epoch, effect of throttling on the execution time.

Algorithm 2 TCPAC-D

1: Priority 1 - Demand requests from memory non-
intensive7non-progressed threads followed by memory in-
tensive critical threads

2: Priority 2 - Row hits
3: Priority 3 - Prefetch requests from critical and progressed

threads followed by prefetch requests from non-critical
threads with ACC=1

4: Priority 4 - FCFS

CRIT and ACC of the threads. Table I 6 shows the throttling
decisions based on TCPAC-P. In an 8 core system, among the
8 cases outlined in the table I, case 1, case 3 and case 6 are
the dominant cases across all the applications (on an average,
71% of the time TCPAC-P stays at these cases) followed by
case 4 and case 7 (24%). In case of ferret, a prefetcher-
unfriendly application, 63% of the time TCPAC-P stays at case
8 and rest at case 6.

V. TCPAC for DRAM Controller (TCPAC-D)

At the DRAM controller, all the memory requests are
entered in to the MRB where based on the DRAM scheduling
policy, these requests are scheduled. Most of DRAM con-
trollers take advantage of row buffers and the schedulers use
FR-FCFS scheduling policy where the FR corresponds to ser-
vicing row hit memory requests first. Our baseline scheduling
algorithm uses PADC.
Limitations in Prior Approaches: Prior Prefetch aware
DRAM policies such as PADC [4] and BAPI [7] are
oblivious to the criticality and progress of the threads. In
the presence of hardware prefetchers, PADC tries to improve
the row buffer locality. With PADC, on an average, on an
8 core system, 53% of total scheduling decisions are biased
towards progressed threads, but prioritizing the requests from
non-progressed threads helps in improving the execution time.
Requests from non-progressed threads are in the critical path
of the program in execution. These policies prioritize the
prefetch requests based on the accuracy of the prefetchers but
as discussed in section II-B, in a given epoch, the accuracy
of the prefetchers remain similar across non-critical threads.
Making scheduling decisions based on accuracy of a prefetcher
does not improve the execution time significantly. Also, to
maintain the effectiveness of TCPAC-P, the DRAM controller
should be made aware of TCPAC-P.
TCPAC-D: We propose a DRAM scheduling policy called
TCPAC-D that takes care of both the demand and the prefetch
requests based on the progress and criticality of the threads.
Algorithm 2 explains a self-contained TCPAC-D. Similar to
PADC, from the MRB, TCPAC-D drops the old prefetch
requests 8 that are critical. Please note, we do not consider
PAMS as the baseline scheduling policy. PAMS [16], a
memory scheduling technique have been proposed for parallel
applications. PAMS identifies the code segments that are
source of bottlenecks mainly because of locks and barriers.
For our study, we do not use PAMS directly as we do not
consider effect of synchronization primitives explicitly. We aim
to investigate the effect of synchronization primitives along

6prefetch distance = prefetch degree * 16. Base prefetch degree is 4.
7Misses Per Kilo Instruction (MPKI) < 1.
8Prefetch requests which are issued 100K cycles before.

0

0.2

0.4

0.6

0.8

1

CRIT=0, ACC=0 CRIT=0, ACC=1 CRIT=1, ACC=0 CRIT=1, ACC=1P
D

F
 o

f
R

e
u

se
 C

o
u

n
ts

 o
f

P
re

fe
tc

h

Li
n

e
s

a
t

LL
C

Combinations of CRIT And ACC

Reuse Count < 2 2 <= Reuse Count < 4 Reuse Count >= 4

Fig. 4. Probability Distribution Function(PDF) of Reuse counts of

Prefetched Lines at the LLC.

with TCPAC as part of future work.

VI. TCPAC for LLC Controller (TCPAC-C)

TCPAC-C works at the LLC controller by prioritizing/de-
prioritizing the prefetch requests and the responses going to
and coming from the DRAM by changing the insertion and
promotion policy. We use a baseline cache replacement policy
named TA-DRRIP [10] and make it prefetch aware. DRRIP
stands for Dynamic Re-Reference Interval Prediction. For each
cache line, DRRIP uses a N bit register to store Re-Reference
Prediction Value (RRPV). For a cache line, higher the value
of RRPV, the lesser is the chance of getting re-reference. For
a 2 bit RRPV register, a cache line can have values from 0 to
3, where 0 denotes high chance of re-reference and 3 denotes
low chance of re-reference. In case of TA-DRRIP, on a cache
miss, the insertion policy inserts a new cache line with RRPV
= 2 or 3. On a cache hit, the promotion policy updates the
value of RRPV to 0.
Limitations in Prior Approaches: PACMan [3] is a prefetch
aware LLC policy which provides prefetch awareness to DR-
RIP. PACMan inserts the prefetched cache lines mostly with
RRPV=3 and it does not promote them frequently. So the
prefetched cache lines that can get future hits are evicted
before they get their first hit after insertion. Overall, PACMan
is too aggressive in handling the prefetch requests with an
intention to reduce shared LLC pollution. Figure 4 shows the
Probability Distribution Function (PDF) of reuse counts (# re-
references between insertion and eviction of a cache line) of
prefetched cache lines at the LLC categorized based on the
CRIT and ACC. It can be seen, prefetched cache lines that
belong to threads with high prefetch accuracy are reused more
often.

TABLE II. Decisions for prefetched cache lines under TCPAC-C

Policy PACMan TCPAC-C

ACC=1, CRIT= - Insertion RRPV=3 RRPV=2, PF=1

Promotion RRPV=3 RRPV=0, PF=0

ACC=0, CRIT=1 Insertion RRPV=3 RRPV=2, PF=1

Promotion RRPV=3 RRPV=1, PF=0

ACC=0, CRIT=0 Insertion RRPV=3 RRPV=3. PF=1

Promotion RRPV=3 RRPV=3, PF=1

TCPAC-C: Irrespective of thread criticality, TCPAC-C inserts
the prefetched cache lines from a thread with high prefetch
accuracy with RRPV=2. To differentiate the prefetched cache
lines from the demand cache lines, we use a PF bit. At
the time of insertion, PF bit is set to 1 for a cache line
inserted because of prefetching and PF bit is reset to 0 at the
time of promotion of prefetched cache line. During eviction,
less reused prefetched cache lines (PF=1 with RRPV=3) are
prioritized over demand cache lines with RRPV=3. Table II
summarizes the changes incorporated into TA-DRRIP only for
the prefetch requests/responses.

0

5

10

15

20

25

30

35

%
 I

m
p

ro
v

e
m

e
n

t
In

 E
x
e

cu
ti

o
n

 T
im

e

SPLASH-2X and PARSEC Benchmarks

HPAC over NT TCPAC-P over NT TCPAC-P over HPAC

Fig. 5. Performance of TCPAC-P on 8 core system.

VII. Experimental Methodology and Results

We use gem5 Full System (FS) [15] simulator to simulate
a three level cache hierarchy. Our baseline system setup has a
shared L3 cache and per core private L2 caches with HPAC
controlling the L2 prefetchers that prefetches into L2 from
L3. At the LLC, we use PACMan as the baseline policy and
at the DRAM controller, PADC is the baseline policy. We use
PARSEC and SPLASH-2X benchmarks. We run the parallel

TABLE III. Simulated Parameters

Processor ALPHA 21264

Fetch/Decode/Commit width 8

ROB/LQ/SQ/Issue Queue 192/96/64/64 entries

L1 D/I Cache 32KB, 4 way, 2 cycle latency

L2 Unified Cache 256KB, 8 way, 16 cycle latency

L3 Unified Cache 4MB/6MB/8MB for 8/12/16 cores,

16 way, 32 cycle latency

MSHRs 8/16 at L1/L2, 120 at L3

Cache Line size 64B in L1, L2 and L3

Prefetcher Stream (32 streams), Degree=4, Distance=64

Coherence Protocol MOESI

DRAM Controller and DRAM On-chip, Open row, MRB entries=120, DDR2,

Row hits = 168 cycles, Row conflicts = 408

cycles, 4 DRAM banks, 2 KB row buffer

phase of these benchmarks with sim-large as the input
size. Please note, we select the applications based on their
memory footprints, prefetcher friendliness,and variations in
criticality among threads. We pinned the threads into hardware
cores to eliminate the variability in the execution time. In table
III, we provide the details of system parameters used in our
evaluation.

A. Results

We show the effectiveness of TCPAC-P, TCPAC-D,
TCPAC-C and TCPAC-PDC as a complete framework.
TCPAC-P: Figure 5 shows the effectiveness of TCPAC-P
on 8 core system. We compare TCPAC-P with HPAC [2]
and with No Throttling (NT) at the L2 prefetchers. In terms
of improvement in execution time, on an average (Geomean),
TCPAC-P beats the baseline prefetching framework HPAC by
3.20% and outperforms NT by 8.22% for 8 cores. Benchmarks
such as cholesky, vips and fluidanimate are the
major gainers. In case of streamcluster, the performance
benefit from HPAC alone is very high and the effect of TCPAC-
P is marginal. Most often, TCPAC-P throttles down application
such as dedup because of low prefetch accuracy (< 0.38).
Across all the applications, TCPAC-P steals prefetch degree
from non-critical threads and allocates it to prefetch friendly
progressed critical threads.
TCPAC-D: Figure 6 shows the effect of TCPAC-D compared
to PADC. We also show the combined effect of TCPAC-P and
TCPAC-D (TCPAC-PD) over HPAC used along with PADC.
For 8 cores, TCPAC-D beats PADC by 2.95%. Applications

0

2

4

6

8

10

12

14

%
Im

p
ro

v
e

m
e

n
t

In
 E

x
e

cu
ti

o
n

 T
im

e

SPLASH-2X and PARSEC Benchmarks

TCPAC-D over PADC TCPAC-PD over HPAC-PADC

Fig. 6. Performance of TCPAC-D on 8 core system.

such as fluidanimate, ferret and dedup get the max-
imum benefit from TCPAC-D. In case of fluidanimate,
only 5% of the L2 prefetch requests get hit at the LLC. So
optimization at the DRAM controller helps fluidanimate.
In case of cholesky, 37% of the DRAM requests come from
critical threads when the MRB is 1/8th full that results in
improvement in the execution time. For, ferret, the row
buffer hit rate increases up to 21% with the use of TCPAC-
D. When combined with TCPAC-P, TCPAC-PD beats the
combination of HPAC and PADC by 5.14%.
TCPAC-C: For 8 cores, TCPAC-C improves the execution
time by 4.15% over PACMan [3]. swaptions is the only
benchmark with minimal improvement. When combined with
TCPAC-P and TCPAC-D (TCPAC-PDC) improves the execu-
tion time by 7.61% compared to the combination of three
state-of-the-art policies (HPAC, PADC and PACMan). Figure
8 shows the effectiveness of TCPAC as a complete framework.

0
2
4
6
8

10
12
14
16
18
20

%
 I

m
p

ro
v

e
m

e
n

t
In

 E
x
e

cu
ti

o
n

 T
im

e

SPLASH-2X and PARSEC Benchmarks

TCPAC-C over PACMan TCPAC-PDC over HPAC-PADC-PACMan

Fig. 7. Performance of TCPAC-C on 8 core system.

Scalability: TCPAC, as a framework is scalable on multi-core
systems with 16 cores. On an average (Geomean), in terms
of improvement in execution time, TCPAC-PDC outperforms
the combination of HPAC, PADC, and PACMan by 7.21%
and 8.32% on 12 and 16 cores respectively. Due to space
constraints, we do not present detailed graphs. For many-
core based systems (more than 16 cores), effectiveness of
TCPAC is marginal in terms of performance. To improve the
performance, TCPAC can be applied to the on chip congestion
control techniques.
DRAM Traffic: In terms of DRAM traffic, on an average,
TCPAC injects 2.15%, 2.27%, 2.5% extra DRAM traffic 9 for
8, 12 and 16 core systems. Benchmarks such as ferret,
barnes and dedup inject less memory traffic compared to
the combination of baseline policies.
Hardware Overhead: The hardware overhead for the basic
TCPAC framework is less than 400 bytes for 8, 12 and 16
core systems as compared to the combination of state-of-the-
art policies. We assume the presence of PF bit in the baseline
policy (as PADC uses it). At the DRAM controller, each

9In terms of memory Bus Accesses Per Kilo Instruction (BPKI).

0

5

10

15

20

%
 I

m
p

ro
v

e
m

e
n

t
In

 E
x
e

cu
ti

o
n

 T
im

e

SPLASH-2X and PARSEC Benchmarks

TCPAC-P over HPAC TCPAC-PD over HPAC-PADC TCPAC-PDC over HPAC-PADC-PACMan

Fig. 8. Performance of TCPAC-PDC on 8 core system.

DRAM request buffer entry uses extra 4 bits (total 480 bits=
120 entries * 4). Also for TCPAC, extra logic circuits are used
for the outliers detection algorithm.

VIII. Conclusion

In this paper, we introduced TCPAC, a prefetcher aggres-
siveness control mechanism that prioritizes prefetch friendly
critical threads throughout the memory hierarchy. Our evalu-
ation showed that with minimum hardware overhead, TCPAC
improves the execution time significantly for parallel applica-
tions.

IX. Acknowledgments

The first author was supported by TCS India Research
Scholar Program. This work was supported by IBM India
Shared University Research (SUR) Grant. The authors would
like to thank the anonymous reviewers for their feedback.
The authors also thank Neel Gala, Prasanna Venkatesh, Anju
Moosad, Raghavendra K, and Anil Krishna for their valuable
feedback on earlier drafts.

REFERENCES

[1] Bhattacharjee et al., “Thread criticality predictors for dynamic performance,

power, and resource management in chip multiprocessors,” ISCA 2009, pages

290-301.

[2] Ebrahimi et al., “Coordinated control of multiple prefetchers in multi-core

systems,” MICRO 2009, pages 316-326.

[3] Wu et al. “PACMan: Prefetch-Aware Cache Management for High Performance

Caching,” MICRO 2011, pages 442-453.

[4] Lee et al. “Prefetch-aware DRAM controllers,” In MICRO 2008, pages 200-209.

[5] Ebrahimi et al. “Prefetch-aware shared resource management for multi-core

systems,” ISCA 2011, Pages 141-152.

[6] Ebrahimi et al. “Techniques for bandwidth-efficient prefetching of linked data

structures in hybrid prefetching systems,” HPCA 2009, pages 7-17.

[7] Lee et al. “Improving memory bank-level parallelism in the presence of prefetch-

ing,” MICRO 2009, Pages 327-336.

[8] Panda et al, “CSHARP: Coherence and SHaring Aware Cache Replacement

Policies for Parallel Applications,” SBAC-PAD 2012, pages 252-259.

[9] Bois et al, “Criticality stacks: identifying critical threads in parallel programs

using synchronization behavior,” ISCA 2013, pages 511-522.

[10] Jaleel et al, “High performance cache replacement using re-reference interval

prediction (RRIP),” ISCA 2010, pages 60-71.

[11] Yoongu et al, “Thread Cluster Memory Scheduling: Exploiting Differences in

Memory Access Behavior,” MICRO 2010, pages 65-76.

[12] Ishii et al, “Access map pattern matching for high performance data cache

prefetch”. Special Issue: The First JILP Data Prefetching Championship (DPC-1),

2011.

[13] Ishii et al, “Unified memory optimizing architecture: memory subsystem control

with a unified predictor,” ICS 2012, pages 267-278.

[14] Bienia et al, “The PARSEC benchmark suite: characterization and architectural

implications,” PACT 2008, pages 72-81.

[15] Binkert et al, “The gem5 simulator,” ACM SIGARCH Computer Architecture

News, Volume 39 Issue 2, May 2011, pages 1-7.

[16] Ebrahimi et al. “Parallel application memory scheduling,” MICRO 2011, pages

362-373.

[17] “http://www.ehow.com/how 5201412 calculate-outliers.html”

[18] PARSEC Group. “A Memo on Exploration of SPLASH-2 Input Sets”

